By avoiding Java-style variable naming, the code becomes considerably
more readable while simultaneously becoming *more* easy to understand.
It's no longer necessary to ask questions like "what's a captured
buildtype" when trying to read through the code for a backend, because
it can be dismissed as not relevant to the current context by re-reading
it as "context for vslite".
The primary goal here has been to revert regressions in the developer
experience for users of the ninja backend, so there may still be issues
in vs2010backend.py
Post-facto application of issues that were raised during review,
ignored, and merged despite such.
* Capture all compile args from the first round of ninja backend generation for all languages used in building the targets so that these args, defines, and include paths can be applied to the .vcxproj's intellisense fields for all buildtypes/configurations.
Solution generation is now set up for mutiple build configurations (buildtypes) when using '--genvslite'.
All generated vcxprojs invoke the same high-level meson compile to build all targets; there's no selective target building (could add this later). Related to this, we skip pointlessly generating vcxprojs for targets that aren't buildable (BuildTarget-derived), which aren't of interest to the user anyway.
When using --genvslite, no longer inject '<ProjectReference ...>' dependencies on which a generated .vcxproj depends because that imposes a forced visual studio build dependency, which we don't want, since we're essentially bypassing VS's build in favour of running 'meson compile ...'.
When populating the vcxproj's shared intellisense defines, include paths, and compiler options fields, we choose the most frequent src file language, since this means more project src files can simply reference the project shared fields and fewer files of non-primary language types need to populate their full set of intellisense fields. This makes for smaller .vcxproj files.
Paths for generated source/header/etc files, left alone, would be added to solution projects relative to the '..._vs' build directory, where they're never generated; they're generated under the respective '..._[debug/opt/release]' ninja build directories that correspond to the solution build configuration. Although VS doesn't allow conditional src/header listings in vcxprojs (at least not in a simple way that I'm aware of), we can ensure these generated sources get adjusted to at least reference locations under one of the concrete build directories (I've chosen '..._debug') under which they will be generated.
Testing with --genvslite has revealed that, in some cases, the presence of 'c:\windows\system32;c:\windows' on the 'Path' environment variable (via the make-style project's ExecutablePath element) is critical to getting the 'meson compile ...' build to succeed. Not sure whether this is some 'find and guess' implicit defaults behaviour within meson or within the MSVC compiler that some projects may rely on. Feels weird but not sure of a better solution than forcibly adding these to the Path environment variable (the Executable Path property of the project).
Added a new windows-only test to windowstests.py ('test_genvslite') to exercise the --genvslite option along with checking that the 'msbuild' command invokes the 'meson compile ...' of the build-type-appropriate-suffixed temporary build dir and checks expected program output.
Check and report error if user specifies a non-ninja backend with a 'genvslite' setup, since that conflicts with the stated behaviour of genvslite. Also added this test case to 'WindowsTests.test_genvslite'
I had problems tracking down some problematic environment variable behaviour, which appears to need a work-around. See further notes on VSINSTALLDIR, in windowstests.py, test_genvslite.
'meson setup --help' clearly states that positional arguments are ... [builddir] [sourcedir]. However, BasePlatformTests.init(...) was passing these in the order [sourcedir] [builddir]. This was producing failures, saying, "ERROR: Neither directory contains a build file meson.build." but when using the correct ordering, setup now succeeds.
Changed regen, run_tests, and run_install utility projects to be simpler makefile projects instead, with commands to invoke the appropriate '...meson.py --internal regencheck ...' (or install/test) on the '[builddir]_[buildtype]' as appropriate for the curent VS configuration. Also, since the 'regen.vcxproj' utility didn't work correctly with '--genvslite' setup build dirs, and getting it to fully work would require more non-trivial intrusion into new parts of meson (i.e. '--internal regencheck', '--internal regenerate', and perhaps also 'setup --reconfigure'), for now, the REGEN project is replaced with a simpler, lighter-weight RECONFIGURE utility proj, which is unlinked from any solution build dependencies and which simply runs 'meson setup --reconfigure [builddir]_[buildtype] [srcdir]' on each of the ninja-backend build dirs for each buildtype.
Yes, although this will enable the building/compiling to be correctly configured, it can leave the solution/vcxprojs stale and out-of-date, it's simple for the user to 'meson setup --genvslite ...' to fully regenerate an updated, correct solution again. However, I've noted this down as a 'fixme' to consider implementing the full regen behaviour for the genvslite case.
* Review feedback changes -
- Avoid use of 'captured_compile_args_per_buildtype_and_target' as an 'out' param.
- Factored a little msetup.py, 'run(...)' macro/looping setup steps, for genvslite, out into a 'run_genvslite_setup' func.
* Review feedback: Fixed missing spaces between multi-line strings.
* 'backend_name' assignment gets immediately overwritten in 'genvslite' case so moved it into else/non-genvslite block.
* Had to bump up 'test cases/unit/113 genvslites/...' up to 114; it collided with a newly added test dir again.
* Changed validation of 'capture' and 'captured_compile_args_...' to use MesonBugException instead of MesonException.
* Changed some function param and closing brace indentation.
We can check something's subtype using properties, without importing the
module up front and doing isinstance checks on specific subclasses of
the interface -- or worse, solving cyclic imports by doing the import
inside the function. ;)
Previously, the VS backend would add the the include directories
in the reverse order that the Ninja backend does it, which
means that the source directories would be preferred over
the build directories. For example, this would cause the
compiler to choose the file from the source directory
if a file with the same name is found in both.
Fixes 57ec097b5 ("vs: Use CompilerArgs() for compile and link args")
Fixes#11630
The code below this already handles being passed an Executable or
ExternalProgram, and it does it correctly, since it handles host
binaries that need an exe_wrapper correctly, while the code in the
generator paths doesn't.
The xcode backend is, like always, problematic, it doesn't handle things
the same way as the ninja and vscode backends, and generates a shell
script instead of using meson as a wrapper when needed (it seems likely
that just forcing the meson path for xcode would be better). I don't
have a working mac to develop a fix for, so I've left a todo comment
there.
Fixes: #11264
Which adds the `use-set-for-membership` check. It's generally faster in
python to use a set with the `in` keyword, because it's a hash check
instead of a linear walk, this is especially true with strings, where
it's actually O(n^2), one loop over the container, and an inner loop of
the strings (as string comparison works by checking that `a[n] == b[n]`,
in a loop).
Also, I'm tired of complaining about this in reviews, let the tools do
it for me :)
Since vs backend only support the C compiler, everything else are custom
targets. Convert CompileTarget into a Generator to reuse existing code.
This will be useful in the future to support transpilers, and
assemblers.
%% survived into the output since 038b31e72b. That failed to fail, at
least in the common cases, because the whole command sequence is unnecessary /
redundant - it appears to come from cmake, which executes multiple commands
within a single CustomBuild element.
Regardless of which MachineChoice we base the platform on, we compare
its value to lowercased identifiers. So we need to lowercase the
targetplatform too... but we only did so sometimes.
This broke e.g. on "Win32", but only when *not* doing a cross build.
Fixes#10539
A single target could be picked for unity build, and in that case
extract_objects() should not be allowed.
Likewise for the opposite case, where extract_objects() should be allowed
if unity build is disabled for a single target. A test that covers that
case is added later.
'meson-test-prereq' now depends on any targets that were formerly added
directly to 'all'. Behavior is not changed -- the all target still
depends on this other meta-rule, and thus indirectly depends on all
targets it used to depend on.
It is now possible to build just the targets needed for the testsuite
and then e.g. run `meson test --no-rebuild`.
Since they are actually dependencies out the output not the Generator
itself.
This fixes dependency issues in the ninja backend, allowing Meson to
rebuild more accurately. It also does sometimes in the vs backend, but
there are problems in the vs backend I'm not sure how to solve. The
vsbackend is, itself, so fragile looking I don't want to get too
involved with it.
This doesn't actually fix the problem, but it provides parity with what
is currently happening. I don't have access to a Windows machine to
further debug, however, so not breaking anything is the best I can do
ATM.
That method had nothing specific to the backend, it's purely a Target
method. This allows to cache the OptionOverrideProxy object on the
Target instance instead of creating a new one for each option lookup.
fixes#6314
in case of backend is vs2017 or vs2019 place LanguageStandard tag with stdcpp version and LanguageStandard_C tag with stdc version in .vcxproj file
UseMultiToolTask allows parallelism inside a project, without requiring cl.exe
internal multi-threading (which meson generated projects currently can't use,
mainly due to specifying output filenames for each object).
TODO:
- think about making behaviour conditional on msbuild version / add comment
why not
The main reason for this move is to make it easier to merge the copies of
project generation. But as far as I can tell, the Microsoft.Cpp.props import
also belongs before the ItemDefinitionGroup.
Originally the order seems to have been that way, but 431a9ea664 changed it in
the course of other changes.