Now as long as you have a C compiler available in the project, it will
be used to compile assembly even if the target contains a C++ compiler
and even if the target contains only assembly and C++ sources.
Earlier, the order in which sources appeared in a target would decide
which compiler would be used.
However, if the project only provides a C++ compiler, that will be
used for compiling assembly sources.
If this breaks your use-case, please tell us.
Includes a test that ensures that all of the above is adhered to.
Use an ordered dict for the compiler dictionary and sort it according
to a priority order: fortran, c, c++, etc.
This also ensures that builds are reproducible because it would be
a toss-up whether a C or a C++ compiler would be used based on the
order in which compilers.items() would return items.
Closes https://github.com/mesonbuild/meson/issues/1370
We were adding them to the CompilerArgs instance in the order in which
they are specified, which is wrong because later dependencies would
override previous ones. Add them in the reverse order instead.
Closes https://github.com/mesonbuild/meson/issues/1495
This changes how generated files are added to the VS project.
Previously, they were all added as a single CustomBuildStep with all
generator commands, inputs and outputs merged together.
Now, each input file is added separately to the project and is given a
CustomBuild command. This adds all generator input files to the files list
in the VS gui and allows to run only some of the generator commands if
only some of the input files have changed.
We check for the existence of PDB files in the install script, so we
don't need to do all this mucking about here. That's more robust too
because we don't need to parse build arguments in buildtype=plain
and decide if the PDB file would be generated.
This means replacing @PLAINNAME@ and @BASENAME@ in the outputs. This is
the same feature as generator().
This is only allowed when there is only one input file for obvious
reasons + failing test for this.
Factor it out into a function in mesonlib.py. This will allow us to
reuse it for generators and for configure_file(). The latter doesn't
implement this at all right now.
Also includes unit tests.
Without this, files() in the arguments give an error because it's a list
of mesonlib.File objects:
Array as argument 1 contains a non-string.
It also breaks in nested lists. Includes a test for this.
At the same time, also fix the order in which compile arguments are
added. Detailed comments have been added concerning the priority and
order of the arguments.
Also adds a unit test and an integration test for the same.
With the 'install_mode' kwarg, you can now specify the file and
directory permissions and the owner and the group to be used while
installing. You can pass either:
* A single string specifying just the permissions
* A list of strings with:
- The first argument a string of permissions
- The second argument a string specifying the owner or
an int specifying the uid
- The third argument a string specifying the group or
an int specifying the gid
Specifying `false` as any of the arguments skips setting that one.
The format of the permissions kwarg is the same as the symbolic
notation used by ls -l with the first character that specifies 'd',
'-', 'c', etc for the file type omitted since that is always obvious
from the context.
Includes unit tests for the same. Sadly these only run on Linux right
now, but we want them to run on all platforms. We do set the mode in the
integration tests for all platforms but we don't check if they were
actually set correctly.
Set the rules for the symlinking on the target itself, and then reuse
that information while generating aliases during the build, and then
pass it to the install script too.
If you declare_dependency(link_with : 'string'), an exception is
supposed to be raised, but instead of a proper message, it's an
exception about a missing attribute.
Cache the absolute dir that the script is searched in and the name of
the script. These are the only two things that change.
Update the test to test for both #1235 and the case when a script of the
same name is in a different directory (which also covers the subproject
case).
Closes#1235
This is much more accurate since this is actually what determines what
file naming to use and whether there will be PDB debugging information
or not.
Closes#1169
This greatly improves the logic for determining the linker. Previously,
we would completely break if a target contained only extracted objects
and we were using more than one compiler in our project.
This also fixes determination of the linker if our target only contains
generated objc++ sources, and other funky combinations.
This avoids us having no compilers at all for targets that are composed
entirely of objects with no sources.
Now we will always have a compiler for a target even if it is composed
entirely of objects generated with custom targets unless it has
completely unknown sources.
Everywhere we use this object, we end up iterating over it and comparing
compiler.get_language() with something. Using a dict is the obvious
choice and simplifies a lot of code.