The Meson Build System http://mesonbuild.com/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

391 lines
18 KiB

# Copyright 2017 The Meson development team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import typing as T
import re
from ..mesonlib import version_compare
from ..compilers.cuda import CudaCompiler
from . import NewExtensionModule, ModuleInfo
from ..interpreterbase import (
flatten, permittedKwargs, noKwargs,
InvalidArguments
)
if T.TYPE_CHECKING:
from . import ModuleState
from ..compilers import Compiler
class CudaModule(NewExtensionModule):
INFO = ModuleInfo('CUDA', '0.50.0', unstable=True)
def __init__(self, *args, **kwargs):
super().__init__()
self.methods.update({
"min_driver_version": self.min_driver_version,
"nvcc_arch_flags": self.nvcc_arch_flags,
"nvcc_arch_readable": self.nvcc_arch_readable,
})
@noKwargs
def min_driver_version(self, state: 'ModuleState',
args: T.Tuple[str],
kwargs: T.Dict[str, T.Any]) -> str:
argerror = InvalidArguments('min_driver_version must have exactly one positional argument: ' +
'a CUDA Toolkit version string. Beware that, since CUDA 11.0, ' +
'the CUDA Toolkit\'s components (including NVCC) are versioned ' +
'independently from each other (and the CUDA Toolkit as a whole).')
if len(args) != 1 or not isinstance(args[0], str):
raise argerror
cuda_version = args[0]
driver_version_table = [
{'cuda_version': '>=12.0.0', 'windows': '527.41', 'linux': '525.60.13'},
{'cuda_version': '>=11.8.0', 'windows': '522.06', 'linux': '520.61.05'},
{'cuda_version': '>=11.7.1', 'windows': '516.31', 'linux': '515.48.07'},
{'cuda_version': '>=11.7.0', 'windows': '516.01', 'linux': '515.43.04'},
{'cuda_version': '>=11.6.1', 'windows': '511.65', 'linux': '510.47.03'},
{'cuda_version': '>=11.6.0', 'windows': '511.23', 'linux': '510.39.01'},
{'cuda_version': '>=11.5.1', 'windows': '496.13', 'linux': '495.29.05'},
{'cuda_version': '>=11.5.0', 'windows': '496.04', 'linux': '495.29.05'},
{'cuda_version': '>=11.4.3', 'windows': '472.50', 'linux': '470.82.01'},
{'cuda_version': '>=11.4.1', 'windows': '471.41', 'linux': '470.57.02'},
{'cuda_version': '>=11.4.0', 'windows': '471.11', 'linux': '470.42.01'},
{'cuda_version': '>=11.3.0', 'windows': '465.89', 'linux': '465.19.01'},
{'cuda_version': '>=11.2.2', 'windows': '461.33', 'linux': '460.32.03'},
{'cuda_version': '>=11.2.1', 'windows': '461.09', 'linux': '460.32.03'},
{'cuda_version': '>=11.2.0', 'windows': '460.82', 'linux': '460.27.03'},
{'cuda_version': '>=11.1.1', 'windows': '456.81', 'linux': '455.32'},
{'cuda_version': '>=11.1.0', 'windows': '456.38', 'linux': '455.23'},
{'cuda_version': '>=11.0.3', 'windows': '451.82', 'linux': '450.51.06'},
{'cuda_version': '>=11.0.2', 'windows': '451.48', 'linux': '450.51.05'},
{'cuda_version': '>=11.0.1', 'windows': '451.22', 'linux': '450.36.06'},
{'cuda_version': '>=10.2.89', 'windows': '441.22', 'linux': '440.33'},
{'cuda_version': '>=10.1.105', 'windows': '418.96', 'linux': '418.39'},
{'cuda_version': '>=10.0.130', 'windows': '411.31', 'linux': '410.48'},
{'cuda_version': '>=9.2.148', 'windows': '398.26', 'linux': '396.37'},
{'cuda_version': '>=9.2.88', 'windows': '397.44', 'linux': '396.26'},
{'cuda_version': '>=9.1.85', 'windows': '391.29', 'linux': '390.46'},
{'cuda_version': '>=9.0.76', 'windows': '385.54', 'linux': '384.81'},
{'cuda_version': '>=8.0.61', 'windows': '376.51', 'linux': '375.26'},
{'cuda_version': '>=8.0.44', 'windows': '369.30', 'linux': '367.48'},
{'cuda_version': '>=7.5.16', 'windows': '353.66', 'linux': '352.31'},
{'cuda_version': '>=7.0.28', 'windows': '347.62', 'linux': '346.46'},
]
driver_version = 'unknown'
for d in driver_version_table:
if version_compare(cuda_version, d['cuda_version']):
driver_version = d.get(state.host_machine.system, d['linux'])
break
return driver_version
@permittedKwargs(['detected'])
def nvcc_arch_flags(self, state: 'ModuleState',
args: T.Tuple[T.Union[Compiler, CudaCompiler, str]],
kwargs: T.Dict[str, T.Any]) -> T.List[str]:
nvcc_arch_args = self._validate_nvcc_arch_args(args, kwargs)
ret = self._nvcc_arch_flags(*nvcc_arch_args)[0]
return ret
@permittedKwargs(['detected'])
def nvcc_arch_readable(self, state: 'ModuleState',
args: T.Tuple[T.Union[Compiler, CudaCompiler, str]],
kwargs: T.Dict[str, T.Any]) -> T.List[str]:
nvcc_arch_args = self._validate_nvcc_arch_args(args, kwargs)
ret = self._nvcc_arch_flags(*nvcc_arch_args)[1]
return ret
@staticmethod
def _break_arch_string(s):
s = re.sub('[ \t\r\n,;]+', ';', s)
s = s.strip(';').split(';')
return s
@staticmethod
def _detected_cc_from_compiler(c):
if isinstance(c, CudaCompiler):
return c.detected_cc
return ''
@staticmethod
def _version_from_compiler(c):
if isinstance(c, CudaCompiler):
return c.version
if isinstance(c, str):
return c
return 'unknown'
def _validate_nvcc_arch_args(self, args, kwargs):
argerror = InvalidArguments('The first argument must be an NVCC compiler object, or its version string!')
if len(args) < 1:
raise argerror
else:
compiler = args[0]
cuda_version = self._version_from_compiler(compiler)
if cuda_version == 'unknown':
raise argerror
arch_list = [] if len(args) <= 1 else flatten(args[1:])
arch_list = [self._break_arch_string(a) for a in arch_list]
arch_list = flatten(arch_list)
if len(arch_list) > 1 and not set(arch_list).isdisjoint({'All', 'Common', 'Auto'}):
raise InvalidArguments('''The special architectures 'All', 'Common' and 'Auto' must appear alone, as a positional argument!''')
arch_list = arch_list[0] if len(arch_list) == 1 else arch_list
detected = kwargs.get('detected', self._detected_cc_from_compiler(compiler))
detected = flatten([detected])
detected = [self._break_arch_string(a) for a in detected]
detected = flatten(detected)
if not set(detected).isdisjoint({'All', 'Common', 'Auto'}):
raise InvalidArguments('''The special architectures 'All', 'Common' and 'Auto' must appear alone, as a positional argument!''')
return cuda_version, arch_list, detected
def _filter_cuda_arch_list(self, cuda_arch_list, lo=None, hi=None, saturate=None):
"""
Filter CUDA arch list (no codenames) for >= low and < hi architecture
bounds, and deduplicate.
If saturate is provided, architectures >= hi are replaced with saturate.
"""
filtered_cuda_arch_list = []
for arch in cuda_arch_list:
if arch:
if lo and version_compare(arch, '<' + lo):
continue
if hi and version_compare(arch, '>=' + hi):
if not saturate:
continue
arch = saturate
if arch not in filtered_cuda_arch_list:
filtered_cuda_arch_list.append(arch)
return filtered_cuda_arch_list
def _nvcc_arch_flags(self, cuda_version, cuda_arch_list='Auto', detected=''):
"""
Using the CUDA Toolkit version and the target architectures, compute
the NVCC architecture flags.
"""
# Replicates much of the logic of
# https://github.com/Kitware/CMake/blob/master/Modules/FindCUDA/select_compute_arch.cmake
# except that a bug with cuda_arch_list="All" is worked around by
# tracking both lower and upper limits on GPU architectures.
cuda_known_gpu_architectures = ['Fermi', 'Kepler', 'Maxwell'] # noqa: E221
cuda_common_gpu_architectures = ['3.0', '3.5', '5.0'] # noqa: E221
cuda_hi_limit_gpu_architecture = None # noqa: E221
cuda_lo_limit_gpu_architecture = '2.0' # noqa: E221
cuda_all_gpu_architectures = ['3.0', '3.2', '3.5', '5.0'] # noqa: E221
if version_compare(cuda_version, '<7.0'):
cuda_hi_limit_gpu_architecture = '5.2'
if version_compare(cuda_version, '>=7.0'):
cuda_known_gpu_architectures += ['Kepler+Tegra', 'Kepler+Tesla', 'Maxwell+Tegra'] # noqa: E221
cuda_common_gpu_architectures += ['5.2'] # noqa: E221
if version_compare(cuda_version, '<8.0'):
cuda_common_gpu_architectures += ['5.2+PTX'] # noqa: E221
cuda_hi_limit_gpu_architecture = '6.0' # noqa: E221
if version_compare(cuda_version, '>=8.0'):
cuda_known_gpu_architectures += ['Pascal', 'Pascal+Tegra'] # noqa: E221
cuda_common_gpu_architectures += ['6.0', '6.1'] # noqa: E221
cuda_all_gpu_architectures += ['6.0', '6.1', '6.2'] # noqa: E221
if version_compare(cuda_version, '<9.0'):
cuda_common_gpu_architectures += ['6.1+PTX'] # noqa: E221
cuda_hi_limit_gpu_architecture = '7.0' # noqa: E221
if version_compare(cuda_version, '>=9.0'):
cuda_known_gpu_architectures += ['Volta', 'Xavier'] # noqa: E221
cuda_common_gpu_architectures += ['7.0'] # noqa: E221
cuda_all_gpu_architectures += ['7.0', '7.2'] # noqa: E221
# https://docs.nvidia.com/cuda/archive/9.0/cuda-toolkit-release-notes/index.html#unsupported-features
cuda_lo_limit_gpu_architecture = '3.0' # noqa: E221
if version_compare(cuda_version, '<10.0'):
cuda_common_gpu_architectures += ['7.2+PTX'] # noqa: E221
cuda_hi_limit_gpu_architecture = '8.0' # noqa: E221
if version_compare(cuda_version, '>=10.0'):
cuda_known_gpu_architectures += ['Turing'] # noqa: E221
cuda_common_gpu_architectures += ['7.5'] # noqa: E221
cuda_all_gpu_architectures += ['7.5'] # noqa: E221
if version_compare(cuda_version, '<11.0'):
cuda_common_gpu_architectures += ['7.5+PTX'] # noqa: E221
cuda_hi_limit_gpu_architecture = '8.0' # noqa: E221
# need to account for the fact that Ampere is commonly assumed to include
# SM8.0 and SM8.6 even though CUDA 11.0 doesn't support SM8.6
cuda_ampere_bin = ['8.0']
cuda_ampere_ptx = ['8.0']
if version_compare(cuda_version, '>=11.0'):
cuda_known_gpu_architectures += ['Ampere'] # noqa: E221
cuda_common_gpu_architectures += ['8.0'] # noqa: E221
cuda_all_gpu_architectures += ['8.0'] # noqa: E221
# https://docs.nvidia.com/cuda/archive/11.0/cuda-toolkit-release-notes/index.html#deprecated-features
cuda_lo_limit_gpu_architecture = '3.5' # noqa: E221
if version_compare(cuda_version, '<11.1'):
cuda_common_gpu_architectures += ['8.0+PTX'] # noqa: E221
cuda_hi_limit_gpu_architecture = '8.6' # noqa: E221
if version_compare(cuda_version, '>=11.1'):
cuda_ampere_bin += ['8.6'] # noqa: E221
cuda_ampere_ptx = ['8.6'] # noqa: E221
cuda_common_gpu_architectures += ['8.6'] # noqa: E221
cuda_all_gpu_architectures += ['8.6'] # noqa: E221
if version_compare(cuda_version, '<11.8'):
cuda_common_gpu_architectures += ['8.6+PTX'] # noqa: E221
cuda_hi_limit_gpu_architecture = '8.7' # noqa: E221
if version_compare(cuda_version, '>=11.8'):
cuda_known_gpu_architectures += ['Orin', 'Lovelace', 'Hopper'] # noqa: E221
cuda_common_gpu_architectures += ['8.9', '9.0', '9.0+PTX'] # noqa: E221
cuda_all_gpu_architectures += ['8.7', '8.9', '9.0'] # noqa: E221
if version_compare(cuda_version, '<12'):
cuda_hi_limit_gpu_architecture = '9.1' # noqa: E221
if version_compare(cuda_version, '>=12.0'):
# https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#deprecated-features (Current)
# https://docs.nvidia.com/cuda/archive/12.0/cuda-toolkit-release-notes/index.html#deprecated-features (Eventual?)
cuda_lo_limit_gpu_architecture = '5.0' # noqa: E221
if version_compare(cuda_version, '<13'):
cuda_hi_limit_gpu_architecture = '10.0' # noqa: E221
if not cuda_arch_list:
cuda_arch_list = 'Auto'
if cuda_arch_list == 'All': # noqa: E271
cuda_arch_list = cuda_known_gpu_architectures
elif cuda_arch_list == 'Common': # noqa: E271
cuda_arch_list = cuda_common_gpu_architectures
elif cuda_arch_list == 'Auto': # noqa: E271
if detected:
if isinstance(detected, list):
cuda_arch_list = detected
else:
cuda_arch_list = self._break_arch_string(detected)
cuda_arch_list = self._filter_cuda_arch_list(cuda_arch_list,
cuda_lo_limit_gpu_architecture,
cuda_hi_limit_gpu_architecture,
cuda_common_gpu_architectures[-1])
else:
cuda_arch_list = cuda_common_gpu_architectures
elif isinstance(cuda_arch_list, str):
cuda_arch_list = self._break_arch_string(cuda_arch_list)
cuda_arch_list = sorted(x for x in set(cuda_arch_list) if x)
cuda_arch_bin = []
cuda_arch_ptx = []
for arch_name in cuda_arch_list:
arch_bin = []
arch_ptx = []
add_ptx = arch_name.endswith('+PTX')
if add_ptx:
arch_name = arch_name[:-len('+PTX')]
if re.fullmatch('[0-9]+\\.[0-9](\\([0-9]+\\.[0-9]\\))?', arch_name):
arch_bin, arch_ptx = [arch_name], [arch_name]
else:
arch_bin, arch_ptx = {
'Fermi': (['2.0', '2.1(2.0)'], []),
'Kepler+Tegra': (['3.2'], []),
'Kepler+Tesla': (['3.7'], []),
'Kepler': (['3.0', '3.5'], ['3.5']),
'Maxwell+Tegra': (['5.3'], []),
'Maxwell': (['5.0', '5.2'], ['5.2']),
'Pascal': (['6.0', '6.1'], ['6.1']),
'Pascal+Tegra': (['6.2'], []),
'Volta': (['7.0'], ['7.0']),
'Xavier': (['7.2'], []),
'Turing': (['7.5'], ['7.5']),
'Ampere': (cuda_ampere_bin, cuda_ampere_ptx),
'Orin': (['8.7'], []),
'Lovelace': (['8.9'], ['8.9']),
'Hopper': (['9.0'], ['9.0']),
}.get(arch_name, (None, None))
if arch_bin is None:
4 years ago
raise InvalidArguments(f'Unknown CUDA Architecture Name {arch_name}!')
cuda_arch_bin += arch_bin
if add_ptx:
if not arch_ptx:
arch_ptx = arch_bin
cuda_arch_ptx += arch_ptx
cuda_arch_bin = sorted(set(cuda_arch_bin))
cuda_arch_ptx = sorted(set(cuda_arch_ptx))
nvcc_flags = []
nvcc_archs_readable = []
for arch in cuda_arch_bin:
arch, codev = re.fullmatch(
'([0-9]+\\.[0-9])(?:\\(([0-9]+\\.[0-9])\\))?', arch).groups()
if version_compare(arch, '<' + cuda_lo_limit_gpu_architecture):
continue
if cuda_hi_limit_gpu_architecture and version_compare(arch, '>=' + cuda_hi_limit_gpu_architecture):
continue
if codev:
arch = arch.replace('.', '')
codev = codev.replace('.', '')
nvcc_flags += ['-gencode', 'arch=compute_' + codev + ',code=sm_' + arch]
nvcc_archs_readable += ['sm_' + arch]
else:
arch = arch.replace('.', '')
nvcc_flags += ['-gencode', 'arch=compute_' + arch + ',code=sm_' + arch]
nvcc_archs_readable += ['sm_' + arch]
for arch in cuda_arch_ptx:
arch, codev = re.fullmatch(
'([0-9]+\\.[0-9])(?:\\(([0-9]+\\.[0-9])\\))?', arch).groups()
if codev:
arch = codev
if version_compare(arch, '<' + cuda_lo_limit_gpu_architecture):
continue
if cuda_hi_limit_gpu_architecture and version_compare(arch, '>=' + cuda_hi_limit_gpu_architecture):
continue
arch = arch.replace('.', '')
nvcc_flags += ['-gencode', 'arch=compute_' + arch + ',code=compute_' + arch]
nvcc_archs_readable += ['compute_' + arch]
return nvcc_flags, nvcc_archs_readable
def initialize(*args, **kwargs):
return CudaModule(*args, **kwargs)