Instead of the DynamicLinker returning a hardcoded value like
`-Wl,-foo`, it now is passed a value that could be '-Wl,', or could be
something '-Xlinker='
This makes a few things cleaner, and will make it possible to fix using
clang (not clang-cl) on windows, where it invokes either link.exe or
lld-link.exe instead of a gnu-ld compatible linker.
The regex was incorrect, so it was matching 'ARM64' with 'ARM'.
Make the regex more specific so that it matches:
Microsoft (R) C/C++ Optimizing Compiler Version 19.16.27031.1 for x64
Microsoft (R) C/C++ Optimizing Compiler Version 19.16.27031.1 for x86
Microsoft (R) C/C++ Optimizing Compiler Version 19.16.27031.1 for ARM64
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 for 80x86
etc.
These two functions are different only in the classes that they use, a
couple of simple in-line ternaries takes care of that and reduces code
duplication.
* coredata: Correctly handle receiving a pipe for native/cross files
In some cases a cross/native file may be a pipe, such as when using bash
process replacement `meson --native-file
<([binaries]llvm-config='/opt/bin/llvm-config')`, for example. In this
case we copy the contents of the pipe into a file in the meson-private
directory so we can create a proper ninja dependency, and be able to
reload the file on --wipe/--reconfigure. This requires some extra
negotiation to preserve these native/cross files.
Fixes#5505
* run_unitests: Add a unit test for native files that are pipes
Using mkfifo.
i86pc may be either 32-bit or 64-bit, so use existing compiler checks
to determine if it should return 'x86' or 'x86_64'.
Signed-off-by: Alan Coopersmith <alan.coopersmith@oracle.com>
In most cases instead pass `for_machine`, the name of the relevant
machines (what compilers target, what targets run on, etc). This allows
us to use the cross code path in the native case, deduplicating the
code.
As one can see, environment got bigger as more information is kept
structured there, while ninjabackend got a smaller. Overall a few amount
of lines were added, but the hope is what's added is a lot simpler than
what's removed.
the problem here is, that get_custom_target_provided_libraries iterated
over all generated sources of a target. In each output we check if this
is a library or not. In projects like EFL we have added a lot of
generated target to many different targets, so the iterating of the
output is rather consistent, with this commit we drop from 19% of the
time spending in get_custom_target_provided_libraries down to 3.51%.
Handling the PKG_CONFIG_PATH variable in meson introduces a new problem
for caching dependencies. We want to encode the pkg_config_path (or
cross_pkg_config_path if we're cross compiling) to be part of the key,
but we don't want to put that into the key for non-pkg-config
dependencies to avoid spurious cache misses (since pkg_config_path isn't
relevant to cmake, for example). However, on a cache lookup we can't
know that a dependency is a pkg-config dependency until we've looked in
the cache.
My solution is a two layer cache, the first layer remains the same as
before, the second layer is a dict-like object that encapsulates the
dependency type information and uses pkg_config_path and
cross_pkg_config_path as a sub key (and could be extended easily for
other types). A new object type is introduced to encapsulate this so
that callers don't need to be aware of the implementation details.
Meson itself *almost* only cares about the build and host platforms. The
exception is it takes a `target_machine` in the cross file and exposes
it to the user; but it doesn't do anything else with it. It's therefore
overkill to put target in `PerMachine` and `MachineChoice`. Instead, we
make a `PerThreeMachine` only for the machine infos.
Additionally fix a few other things that were bugging me in the process:
- Get rid of `MachineInfos` class. Since `envconfig.py` was created, it
has no methods that couldn't just got on `PerMachine`
- Make `default_missing` and `miss_defaulting` work functionally. That
means we can just locally bind rather than bind as class vars the
"unfrozen" configuration. This helps prevent bugs where one forgets
to freeze a configuration.
Intel helpfully provides a cl.exe that is indistinguishable from
Microsoft's cl.exe in output, but has the same behavior as icl.exe.
Since icl and ifort will only be present in your path if you've started
an Intel command prompt search for that first.
Currently C++ inherits C, which can lead to diamond problems. By pulling
the code out into a standalone mixin class that the C, C++, ObjC, and
Objc++ compilers can inherit and override as necessary we remove one
source of diamonding. I've chosen to split this out into it's own file
as the CLikeCompiler class is over 1000 lines by itself. This also
breaks the VisualStudio derived classes inheriting from each other, to
avoid the same C -> CPP inheritance problems. This is all one giant
patch because there just isn't a clean way to separate this.
I've done the same for Fortran since it effectively inherits the
CCompiler (I say effectively because was it actually did was gross
beyond explanation), it's probably not correct, but it seems to work for
now. There really is a lot of layering violation going on in the
Compilers, and a really good scrubbing would do this code a lot of good.
Some things, like `method[...](...)` or `x: ... = ...` python 3.5
doesn't support, so I made a comment instead with the intention that it
can someday be made into a real annotation.
The cl.exe from Visual Studio 2010 and earlier report '80x86', not
'x86', for the architecture that the compiler supports. So, we ought
to check for that as well to see whether we are building for 32-bit x86.
The out-of-source build syntax for gcovr 4.2 is different compared to
previous versions and therefore an update was needed. In researching the
most appropriate solution it was found that any gcovr version older than
3.3 always resulted in 0% coverage. Because of this, rather than adding
an additional layer of logic, some already existing logic was modified
to ensure correct syntax for the new version, while versions older than
3.3 are flagged as not supported.
Closes mesonbuild#5089.
From (almost) all points of view, the Xtensa toolchain can be treated as
a regular GCC toolchain.
This patch adds very basic support so that, at least, meson does not
fail when trying to use "xt-xcc" (which makes it possible to use it
without problems).