interpreter: Holderify arrays and dicts

This is the final refactoring for extracting the bultin object
logic out of Interpreterbase. I decided to do both arrays and
dicts in one go since splitting it would have been a lot more
confusing.
pull/9366/head
Daniel Mensinger 3 years ago
parent b19530bd7d
commit af0587cb49
  1. 19
      mesonbuild/ast/interpreter.py
  2. 4
      mesonbuild/interpreter/__init__.py
  3. 2
      mesonbuild/interpreter/interpreter.py
  4. 4
      mesonbuild/interpreter/primitives/__init__.py
  5. 103
      mesonbuild/interpreter/primitives/array.py
  6. 87
      mesonbuild/interpreter/primitives/dict.py
  7. 2
      mesonbuild/interpreterbase/__init__.py
  8. 10
      mesonbuild/interpreterbase/_unholder.py
  9. 31
      mesonbuild/interpreterbase/baseobjects.py
  10. 507
      mesonbuild/interpreterbase/interpreterbase.py
  11. 2
      test cases/failing/11 object arithmetic/test.json
  12. 2
      test cases/failing/12 string arithmetic/test.json
  13. 2
      test cases/failing/13 array arithmetic/test.json
  14. 2
      test cases/failing/51 inconsistent comparison/test.json

@ -30,6 +30,15 @@ from ..interpreterbase import (
TYPE_nkwargs,
)
from ..interpreter import (
Interpreter,
StringHolder,
BooleanHolder,
IntegerHolder,
ArrayHolder,
DictHolder,
)
from ..mparser import (
AndNode,
ArgumentNode,
@ -202,6 +211,9 @@ class AstInterpreter(InterpreterBase):
assert isinstance(node, mparser.FormatStringNode)
return node.value
def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> TYPE_nvar:
return self.reduce_arguments(cur.args)[0]
def evaluate_arithmeticstatement(self, cur: ArithmeticNode) -> int:
self.evaluate_statement(cur.left)
self.evaluate_statement(cur.right)
@ -364,18 +376,15 @@ class AstInterpreter(InterpreterBase):
mkwargs = {} # type: T.Dict[str, TYPE_nvar]
try:
if isinstance(src, str):
from ..interpreter import Interpreter, StringHolder
result = StringHolder(src, T.cast(Interpreter, self)).method_call(node.name, margs, mkwargs)
elif isinstance(src, bool):
from ..interpreter import Interpreter, BooleanHolder
result = BooleanHolder(src, T.cast(Interpreter, self)).method_call(node.name, margs, mkwargs)
elif isinstance(src, int):
from ..interpreter import Interpreter, IntegerHolder
result = IntegerHolder(src, T.cast(Interpreter, self)).method_call(node.name, margs, mkwargs)
elif isinstance(src, list):
result = self.array_method_call(src, node.name, margs, mkwargs)
result = ArrayHolder(src, T.cast(Interpreter, self)).method_call(node.name, margs, mkwargs)
elif isinstance(src, dict):
result = self.dict_method_call(src, node.name, margs, mkwargs)
result = DictHolder(src, T.cast(Interpreter, self)).method_call(node.name, margs, mkwargs)
except mesonlib.MesonException:
return None

@ -35,7 +35,9 @@ __all__ = [
'ExternalProgramHolder',
'extract_required_kwarg',
'ArrayHolder',
'BooleanHolder',
'DictHolder',
'IntegerHolder',
'StringHolder',
]
@ -49,7 +51,9 @@ from .interpreterobjects import (ExecutableHolder, BuildTargetHolder, CustomTarg
extract_required_kwarg)
from .primitives import (
ArrayHolder,
BooleanHolder,
DictHolder,
IntegerHolder,
StringHolder,
)

@ -386,6 +386,8 @@ class Interpreter(InterpreterBase, HoldableObject):
'''
self.holder_map.update({
# Primitives
list: P_OBJ.ArrayHolder,
dict: P_OBJ.DictHolder,
int: P_OBJ.IntegerHolder,
bool: P_OBJ.BooleanHolder,
str: P_OBJ.StringHolder,

@ -2,13 +2,17 @@
# SPDX-license-identifier: Apache-2.0
__all__ = [
'ArrayHolder',
'BooleanHolder',
'DictHolder',
'IntegerHolder',
'StringHolder',
'MesonVersionString',
'MesonVersionStringHolder',
]
from .array import ArrayHolder
from .boolean import BooleanHolder
from .dict import DictHolder
from .integer import IntegerHolder
from .string import StringHolder, MesonVersionString, MesonVersionStringHolder

@ -0,0 +1,103 @@
# Copyright 2021 The Meson development team
# SPDX-license-identifier: Apache-2.0
import typing as T
from ...interpreterbase import (
ObjectHolder,
IterableObject,
MesonOperator,
typed_operator,
noKwargs,
noPosargs,
noArgsFlattening,
typed_pos_args,
TYPE_var,
TYPE_kwargs,
InvalidArguments,
)
if T.TYPE_CHECKING:
# Object holders need the actual interpreter
from ...interpreter import Interpreter
class ArrayHolder(ObjectHolder[T.List[TYPE_var]], IterableObject):
def __init__(self, obj: T.List[TYPE_var], interpreter: 'Interpreter') -> None:
super().__init__(obj, interpreter)
self.methods.update({
'contains': self.contains_method,
'length': self.length_method,
'get': self.get_method,
})
self.trivial_operators.update({
MesonOperator.EQUALS: (list, lambda x: self.held_object == x),
MesonOperator.NOT_EQUALS: (list, lambda x: self.held_object != x),
MesonOperator.IN: (object, lambda x: x in self.held_object),
MesonOperator.NOT_IN: (object, lambda x: x not in self.held_object),
})
# Use actual methods for functions that require additional checks
self.operators.update({
MesonOperator.PLUS: self.op_plus,
MesonOperator.INDEX: self.op_index,
})
def display_name(self) -> str:
return 'array'
def iter_tuple_size(self) -> None:
return None
def iter_self(self) -> T.Iterator[TYPE_var]:
return iter(self.held_object)
def size(self) -> int:
return len(self.held_object)
@noArgsFlattening
@noKwargs
@typed_pos_args('array.contains', object)
def contains_method(self, args: T.Tuple[object], kwargs: TYPE_kwargs) -> bool:
def check_contains(el: T.List[TYPE_var]) -> bool:
for element in el:
if isinstance(element, list):
found = check_contains(element)
if found:
return True
if element == args[0]:
return True
return False
return check_contains(self.held_object)
@noKwargs
@noPosargs
def length_method(self, args: T.List[TYPE_var], kwargs: TYPE_kwargs) -> int:
return len(self.held_object)
@noArgsFlattening
@noKwargs
@typed_pos_args('array.get', int, optargs=[object])
def get_method(self, args: T.Tuple[int, T.Optional[TYPE_var]], kwargs: TYPE_kwargs) -> TYPE_var:
index = args[0]
if index < -len(self.held_object) or index >= len(self.held_object):
if args[1] is None:
raise InvalidArguments(f'Array index {index} is out of bounds for array of size {len(self.held_object)}.')
return args[1]
return self.held_object[index]
@typed_operator(MesonOperator.PLUS, object)
def op_plus(self, other: TYPE_var) -> T.List[TYPE_var]:
if not isinstance(other, list):
other = [other]
return self.held_object + other
@typed_operator(MesonOperator.INDEX, int)
def op_index(self, other: int) -> TYPE_var:
try:
return self.held_object[other]
except IndexError:
raise InvalidArguments(f'Index {other} out of bounds of array of size {len(self.held_object)}.')

@ -0,0 +1,87 @@
# Copyright 2021 The Meson development team
# SPDX-license-identifier: Apache-2.0
import typing as T
from ...interpreterbase import (
ObjectHolder,
IterableObject,
MesonOperator,
typed_operator,
noKwargs,
noPosargs,
noArgsFlattening,
typed_pos_args,
TYPE_var,
TYPE_kwargs,
InvalidArguments,
)
if T.TYPE_CHECKING:
# Object holders need the actual interpreter
from ...interpreter import Interpreter
class DictHolder(ObjectHolder[T.Dict[str, TYPE_var]], IterableObject):
def __init__(self, obj: T.Dict[str, TYPE_var], interpreter: 'Interpreter') -> None:
super().__init__(obj, interpreter)
self.methods.update({
'has_key': self.has_key_method,
'keys': self.keys_method,
'get': self.get_method,
})
self.trivial_operators.update({
# Arithmetic
MesonOperator.PLUS: (dict, lambda x: {**self.held_object, **x}),
# Comparison
MesonOperator.EQUALS: (dict, lambda x: self.held_object == x),
MesonOperator.NOT_EQUALS: (dict, lambda x: self.held_object != x),
MesonOperator.IN: (str, lambda x: x in self.held_object),
MesonOperator.NOT_IN: (str, lambda x: x not in self.held_object),
})
# Use actual methods for functions that require additional checks
self.operators.update({
MesonOperator.INDEX: self.op_index,
})
def display_name(self) -> str:
return 'dict'
def iter_tuple_size(self) -> int:
return 2
def iter_self(self) -> T.Iterator[T.Tuple[str, TYPE_var]]:
return iter(self.held_object.items())
def size(self) -> int:
return len(self.held_object)
@noKwargs
@typed_pos_args('dict.has_key', str)
def has_key_method(self, args: T.Tuple[str], kwargs: TYPE_kwargs) -> bool:
return args[0] in self.held_object
@noKwargs
@noPosargs
def keys_method(self, args: T.List[TYPE_var], kwargs: TYPE_kwargs) -> T.List[str]:
return sorted(self.held_object)
@noArgsFlattening
@noKwargs
@typed_pos_args('dict.get', str, optargs=[object])
def get_method(self, args: T.Tuple[str, T.Optional[TYPE_var]], kwargs: TYPE_kwargs) -> TYPE_var:
if args[0] in self.held_object:
return self.held_object[args[0]]
if args[1] is not None:
return args[1]
raise InvalidArguments(f'Key {args[0]!r} is not in the dictionary.')
@typed_operator(MesonOperator.INDEX, str)
def op_index(self, other: str) -> TYPE_var:
if other not in self.held_object:
raise InvalidArguments(f'Key {other} is not in the dictionary.')
return self.held_object[other]

@ -16,6 +16,7 @@ __all__ = [
'InterpreterObject',
'MesonInterpreterObject',
'ObjectHolder',
'IterableObject',
'RangeHolder',
'MutableInterpreterObject',
@ -76,6 +77,7 @@ from .baseobjects import (
InterpreterObject,
MesonInterpreterObject,
ObjectHolder,
IterableObject,
RangeHolder,
MutableInterpreterObject,

@ -16,14 +16,8 @@ from .baseobjects import InterpreterObject, MesonInterpreterObject, ObjectHolder
from .exceptions import InvalidArguments
from ..mesonlib import HoldableObject, MesonBugException
import typing as T
def _unholder(obj: T.Union[TYPE_var, InterpreterObject]) -> TYPE_var:
if isinstance(obj, list):
return [_unholder(x) for x in obj]
elif isinstance(obj, dict):
return {k: _unholder(v) for k, v in obj.items()}
elif isinstance(obj, ObjectHolder):
def _unholder(obj: InterpreterObject) -> TYPE_var:
if isinstance(obj, ObjectHolder):
assert isinstance(obj.held_object, HoldableTypes)
return obj.held_object
elif isinstance(obj, MesonInterpreterObject):

@ -20,6 +20,7 @@ from ..mesonlib import HoldableObject, MesonBugException
import textwrap
import typing as T
from abc import ABCMeta
if T.TYPE_CHECKING:
# Object holders need the actual interpreter
@ -54,7 +55,7 @@ class InterpreterObject:
self.trivial_operators: T.Dict[
MesonOperator,
T.Tuple[
T.Type[T.Union[TYPE_var, T.Tuple[TYPE_var, ...]]],
T.Union[T.Type, T.Tuple[T.Type, ...]],
'OperatorCall'
]
] = {}
@ -94,7 +95,7 @@ class InterpreterObject:
if op[0] is None and other is not None:
raise MesonBugException(f'The unary operator `{operator.value}` of {self.display_name()} was passed the object {other} of type {type(other).__name__}')
if op[0] is not None and not isinstance(other, op[0]):
raise InvalidArguments(f'The `{operator.value}` of {self.display_name()} does not accept objects of type {type(other).__name__} ({other})')
raise InvalidArguments(f'The `{operator.value}` operator of {self.display_name()} does not accept objects of type {type(other).__name__} ({other})')
return op[1](other)
if operator in self.operators:
return self.operators[operator](other)
@ -128,8 +129,8 @@ class MesonInterpreterObject(InterpreterObject):
class MutableInterpreterObject:
''' Dummy class to mark the object type as mutable '''
HoldableTypes = (HoldableObject, int, bool, str)
TYPE_HoldableTypes = T.Union[HoldableObject, int, bool, str]
HoldableTypes = (HoldableObject, int, bool, str, list, dict)
TYPE_HoldableTypes = T.Union[TYPE_elementary, HoldableObject]
InterpreterObjectTypeVar = T.TypeVar('InterpreterObjectTypeVar', bound=TYPE_HoldableTypes)
class ObjectHolder(InterpreterObject, T.Generic[InterpreterObjectTypeVar]):
@ -163,7 +164,20 @@ class ObjectHolder(InterpreterObject, T.Generic[InterpreterObjectTypeVar]):
def __repr__(self) -> str:
return f'<[{type(self).__name__}] holds [{type(self.held_object).__name__}]: {self.held_object!r}>'
class RangeHolder(MesonInterpreterObject):
class IterableObject(metaclass=ABCMeta):
'''Base class for all objects that can be iterated over in a foreach loop'''
def iter_tuple_size(self) -> T.Optional[int]:
'''Return the size of the tuple for each iteration. Returns None if only a single value is returned.'''
raise MesonBugException(f'iter_tuple_size not implemented for {self.__class__.__name__}')
def iter_self(self) -> T.Iterator[T.Union[TYPE_var, T.Tuple[TYPE_var, ...]]]:
raise MesonBugException(f'iter not implemented for {self.__class__.__name__}')
def size(self) -> int:
raise MesonBugException(f'size not implemented for {self.__class__.__name__}')
class RangeHolder(MesonInterpreterObject, IterableObject):
def __init__(self, start: int, stop: int, step: int, *, subproject: str) -> None:
super().__init__(subproject=subproject)
self.range = range(start, stop, step)
@ -177,8 +191,11 @@ class RangeHolder(MesonInterpreterObject):
except:
raise InvalidArguments(f'Index {other} out of bounds of range.')
def __iter__(self) -> T.Iterator[int]:
def iter_tuple_size(self) -> None:
return None
def iter_self(self) -> T.Iterator[int]:
return iter(self.range)
def __len__(self) -> int:
def size(self) -> int:
return len(self.range)

@ -24,9 +24,8 @@ from .baseobjects import (
MutableInterpreterObject,
InterpreterObjectTypeVar,
ObjectHolder,
RangeHolder,
IterableObject,
TYPE_elementary,
TYPE_var,
TYPE_kwargs,
@ -42,7 +41,7 @@ from .exceptions import (
BreakRequest
)
from .decorators import FeatureNew, noKwargs
from .decorators import FeatureNew
from .disabler import Disabler, is_disabled
from .helpers import default_resolve_key, flatten, resolve_second_level_holders
from .operator import MesonOperator
@ -51,7 +50,6 @@ from ._unholder import _unholder
import os, copy, re, pathlib
import typing as T
import textwrap
from functools import wraps
if T.TYPE_CHECKING:
# T.cast is not handled by flake8 to detect quoted annotation use
@ -64,6 +62,8 @@ HolderMapType = T.Dict[
T.Type[int],
T.Type[bool],
T.Type[str],
T.Type[list],
T.Type[dict],
],
# For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar]
T.Callable[[InterpreterObjectTypeVar, 'Interpreter'], ObjectHolder[InterpreterObjectTypeVar]]
@ -74,21 +74,7 @@ FunctionType = T.Dict[
T.Callable[[mparser.BaseNode, T.List[TYPE_var], T.Dict[str, TYPE_var]], TYPE_var]
]
__FN = T.TypeVar('__FN', bound=T.Callable[['InterpreterBase', T.Any], T.Union[TYPE_var, InterpreterObject]])
def _holderify_result(types: T.Union[None, T.Type, T.Tuple[T.Type, ...]] = None) -> T.Callable[[__FN], __FN]:
def inner(f: __FN) -> __FN:
@wraps(f)
def wrapper(self: 'InterpreterBase', node: mparser.BaseNode) -> T.Union[TYPE_var, InterpreterObject]:
res = f(self, node)
if types is not None and not isinstance(res, types):
raise mesonlib.MesonBugException(f'Expected {types} but got object `{res}` of type {type(res).__name__}')
return self._holderify(res)
return T.cast(__FN, wrapper)
return inner
class InterpreterBase:
elementary_types = (list, )
def __init__(self, source_root: str, subdir: str, subproject: str):
self.source_root = source_root
self.funcs: FunctionType = {}
@ -99,8 +85,7 @@ class InterpreterBase:
self.subdir = subdir
self.root_subdir = subdir
self.subproject = subproject
# TODO: This should actually be more strict: T.Union[TYPE_elementary, InterpreterObject]
self.variables: T.Dict[str, T.Union[TYPE_var, InterpreterObject]] = {}
self.variables: T.Dict[str, InterpreterObject] = {}
self.argument_depth = 0
self.current_lineno = -1
# Current node set during a function call. This can be used as location
@ -190,7 +175,7 @@ class InterpreterBase:
raise e
i += 1 # In THE FUTURE jump over blocks and stuff.
def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[T.Union[TYPE_var, InterpreterObject]]:
def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[InterpreterObject]:
self.current_node = cur
if isinstance(cur, mparser.FunctionNode):
return self.function_call(cur)
@ -238,20 +223,18 @@ class InterpreterBase:
raise ContinueRequest()
elif isinstance(cur, mparser.BreakNode):
raise BreakRequest()
elif isinstance(cur, self.elementary_types):
return cur
else:
raise InvalidCode("Unknown statement.")
return None
def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> T.List[T.Union[TYPE_var, InterpreterObject]]:
def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> InterpreterObject:
(arguments, kwargs) = self.reduce_arguments(cur.args)
if len(kwargs) > 0:
raise InvalidCode('Keyword arguments are invalid in array construction.')
return arguments
return self._holderify([_unholder(x) for x in arguments])
@FeatureNew('dict', '0.47.0')
def evaluate_dictstatement(self, cur: mparser.DictNode) -> T.Union[TYPE_var, InterpreterObject]:
def evaluate_dictstatement(self, cur: mparser.DictNode) -> InterpreterObject:
def resolve_key(key: mparser.BaseNode) -> str:
if not isinstance(key, mparser.StringNode):
FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject)
@ -261,17 +244,13 @@ class InterpreterBase:
return str_key
arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}')
assert not arguments
return kwargs
return self._holderify({k: _unholder(v) for k, v in kwargs.items()})
@_holderify_result((bool, Disabler))
def evaluate_notstatement(self, cur: mparser.NotNode) -> T.Union[TYPE_var, InterpreterObject]:
def evaluate_notstatement(self, cur: mparser.NotNode) -> InterpreterObject:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
# TYPING TODO: Remove this check once `evaluate_statement` only returns InterpreterObjects
if not isinstance(v, InterpreterObject):
raise mesonlib.MesonBugException(f'Argument to not ({v}) is not an InterpreterObject but {type(v).__name__}.')
return v.operator_call(MesonOperator.NOT, None)
return self._holderify(v.operator_call(MesonOperator.NOT, None))
def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]:
assert isinstance(node, mparser.IfClauseNode)
@ -284,10 +263,10 @@ class InterpreterBase:
return result
if not isinstance(result, InterpreterObject):
raise mesonlib.MesonBugException(f'Argument to not ({result}) is not an InterpreterObject but {type(result).__name__}.')
result = result.operator_call(MesonOperator.BOOL, None)
if not isinstance(result, bool):
res = result.operator_call(MesonOperator.BOOL, None)
if not isinstance(res, bool):
raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.')
if result:
if res:
prev_meson_version = mesonlib.project_meson_versions[self.subproject]
if self.tmp_meson_version:
mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version
@ -300,20 +279,7 @@ class InterpreterBase:
self.evaluate_codeblock(node.elseblock)
return None
def validate_comparison_types(self, val1: T.Any, val2: T.Any) -> bool:
if type(val1) != type(val2):
return False
return True
def _evaluate_in(self, val1: T.Any, val2: T.Any) -> bool:
if not isinstance(val1, (str, int, float, mesonlib.HoldableObject)):
raise InvalidArguments('lvalue of "in" operator must be a string, integer, float, or object')
if not isinstance(val2, (list, dict)):
raise InvalidArguments('rvalue of "in" operator must be an array or a dict')
return val1 in val2
@_holderify_result((bool, Disabler))
def evaluate_comparison(self, node: mparser.ComparisonNode) -> T.Union[TYPE_var, InterpreterObject]:
def evaluate_comparison(self, node: mparser.ComparisonNode) -> InterpreterObject:
val1 = self.evaluate_statement(node.left)
if isinstance(val1, Disabler):
return val1
@ -334,105 +300,42 @@ class InterpreterBase:
}[node.ctype]
# Check if the arguments should be reversed for simplicity (this essentially converts `in` to `contains`)
if operator in (MesonOperator.IN, MesonOperator.NOT_IN) and isinstance(val2, InterpreterObject):
return val2.operator_call(operator, _unholder(val1))
# Normal evaluation, with the same semantics
elif operator not in (MesonOperator.IN, MesonOperator.NOT_IN) and isinstance(val1, InterpreterObject):
return val1.operator_call(operator, _unholder(val2))
# OLD CODE, based on the builtin types -- remove once we have switched
# over to all ObjectHolders.
# Do not compare the ObjectHolders but the actual held objects
val1 = _unholder(val1)
val2 = _unholder(val2)
if node.ctype == 'in':
return self._evaluate_in(val1, val2)
elif node.ctype == 'notin':
return not self._evaluate_in(val1, val2)
valid = self.validate_comparison_types(val1, val2)
# Ordering comparisons of different types isn't allowed since PR #1810
# (0.41.0). Since PR #2884 we also warn about equality comparisons of
# different types, which is now an error.
if not valid and (node.ctype == '==' or node.ctype == '!='):
raise InvalidArguments(textwrap.dedent(
f'''
Trying to compare values of different types ({type(val1).__name__}, {type(val2).__name__}) using {node.ctype}.
This was deprecated and undefined behavior previously and is as of 0.60.0 a hard error.
'''
))
if node.ctype == '==':
return val1 == val2
elif node.ctype == '!=':
return val1 != val2
elif not valid:
raise InterpreterException(
'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__,
type(val2).__name__,
node.ctype))
elif not isinstance(val1, self.elementary_types):
raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.left, 'value', '<ERROR>')))
elif not isinstance(val2, self.elementary_types):
raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.right, 'value', '<ERROR>')))
# Use type: ignore because mypy will complain that we are comparing two Unions,
# but we actually guarantee earlier that both types are the same
elif node.ctype == '<':
return val1 < val2
elif node.ctype == '<=':
return val1 <= val2
elif node.ctype == '>':
return val1 > val2
elif node.ctype == '>=':
return val1 >= val2
else:
raise InvalidCode('You broke my compare eval.')
if operator in (MesonOperator.IN, MesonOperator.NOT_IN):
val1, val2 = val2, val1
@_holderify_result((bool, Disabler))
def evaluate_andstatement(self, cur: mparser.AndNode) -> T.Union[TYPE_var, InterpreterObject]:
return self._holderify(val1.operator_call(operator, _unholder(val2)))
def evaluate_andstatement(self, cur: mparser.AndNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
if not isinstance(l, InterpreterObject):
raise mesonlib.MesonBugException(f'Firtst argument to and ({l}) is not an InterpreterObject but {type(l).__name__}.')
l_bool = l.operator_call(MesonOperator.BOOL, None)
if not l_bool:
return l_bool
return self._holderify(l_bool)
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
if not isinstance(r, InterpreterObject):
raise mesonlib.MesonBugException(f'Second argument to and ({r}) is not an InterpreterObject but {type(r).__name__}.')
return r.operator_call(MesonOperator.BOOL, None)
return self._holderify(r.operator_call(MesonOperator.BOOL, None))
@_holderify_result((bool, Disabler))
def evaluate_orstatement(self, cur: mparser.OrNode) -> T.Union[TYPE_var, InterpreterObject]:
def evaluate_orstatement(self, cur: mparser.OrNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
if not isinstance(l, InterpreterObject):
raise mesonlib.MesonBugException(f'Firtst argument to or ({l}) is not an InterpreterObject but {type(l).__name__}.')
l_bool = l.operator_call(MesonOperator.BOOL, None)
if l_bool:
return l_bool
return self._holderify(l_bool)
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
if not isinstance(r, InterpreterObject):
raise mesonlib.MesonBugException(f'Second argument to ot ({r}) is not an InterpreterObject but {type(r).__name__}.')
return r.operator_call(MesonOperator.BOOL, None)
return self._holderify(r.operator_call(MesonOperator.BOOL, None))
@_holderify_result()
def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> T.Union[TYPE_var, InterpreterObject]:
def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> InterpreterObject:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
# TYPING TODO: Remove this check once `evaluate_statement` only returns InterpreterObjects
if not isinstance(v, InterpreterObject):
raise InterpreterException(f'Argument to negation ({v}) is not an InterpreterObject but {type(v).__name__}.')
return v.operator_call(MesonOperator.UMINUS, None)
return self._holderify(v.operator_call(MesonOperator.UMINUS, None))
def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> T.Union[TYPE_var, InterpreterObject]:
def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
@ -440,53 +343,21 @@ class InterpreterBase:
if isinstance(r, Disabler):
return r
# New code based on InterpreterObjects
if isinstance(l, InterpreterObject):
mapping: T.Dict[str, MesonOperator] = {
'add': MesonOperator.PLUS,
'sub': MesonOperator.MINUS,
'mul': MesonOperator.TIMES,
'div': MesonOperator.DIV,
'mod': MesonOperator.MOD,
}
res = l.operator_call(mapping[cur.operation], _unholder(r))
return self._holderify(res)
# OLD CODE, based on the builtin types -- remove once we have switched
# over to all ObjectHolders.
if cur.operation == 'add':
if isinstance(l, dict) and isinstance(r, dict):
return {**l, **r}
try:
# MyPy error due to handling two Unions (we are catching all exceptions anyway)
return l + r # type: ignore
except Exception as e:
raise InvalidCode('Invalid use of addition: ' + str(e))
elif cur.operation == 'sub':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Subtraction works only with integers.')
raise mesonlib.MesonBugException('The integer was not held by an ObjectHolder!')
elif cur.operation == 'mul':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Multiplication works only with integers.')
raise mesonlib.MesonBugException('The integer was not held by an ObjectHolder!')
elif cur.operation == 'div':
raise mesonlib.MesonBugException('The integer or string was not held by an ObjectHolder!')
elif cur.operation == 'mod':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Modulo works only with integers.')
raise mesonlib.MesonBugException('The integer was not held by an ObjectHolder!')
else:
raise InvalidCode('You broke me.')
def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Union[TYPE_var, InterpreterObject]:
mapping: T.Dict[str, MesonOperator] = {
'add': MesonOperator.PLUS,
'sub': MesonOperator.MINUS,
'mul': MesonOperator.TIMES,
'div': MesonOperator.DIV,
'mod': MesonOperator.MOD,
}
res = l.operator_call(mapping[cur.operation], _unholder(r))
return self._holderify(res)
def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Optional[InterpreterObject]:
assert isinstance(node, mparser.TernaryNode)
result = self.evaluate_statement(node.condition)
if isinstance(result, Disabler):
return result
if not isinstance(result, InterpreterObject):
raise mesonlib.MesonBugException(f'Ternary condition ({result}) is not an InterpreterObject but {type(result).__name__}.')
result_bool = result.operator_call(MesonOperator.BOOL, None)
if result_bool:
return self.evaluate_statement(node.trueblock)
@ -494,8 +365,7 @@ class InterpreterBase:
return self.evaluate_statement(node.falseblock)
@FeatureNew('format strings', '0.58.0')
@_holderify_result(str)
def evaluate_fstring(self, node: mparser.FormatStringNode) -> str:
def evaluate_fstring(self, node: mparser.FormatStringNode) -> InterpreterObject:
assert isinstance(node, mparser.FormatStringNode)
def replace(match: T.Match[str]) -> str:
@ -510,38 +380,37 @@ class InterpreterBase:
except KeyError:
raise InvalidCode(f'Identifier "{var}" does not name a variable.')
return re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
res = re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
return self._holderify(res)
def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None:
assert isinstance(node, mparser.ForeachClauseNode)
items = self.evaluate_statement(node.items)
if isinstance(items, (list, RangeHolder)):
if len(node.varnames) != 1:
raise InvalidArguments('Foreach on array does not unpack')
varname = node.varnames[0]
for item in items:
self.set_variable(varname, self._holderify(item, permissive=True))
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
elif isinstance(items, dict):
if len(node.varnames) != 2:
raise InvalidArguments('Foreach on dict unpacks key and value')
for key, value in sorted(items.items()):
self.set_variable(node.varnames[0], self._holderify(key))
self.set_variable(node.varnames[1], self._holderify(value, permissive=True))
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
else:
raise InvalidArguments('Items of foreach loop must be an array or a dict')
if not isinstance(items, IterableObject):
raise InvalidArguments('Items of foreach loop do not support iterating')
tsize = items.iter_tuple_size()
if len(node.varnames) != (tsize or 1):
raise InvalidArguments(f'Foreach expects exactly {tsize or 1} variables for iterating over objects of type {items.display_name()}')
for i in items.iter_self():
if tsize is None:
if isinstance(i, tuple):
raise mesonlib.MesonBugException(f'Iteration of {items} returned a tuple even though iter_tuple_size() is None')
self.set_variable(node.varnames[0], self._holderify(i))
else:
if not isinstance(i, tuple):
raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
if len(i) != tsize:
raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
for j in range(tsize):
self.set_variable(node.varnames[j], self._holderify(i[j]))
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None:
assert isinstance(node, mparser.PlusAssignmentNode)
@ -551,69 +420,21 @@ class InterpreterBase:
# Remember that all variables are immutable. We must always create a
# full new variable and then assign it.
old_variable = self.get_variable(varname)
# TYPING TODO: This should only be InterpreterObject in the future
new_value: T.Union[None, TYPE_var, InterpreterObject] = None
if isinstance(old_variable, str):
if not isinstance(addition, str):
raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string')
new_value = old_variable + addition
elif isinstance(old_variable, list):
if isinstance(addition, list):
new_value = old_variable + addition
else:
new_value = old_variable + [addition]
elif isinstance(old_variable, dict):
if not isinstance(addition, dict):
raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict')
new_value = {**old_variable, **addition}
elif isinstance(old_variable, InterpreterObject):
# TODO: don't make _unholder permissive
new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition)))
# Add other data types here.
else:
raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints')
new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition)))
self.set_variable(varname, new_value)
def evaluate_indexing(self, node: mparser.IndexNode) -> T.Union[TYPE_elementary, InterpreterObject]:
def evaluate_indexing(self, node: mparser.IndexNode) -> InterpreterObject:
assert isinstance(node, mparser.IndexNode)
iobject = self.evaluate_statement(node.iobject)
if isinstance(iobject, Disabler):
return iobject
index = _unholder(self.evaluate_statement(node.index))
if isinstance(iobject, InterpreterObject):
return self._holderify(iobject.operator_call(MesonOperator.INDEX, index))
if not hasattr(iobject, '__getitem__'):
raise InterpreterException(
'Tried to index an object that doesn\'t support indexing.')
if isinstance(iobject, dict):
if not isinstance(index, str):
raise InterpreterException('Key is not a string')
try:
# The cast is required because we don't have recursive types...
return T.cast(T.Union[TYPE_elementary, InterpreterObject], iobject[index])
except KeyError:
raise InterpreterException('Key %s is not in dict' % index)
else:
if not isinstance(index, int):
raise InterpreterException('Index value is not an integer.')
try:
# Ignore the MyPy error, since we don't know all indexable types here
# and we handle non indexable types with an exception
# TODO maybe find a better solution
res = iobject[index] # type: ignore
# Only holderify if we are dealing with `InterpreterObject`, since raw
# lists already store ObjectHolders
if isinstance(iobject, InterpreterObject):
return self._holderify(res)
else:
return res
except IndexError:
# We are already checking for the existence of __getitem__, so this should be save
raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject))) # type: ignore
if iobject is None:
raise InterpreterException('Tried to evaluate indexing on None')
return self._holderify(iobject.operator_call(MesonOperator.INDEX, index))
@_holderify_result()
def function_call(self, node: mparser.FunctionNode) -> T.Optional[T.Union[TYPE_var, InterpreterObject]]:
def function_call(self, node: mparser.FunctionNode) -> T.Optional[InterpreterObject]:
func_name = node.func_name
(h_posargs, h_kwargs) = self.reduce_arguments(node.args)
(posargs, kwargs) = self._unholder_args(h_posargs, h_kwargs)
@ -626,14 +447,15 @@ class InterpreterBase:
func_args = flatten(posargs)
if not getattr(func, 'no-second-level-holder-flattening', False):
func_args, kwargs = resolve_second_level_holders(func_args, kwargs)
return func(node, func_args, kwargs)
res = func(node, func_args, kwargs)
return self._holderify(res) if res is not None else None
else:
self.unknown_function_called(func_name)
return None
def method_call(self, node: mparser.MethodNode) -> T.Optional[T.Union[TYPE_var, InterpreterObject]]:
def method_call(self, node: mparser.MethodNode) -> T.Optional[InterpreterObject]:
invokable = node.source_object
obj: T.Union[TYPE_var, InterpreterObject]
obj: T.Optional[InterpreterObject]
if isinstance(invokable, mparser.IdNode):
object_name = invokable.value
obj = self.get_variable(object_name)
@ -644,16 +466,6 @@ class InterpreterBase:
(args, kwargs) = self._unholder_args(h_args, h_kwargs)
if is_disabled(args, kwargs):
return Disabler()
if isinstance(obj, str):
raise mesonlib.MesonBugException('Strings are now wrapped in object holders!')
if isinstance(obj, bool):
raise mesonlib.MesonBugException('Booleans are now wrapped in object holders!')
if isinstance(obj, int):
raise mesonlib.MesonBugException('Integers are now wrapped in object holders!')
if isinstance(obj, list):
return self.array_method_call(obj, method_name, args, kwargs)
if isinstance(obj, dict):
return self.dict_method_call(obj, method_name, args, kwargs)
if not isinstance(obj, InterpreterObject):
raise InvalidArguments('Variable "%s" is not callable.' % object_name)
# TODO: InterpreterBase **really** shouldn't be in charge of checking this
@ -663,17 +475,11 @@ class InterpreterBase:
elif not isinstance(obj, Disabler):
raise InvalidArguments(f'Invalid operation "extract_objects" on variable "{object_name}" of type {type(obj).__name__}')
obj.current_node = node
return self._holderify(obj.method_call(method_name, args, kwargs))
res = obj.method_call(method_name, args, kwargs)
return self._holderify(res) if res is not None else None
def _holderify(self, res: T.Union[TYPE_var, InterpreterObject, None], *, permissive: bool = False) -> T.Union[TYPE_elementary, InterpreterObject]:
# TODO: remove `permissive` once all primitives are ObjectHolders
if res is None:
return None
elif isinstance(res, list):
return [self._holderify(x, permissive=permissive) for x in res]
elif isinstance(res, dict):
return {k: self._holderify(v, permissive=permissive) for k, v in res.items()}
elif isinstance(res, HoldableTypes):
def _holderify(self, res: T.Union[TYPE_var, InterpreterObject]) -> InterpreterObject:
if isinstance(res, HoldableTypes):
# Always check for an exact match first.
cls = self.holder_map.get(type(res), None)
if cls is not None:
@ -686,136 +492,42 @@ class InterpreterBase:
return cls(res, T.cast('Interpreter', self))
raise mesonlib.MesonBugException(f'Object {res} of type {type(res).__name__} is neither in self.holder_map nor self.bound_holder_map.')
elif isinstance(res, ObjectHolder):
if permissive:
return res
raise mesonlib.MesonBugException(f'Returned object {res} of type {type(res).__name__} is an object holder.')
elif isinstance(res, MesonInterpreterObject):
return res
raise mesonlib.MesonBugException(f'Unknown returned object {res} of type {type(res).__name__} in the parameters.')
def _unholder_args(self,
args: T.List[T.Union[TYPE_var, InterpreterObject]],
kwargs: T.Dict[str, T.Union[TYPE_var, InterpreterObject]]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]:
args: T.List[InterpreterObject],
kwargs: T.Dict[str, InterpreterObject]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]:
return [_unholder(x) for x in args], {k: _unholder(v) for k, v in kwargs.items()}
@staticmethod
def _get_one_string_posarg(posargs: T.List[TYPE_var], method_name: str) -> str:
if len(posargs) > 1:
raise InterpreterException(f'{method_name}() must have zero or one arguments')
elif len(posargs) == 1:
s = posargs[0]
if not isinstance(s, str):
raise InterpreterException(f'{method_name}() argument must be a string')
return s
return None
def unknown_function_called(self, func_name: str) -> None:
raise InvalidCode('Unknown function "%s".' % func_name)
@noKwargs
def array_method_call(self,
obj: T.List[T.Union[TYPE_elementary, InterpreterObject]],
method_name: str,
posargs: T.List[TYPE_var],
kwargs: TYPE_kwargs) -> T.Union[TYPE_var, InterpreterObject]:
if method_name == 'contains':
def check_contains(el: T.List[TYPE_var]) -> bool:
if len(posargs) != 1:
raise InterpreterException('Contains method takes exactly one argument.')
item = posargs[0]
for element in el:
if isinstance(element, list):
found = check_contains(element)
if found:
return True
if element == item:
return True
return False
return self._holderify(check_contains([_unholder(x) for x in obj]))
elif method_name == 'length':
return self._holderify(len(obj))
elif method_name == 'get':
index = posargs[0]
fallback = None
if len(posargs) == 2:
fallback = self._holderify(posargs[1])
elif len(posargs) > 2:
m = 'Array method \'get()\' only takes two arguments: the ' \
'index and an optional fallback value if the index is ' \
'out of range.'
raise InvalidArguments(m)
if not isinstance(index, int):
raise InvalidArguments('Array index must be a number.')
if index < -len(obj) or index >= len(obj):
if fallback is None:
m = 'Array index {!r} is out of bounds for array of size {!r}.'
raise InvalidArguments(m.format(index, len(obj)))
if isinstance(fallback, mparser.BaseNode):
return self.evaluate_statement(fallback)
return fallback
return obj[index]
raise InterpreterException(f'Arrays do not have a method called {method_name!r}.')
@noKwargs
def dict_method_call(self,
obj: T.Dict[str, T.Union[TYPE_elementary, InterpreterObject]],
method_name: str,
posargs: T.List[TYPE_var],
kwargs: TYPE_kwargs) -> T.Union[TYPE_var, InterpreterObject]:
if method_name in ('has_key', 'get'):
if method_name == 'has_key':
if len(posargs) != 1:
raise InterpreterException('has_key() takes exactly one argument.')
else:
if len(posargs) not in (1, 2):
raise InterpreterException('get() takes one or two arguments.')
key = posargs[0]
if not isinstance(key, (str)):
raise InvalidArguments('Dictionary key must be a string.')
has_key = key in obj
if method_name == 'has_key':
return self._holderify(has_key)
if has_key:
return obj[key]
if len(posargs) == 2:
fallback = self._holderify(posargs[1])
if isinstance(fallback, mparser.BaseNode):
return self.evaluate_statement(fallback)
return fallback
raise InterpreterException(f'Key {key!r} is not in the dictionary.')
if method_name == 'keys':
if len(posargs) != 0:
raise InterpreterException('keys() takes no arguments.')
return sorted(obj.keys())
raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name)
def reduce_arguments(
self,
args: mparser.ArgumentNode,
key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key,
duplicate_key_error: T.Optional[str] = None,
) -> T.Tuple[
T.List[T.Union[TYPE_var, InterpreterObject]],
T.Dict[str, T.Union[TYPE_var, InterpreterObject]]
T.List[InterpreterObject],
T.Dict[str, InterpreterObject]
]:
assert isinstance(args, mparser.ArgumentNode)
if args.incorrect_order():
raise InvalidArguments('All keyword arguments must be after positional arguments.')
self.argument_depth += 1
reduced_pos: T.List[T.Union[TYPE_var, InterpreterObject]] = [self.evaluate_statement(arg) for arg in args.arguments]
reduced_kw: T.Dict[str, T.Union[TYPE_var, InterpreterObject]] = {}
reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments]
if any(x is None for x in reduced_pos):
raise InvalidArguments(f'At least one value in the arguments is void.')
reduced_kw: T.Dict[str, InterpreterObject] = {}
for key, val in args.kwargs.items():
reduced_key = key_resolver(key)
assert isinstance(val, mparser.BaseNode)
reduced_val = self.evaluate_statement(val)
if reduced_val is None:
raise InvalidArguments(f'Value of key {reduced_key} is void.')
if duplicate_key_error and reduced_key in reduced_kw:
raise InvalidArguments(duplicate_key_error.format(reduced_key))
reduced_kw[reduced_key] = reduced_val
@ -823,10 +535,10 @@ class InterpreterBase:
final_kw = self.expand_default_kwargs(reduced_kw)
return reduced_pos, final_kw
def expand_default_kwargs(self, kwargs: T.Dict[str, T.Union[TYPE_var, InterpreterObject]]) -> T.Dict[str, T.Union[TYPE_var, InterpreterObject]]:
def expand_default_kwargs(self, kwargs: T.Dict[str, T.Optional[InterpreterObject]]) -> T.Dict[str, T.Optional[InterpreterObject]]:
if 'kwargs' not in kwargs:
return kwargs
to_expand = kwargs.pop('kwargs')
to_expand = _unholder(kwargs.pop('kwargs'))
if not isinstance(to_expand, dict):
raise InterpreterException('Value of "kwargs" must be dictionary.')
if 'kwargs' in to_expand:
@ -834,20 +546,20 @@ class InterpreterBase:
for k, v in to_expand.items():
if k in kwargs:
raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.')
kwargs[k] = v
kwargs[k] = self._holderify(v)
return kwargs
def assignment(self, node: mparser.AssignmentNode) -> None:
assert isinstance(node, mparser.AssignmentNode)
if self.argument_depth != 0:
raise InvalidArguments('''Tried to assign values inside an argument list.
To specify a keyword argument, use : instead of =.''')
raise InvalidArguments(textwrap.dedent('''\
Tried to assign values inside an argument list.
To specify a keyword argument, use : instead of =.
'''))
var_name = node.var_name
if not isinstance(var_name, str):
raise InvalidArguments('Tried to assign value to a non-variable.')
value = self.evaluate_statement(node.value)
if not self.is_assignable(value):
raise InvalidCode(f'Tried to assign the invalid value "{value}" of type {type(value).__name__} to variable.')
# For mutable objects we need to make a copy on assignment
if isinstance(value, MutableInterpreterObject):
value = copy.deepcopy(value)
@ -860,36 +572,23 @@ To specify a keyword argument, use : instead of =.''')
if holderify:
variable = self._holderify(variable)
else:
# Ensure that we are never storing a HoldableObject
def check(x: T.Union[TYPE_var, InterpreterObject]) -> None:
if isinstance(x, mesonlib.HoldableObject):
raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a HoldableObject {x} of type {type(x).__name__}')
elif isinstance(x, list):
for y in x:
check(y)
elif isinstance(x, dict):
for v in x.values():
check(v)
check(variable)
# Ensure that we are always storing ObjectHolders
if not isinstance(variable, InterpreterObject):
raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a non InterpreterObject {variable} of type {type(variable).__name__}')
if not isinstance(varname, str):
raise InvalidCode('First argument to set_variable must be a string.')
if not self.is_assignable(variable):
raise InvalidCode(f'Assigned value "{variable}" of type {type(variable).__name__} is not an assignable type.')
if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
raise InvalidCode('Invalid variable name: ' + varname)
if varname in self.builtin:
raise InvalidCode('Tried to overwrite internal variable "%s"' % varname)
self.variables[varname] = variable
def get_variable(self, varname: str) -> T.Union[TYPE_var, InterpreterObject]:
def get_variable(self, varname: str) -> InterpreterObject:
if varname in self.builtin:
return self.builtin[varname]
if varname in self.variables:
return self.variables[varname]
raise InvalidCode('Unknown variable "%s".' % varname)
def is_assignable(self, value: T.Any) -> bool:
return isinstance(value, (InterpreterObject, list, dict))
def validate_extraction(self, buildtarget: mesonlib.HoldableObject) -> None:
raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')

@ -2,7 +2,7 @@
"stdout": [
{
"match": "re",
"line": "test cases/failing/11 object arithmetic/meson\\.build:3:0: ERROR: The `\\+` of str does not accept objects of type MesonMain .*"
"line": "test cases/failing/11 object arithmetic/meson\\.build:3:0: ERROR: The `\\+` operator of str does not accept objects of type MesonMain .*"
}
]
}

@ -1,7 +1,7 @@
{
"stdout": [
{
"line": "test cases/failing/12 string arithmetic/meson.build:3:0: ERROR: The `+` of str does not accept objects of type int (3)"
"line": "test cases/failing/12 string arithmetic/meson.build:3:0: ERROR: The `+` operator of str does not accept objects of type int (3)"
}
]
}

@ -1,7 +1,7 @@
{
"stdout": [
{
"line": "test cases/failing/13 array arithmetic/meson.build:3:0: ERROR: Multiplication works only with integers."
"line": "test cases/failing/13 array arithmetic/meson.build:3:0: ERROR: Object <[ArrayHolder] holds [list]: ['a', 'b']> of type array does not support the `*` operator."
}
]
}

@ -1,7 +1,7 @@
{
"stdout": [
{
"line": "test cases/failing/51 inconsistent comparison/meson.build:5:0: ERROR: Values of different types (list, str) cannot be compared using <."
"line": "test cases/failing/51 inconsistent comparison/meson.build:5:0: ERROR: Object <[ArrayHolder] holds [list]: []> of type array does not support the `<` operator."
}
]
}

Loading…
Cancel
Save