Which adds the `use-set-for-membership` check. It's generally faster in
python to use a set with the `in` keyword, because it's a hash check
instead of a linear walk, this is especially true with strings, where
it's actually O(n^2), one loop over the container, and an inner loop of
the strings (as string comparison works by checking that `a[n] == b[n]`,
in a loop).
Also, I'm tired of complaining about this in reviews, let the tools do
it for me :)
Adds a new maximum warning level that is roughly equivalent to "all warnings".
This adds a way to use `/Wall` with MSVC (without the previous broken warning),
`-Weverything` with clang, and almost all general warnings in GCC with
strictness roughly equivalent to clang's `-Weverything`.
The GCC case must be implemented by meson since GCC doesn't provide a similar
option. To avoid maintenance headaches for meson, this warning level is
defined objectively: all warnings are included except those that require
specific values or are specific to particular language revisions. This warning
level is mainly intended for new code, and it is expected (nearly guaranteed)
that projects will need to add some suppressions to build cleanly with it.
More commonly, it's just a handy way to occasionally take a look at what
warnings are present with some compiler, in case anything interesting shows up
you might want to enable in general.
Since the warnings enabled at this level are inherently unstable with respect
to compiler versions, it is intended for use by developers and not to be set as
the default.
https://github.com/mesonbuild/meson/pull/9287 changed the `optimization=0`
to pass `-O0` to the compiler. This change is reasonable by itself
but unfortunately, it breaks `buildtype=plain`, which promises
that “no extra build flags are used”.
`buildtype=plain` is important for distros like NixOS,
which manage compiler flags for optimization and hardening
themselves.
Let’s introduce a new optimization level that does nothing
and set it as the default for `buildtype=plain`.
[why]
Support for the relatively new mold linker is missing. If someone wants
to use mold as linker `LDFLAGS="-B/path/to/mold"` has to be added instead
of the usual `CC_LD=mold meson ...` or `CXX_LD=mold meson ...`.
[how]
Allow `mold' as linker for clang and newer GCC versions (that versions
that have support).
The error message can be a bit off, because it is generic for all GNU
like compilers, but I guess that is ok. (i.e. 'mold' is not listed as
possible linker, even if it would be possible for the given compiler.)
[note]
GCC Version 12.0.1 is not sufficient to say `mold` is supported. The
expected release with support will be 12.1.0.
On the other hand people that use the un-released 12.0.1 will probably
have built it from trunk. Allowing 12.0.1 is helping bleeding edge
developers to use mold in Meson already now.
Fixes: #9072
Signed-off-by: Fini Jastrow <ulf.fini.jastrow@desy.de>
We didn't consider that it has arguments following it, so the resulting
compiler command line ended up with stuff like:
-L=-rpath-link -L=-L=/path/to/directory -L=more-args
and the directory for rpath-link got eaten up as a regular -L path to
the compiler rather than being passed as -Xlinker to the linker.
Then the -rpath-link would consume the next -Xlinker argument, end up
with the wrong rpath-link (may or may not cause link errors) and then
disappear arguments we need.
As an example failure mode, if the next argument is -soname this treats
the soname text as an input file, which probably does not exist if it
was generated in a subdirectory, and also because it can never be
successfully built in the first place -- though if it did, it would link
to itself which is very wrong.
I ran into one of these from LGTM, and it would be nice if pylint could
warn me as part of my local development process instead of waiting for
the CI to tell me.
We have a lot of these. Some of them are harmless, if unidiomatic, such
as `if (condition)`, others are potentially dangerous `assert(...)`, as
`assert(condtion)` works as expected, but `assert(condition, message)`
will result in an assertion that never triggers, as what you're actually
asserting is `bool(tuple[2])`, which will always be true.
Dependencies is already a large and complicated package without adding
programs to the list. This also allows us to untangle a bit of spaghetti
that we have.
This requires quite a complex and messy logic.
As @dcbaker suggested in #8491, this could be replaced by
an abstraction over linker flags instead of having GNU flags
translated.
All changes were created by running
"pyupgrade --py3-only --keep-percent-format"
and committing the results. I have not touched string formatting for
now.
- use set literals
- simplify .format() parameter naming
- remove __future__
- remove default "r" mode for open()
- use OSError rather than compatibility aliases
- remove stray parentheses in function(generator) scopes
I would have prefered to do these seperatately, but they are combined in
some cases, so it was much easier to convert them together.
this eliminates the builtins_per_machine dict, as it's duplicated with
the OptionKey's machine parameter.
So that every subclass doesn't have to reimplement it. Especially since
the Gnu implementation moved out of the CCompiler and into the
GnuLikeCompiler mixin
Every class needs to set this, so it should be part of the base. For
classes that require is_cross, the positional argument remains in their
signature. For those that don't, they just allow the base class to set
their value to it's default of False.
Since the CompileArgs class already needs to know about the compiler,
and we really need at least per-lanaguage if not per-compiler
CompilerArgs classes, let's get the CompilerArgs instance from the
compiler using a method.
D lang compilers have an option -release (or similar) which turns off
asserts, contracts, and other runtime type checking. This patch wires
that up to the b_ndebug flag.
Fixes#7082
This should have worked before, but the inheritance order was backwards,
so we got the DCompiler before the GnuCompiler, and the base Compiler
methods overrode the Gnu methods.
DMD and LDC are a real pain to use as linkers. On Unices they invoke the C
compiler as the linker, just like meson does. This means we have to figure out
what C compiler they're using and try to pass valid arguments to that compiler
if the D compiler doesn't understand the linker arguments we want to pass. In
this case that means gcc or clang. We can use-the -Xcc to pass arguments
directly to the C compiler without dmd/ldc getting involved, so we'll use that.
This was never really true of the D compilers, it made them more
complicated than necessary and was incorrect in many cases. Removing it
causes no regressions on Linux, at least in our rather limited test
cases).