# Copyright 2016-2017 The Meson development team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This class contains the basic functionality needed to run any interpreter
# or an interpreter-based tool.
from . . import mparser , mesonlib , mlog
from . . import environment
from . baseobjects import (
InterpreterObject ,
MesonInterpreterObject ,
MutableInterpreterObject ,
InterpreterObjectTypeVar ,
ObjectHolder ,
RangeHolder ,
TYPE_elementary ,
TYPE_var ,
TYPE_kwargs ,
)
from . exceptions import (
InterpreterException ,
InvalidCode ,
InvalidArguments ,
SubdirDoneRequest ,
ContinueRequest ,
BreakRequest
)
from . decorators import FeatureNew , builtinMethodNoKwargs
from . disabler import Disabler , is_disabled
from . helpers import check_stringlist , default_resolve_key , flatten , resolve_second_level_holders
from . _unholder import _unholder
import os , copy , re , pathlib
import typing as T
if T . TYPE_CHECKING :
from . . interpreter import Interpreter
HolderMapType = T . Dict [
T . Type [ mesonlib . HoldableObject ] ,
# For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar]
T . Callable [ [ InterpreterObjectTypeVar , ' Interpreter ' ] , ObjectHolder [ InterpreterObjectTypeVar ] ]
]
FunctionType = T . Dict [
str ,
T . Callable [ [ mparser . BaseNode , T . List [ TYPE_var ] , T . Dict [ str , TYPE_var ] ] , TYPE_var ]
]
class MesonVersionString ( str ) :
pass
class InterpreterBase :
elementary_types = ( int , str , bool , list )
def __init__ ( self , source_root : str , subdir : str , subproject : str ) :
self . source_root = source_root
self . funcs : FunctionType = { }
self . builtin : T . Dict [ str , InterpreterObject ] = { }
# Holder maps store a mapping from an HoldableObject to a class ObjectHolder
self . holder_map : HolderMapType = { }
self . bound_holder_map : HolderMapType = { }
self . subdir = subdir
self . root_subdir = subdir
self . subproject = subproject
# TODO: This should actually be more strict: T.Union[TYPE_elementary, InterpreterObject]
self . variables : T . Dict [ str , T . Union [ TYPE_var , InterpreterObject ] ] = { }
self . argument_depth = 0
self . current_lineno = - 1
# Current node set during a function call. This can be used as location
# when printing a warning message during a method call.
self . current_node = None # type: mparser.BaseNode
# This is set to `version_string` when this statement is evaluated:
# meson.version().compare_version(version_string)
# If it was part of a if-clause, it is used to temporally override the
# current meson version target within that if-block.
self . tmp_meson_version = None # type: T.Optional[str]
def load_root_meson_file ( self ) - > None :
mesonfile = os . path . join ( self . source_root , self . subdir , environment . build_filename )
if not os . path . isfile ( mesonfile ) :
raise InvalidArguments ( ' Missing Meson file in %s ' % mesonfile )
with open ( mesonfile , encoding = ' utf-8 ' ) as mf :
code = mf . read ( )
Don't use len() to test emptiness vs not emptiness
Meson has a common pattern of using 'if len(foo) == 0:' or
'if len(foo) != 0:', however, this is a common anti-pattern in python.
Instead tests for emptiness/non-emptiness should be done with a simple
'if foo:' or 'if not foo:'
Consider the following:
>>> import timeit
>>> timeit.timeit('if len([]) == 0: pass')
0.10730923599840025
>>> timeit.timeit('if not []: pass')
0.030033907998586074
>>> timeit.timeit('if len(['a', 'b', 'c', 'd']) == 0: pass')
0.1154778649979562
>>> timeit.timeit("if not ['a', 'b', 'c', 'd']: pass")
0.08259823200205574
>>> timeit.timeit('if len("") == 0: pass')
0.089759664999292
>>> timeit.timeit('if not "": pass')
0.02340641999762738
>>> timeit.timeit('if len("foo") == 0: pass')
0.08848102600313723
>>> timeit.timeit('if not "foo": pass')
0.04032287199879647
And for the one additional case of 'if len(foo.strip()) == 0', which can
be replaced with 'if not foo.isspace()'
>>> timeit.timeit('if len(" ".strip()) == 0: pass')
0.15294511600222904
>>> timeit.timeit('if " ".isspace(): pass')
0.09413968399894657
>>> timeit.timeit('if len(" abc".strip()) == 0: pass')
0.2023209120015963
>>> timeit.timeit('if " abc".isspace(): pass')
0.09571301700270851
In other words, it's always a win to not use len(), when you don't
actually want to check the length.
8 years ago
if code . isspace ( ) :
raise InvalidCode ( ' Builder file is empty. ' )
assert ( isinstance ( code , str ) )
try :
self . ast = mparser . Parser ( code , mesonfile ) . parse ( )
except mesonlib . MesonException as me :
me . file = mesonfile
raise me
def join_path_strings ( self , args : T . Sequence [ str ] ) - > str :
return os . path . join ( * args ) . replace ( ' \\ ' , ' / ' )
def parse_project ( self ) - > None :
"""
Parses project ( ) and initializes languages , compilers etc . Do this
early because we need this before we parse the rest of the AST .
"""
self . evaluate_codeblock ( self . ast , end = 1 )
def sanity_check_ast ( self ) - > None :
if not isinstance ( self . ast , mparser . CodeBlockNode ) :
raise InvalidCode ( ' AST is of invalid type. Possibly a bug in the parser. ' )
Don't use len() to test emptiness vs not emptiness
Meson has a common pattern of using 'if len(foo) == 0:' or
'if len(foo) != 0:', however, this is a common anti-pattern in python.
Instead tests for emptiness/non-emptiness should be done with a simple
'if foo:' or 'if not foo:'
Consider the following:
>>> import timeit
>>> timeit.timeit('if len([]) == 0: pass')
0.10730923599840025
>>> timeit.timeit('if not []: pass')
0.030033907998586074
>>> timeit.timeit('if len(['a', 'b', 'c', 'd']) == 0: pass')
0.1154778649979562
>>> timeit.timeit("if not ['a', 'b', 'c', 'd']: pass")
0.08259823200205574
>>> timeit.timeit('if len("") == 0: pass')
0.089759664999292
>>> timeit.timeit('if not "": pass')
0.02340641999762738
>>> timeit.timeit('if len("foo") == 0: pass')
0.08848102600313723
>>> timeit.timeit('if not "foo": pass')
0.04032287199879647
And for the one additional case of 'if len(foo.strip()) == 0', which can
be replaced with 'if not foo.isspace()'
>>> timeit.timeit('if len(" ".strip()) == 0: pass')
0.15294511600222904
>>> timeit.timeit('if " ".isspace(): pass')
0.09413968399894657
>>> timeit.timeit('if len(" abc".strip()) == 0: pass')
0.2023209120015963
>>> timeit.timeit('if " abc".isspace(): pass')
0.09571301700270851
In other words, it's always a win to not use len(), when you don't
actually want to check the length.
8 years ago
if not self . ast . lines :
raise InvalidCode ( ' No statements in code. ' )
first = self . ast . lines [ 0 ]
if not isinstance ( first , mparser . FunctionNode ) or first . func_name != ' project ' :
p = pathlib . Path ( self . source_root ) . resolve ( )
found = p
for parent in p . parents :
if ( parent / ' meson.build ' ) . is_file ( ) :
use even more informative error message for invoking meson in a subdir
Follow-up on commit 5a7b8d86d0c455680096d47cb87f0de08c0954ac
Sometimes, we find a parent meson.build which is also malformed, and we
shouldn't suggest that maybe the user meant to use that, if it isn't a
valid project() either. Do a rough and dirty check to see if the very
first line is a project() declaration, and if not, don't try to be
clever and suggest using it.
The "invalid source tree" error suffices here, since we're not
absolutely sure meson can be successfully run in that parent directory
and actually advising people about the wrong location is a lot more
confusing than just saying "please figure this out yourself, here is
what to look for".
Granted, we miss cases where project() comes after blank lines and/or
comments, but doing a full AST parse here is excessively overkill and
probably too painful to do, and we don't need to be *that* clever. So
let's be content with merely going above and beyond the call of duty.
3 years ago
with open ( parent / ' meson.build ' , encoding = ' utf-8 ' ) as f :
if f . readline ( ) . startswith ( ' project( ' ) :
found = parent
break
else :
break
error = ' first statement must be a call to project() '
if found != p :
raise InvalidCode ( f ' Not the project root: { error } \n \n Did you mean to run meson from the directory: " { found } " ? ' )
else :
raise InvalidCode ( f ' Invalid source tree: { error } ' )
def run ( self ) - > None :
# Evaluate everything after the first line, which is project() because
# we already parsed that in self.parse_project()
try :
self . evaluate_codeblock ( self . ast , start = 1 )
except SubdirDoneRequest :
pass
def evaluate_codeblock ( self , node : mparser . CodeBlockNode , start : int = 0 , end : T . Optional [ int ] = None ) - > None :
if node is None :
return
if not isinstance ( node , mparser . CodeBlockNode ) :
e = InvalidCode ( ' Tried to execute a non-codeblock. Possibly a bug in the parser. ' )
e . lineno = node . lineno
e . colno = node . colno
raise e
statements = node . lines [ start : end ]
i = 0
while i < len ( statements ) :
cur = statements [ i ]
try :
self . current_lineno = cur . lineno
self . evaluate_statement ( cur )
except Exception as e :
if getattr ( e , ' lineno ' , None ) is None :
# We are doing the equivalent to setattr here and mypy does not like it
e . lineno = cur . lineno # type: ignore
e . colno = cur . colno # type: ignore
e . file = os . path . join ( self . source_root , self . subdir , environment . build_filename ) # type: ignore
raise e
i + = 1 # In THE FUTURE jump over blocks and stuff.
def evaluate_statement ( self , cur : mparser . BaseNode ) - > T . Optional [ T . Union [ TYPE_var , InterpreterObject ] ] :
self . current_node = cur
if isinstance ( cur , mparser . FunctionNode ) :
return self . function_call ( cur )
elif isinstance ( cur , mparser . AssignmentNode ) :
self . assignment ( cur )
elif isinstance ( cur , mparser . MethodNode ) :
return self . method_call ( cur )
elif isinstance ( cur , mparser . StringNode ) :
return cur . value
elif isinstance ( cur , mparser . BooleanNode ) :
return cur . value
elif isinstance ( cur , mparser . IfClauseNode ) :
return self . evaluate_if ( cur )
elif isinstance ( cur , mparser . IdNode ) :
return self . get_variable ( cur . value )
elif isinstance ( cur , mparser . ComparisonNode ) :
return self . evaluate_comparison ( cur )
elif isinstance ( cur , mparser . ArrayNode ) :
return self . evaluate_arraystatement ( cur )
elif isinstance ( cur , mparser . DictNode ) :
return self . evaluate_dictstatement ( cur )
elif isinstance ( cur , mparser . NumberNode ) :
return cur . value
elif isinstance ( cur , mparser . AndNode ) :
return self . evaluate_andstatement ( cur )
elif isinstance ( cur , mparser . OrNode ) :
return self . evaluate_orstatement ( cur )
elif isinstance ( cur , mparser . NotNode ) :
return self . evaluate_notstatement ( cur )
elif isinstance ( cur , mparser . UMinusNode ) :
return self . evaluate_uminusstatement ( cur )
elif isinstance ( cur , mparser . ArithmeticNode ) :
return self . evaluate_arithmeticstatement ( cur )
elif isinstance ( cur , mparser . ForeachClauseNode ) :
self . evaluate_foreach ( cur )
elif isinstance ( cur , mparser . PlusAssignmentNode ) :
self . evaluate_plusassign ( cur )
elif isinstance ( cur , mparser . IndexNode ) :
return self . evaluate_indexing ( cur )
elif isinstance ( cur , mparser . TernaryNode ) :
return self . evaluate_ternary ( cur )
elif isinstance ( cur , mparser . FormatStringNode ) :
return self . evaluate_fstring ( cur )
elif isinstance ( cur , mparser . ContinueNode ) :
raise ContinueRequest ( )
elif isinstance ( cur , mparser . BreakNode ) :
raise BreakRequest ( )
elif isinstance ( cur , self . elementary_types ) :
return cur
else :
raise InvalidCode ( " Unknown statement. " )
return None
def evaluate_arraystatement ( self , cur : mparser . ArrayNode ) - > T . List [ T . Union [ TYPE_var , InterpreterObject ] ] :
( arguments , kwargs ) = self . reduce_arguments ( cur . args )
if len ( kwargs ) > 0 :
raise InvalidCode ( ' Keyword arguments are invalid in array construction. ' )
return arguments
@FeatureNew ( ' dict ' , ' 0.47.0 ' )
def evaluate_dictstatement ( self , cur : mparser . DictNode ) - > T . Union [ TYPE_var , InterpreterObject ] :
def resolve_key ( key : mparser . BaseNode ) - > str :
if not isinstance ( key , mparser . StringNode ) :
FeatureNew . single_use ( ' Dictionary entry using non literal key ' , ' 0.53.0 ' , self . subproject )
str_key = self . evaluate_statement ( key )
if not isinstance ( str_key , str ) :
raise InvalidArguments ( ' Key must be a string ' )
return str_key
arguments , kwargs = self . reduce_arguments ( cur . args , key_resolver = resolve_key , duplicate_key_error = ' Duplicate dictionary key: {} ' )
assert not arguments
return kwargs
def evaluate_notstatement ( self , cur : mparser . NotNode ) - > T . Union [ bool , Disabler ] :
v = self . evaluate_statement ( cur . value )
if isinstance ( v , Disabler ) :
return v
if not isinstance ( v , bool ) :
raise InterpreterException ( ' Argument to " not " is not a boolean. ' )
return not v
def evaluate_if ( self , node : mparser . IfClauseNode ) - > T . Optional [ Disabler ] :
assert ( isinstance ( node , mparser . IfClauseNode ) )
for i in node . ifs :
# Reset self.tmp_meson_version to know if it gets set during this
# statement evaluation.
self . tmp_meson_version = None
result = self . evaluate_statement ( i . condition )
if isinstance ( result , Disabler ) :
return result
if not ( isinstance ( result , bool ) ) :
raise InvalidCode ( f ' If clause { result !r} does not evaluate to true or false. ' )
if result :
prev_meson_version = mesonlib . project_meson_versions [ self . subproject ]
if self . tmp_meson_version :
mesonlib . project_meson_versions [ self . subproject ] = self . tmp_meson_version
try :
self . evaluate_codeblock ( i . block )
finally :
mesonlib . project_meson_versions [ self . subproject ] = prev_meson_version
return None
if not isinstance ( node . elseblock , mparser . EmptyNode ) :
self . evaluate_codeblock ( node . elseblock )
return None
def validate_comparison_types ( self , val1 : T . Any , val2 : T . Any ) - > bool :
if type ( val1 ) != type ( val2 ) :
return False
return True
def evaluate_in ( self , val1 : T . Any , val2 : T . Any ) - > bool :
if not isinstance ( val1 , ( str , int , float , mesonlib . HoldableObject ) ) :
raise InvalidArguments ( ' lvalue of " in " operator must be a string, integer, float, or object ' )
if not isinstance ( val2 , ( list , dict ) ) :
raise InvalidArguments ( ' rvalue of " in " operator must be an array or a dict ' )
return val1 in val2
def evaluate_comparison ( self , node : mparser . ComparisonNode ) - > T . Union [ bool , Disabler ] :
val1 = self . evaluate_statement ( node . left )
if isinstance ( val1 , Disabler ) :
return val1
val2 = self . evaluate_statement ( node . right )
if isinstance ( val2 , Disabler ) :
return val2
# Do not compare the ObjectHolders but the actual held objects
val1 = _unholder ( val1 )
val2 = _unholder ( val2 )
if node . ctype == ' in ' :
return self . evaluate_in ( val1 , val2 )
elif node . ctype == ' notin ' :
return not self . evaluate_in ( val1 , val2 )
valid = self . validate_comparison_types ( val1 , val2 )
# Ordering comparisons of different types isn't allowed since PR #1810
# (0.41.0). Since PR #2884 we also warn about equality comparisons of
# different types, which will one day become an error.
if not valid and ( node . ctype == ' == ' or node . ctype == ' != ' ) :
mlog . warning ( ''' Trying to compare values of different types ( {} , {} ) using {} .
The result of this is undefined and will become a hard error in a future Meson release . '''
. format ( type ( val1 ) . __name__ , type ( val2 ) . __name__ , node . ctype ) , location = node )
if node . ctype == ' == ' :
return val1 == val2
elif node . ctype == ' != ' :
return val1 != val2
elif not valid :
raise InterpreterException (
' Values of different types ( {} , {} ) cannot be compared using {} . ' . format ( type ( val1 ) . __name__ ,
type ( val2 ) . __name__ ,
node . ctype ) )
elif not isinstance ( val1 , self . elementary_types ) :
raise InterpreterException ( ' {} can only be compared for equality. ' . format ( getattr ( node . left , ' value ' , ' <ERROR> ' ) ) )
elif not isinstance ( val2 , self . elementary_types ) :
raise InterpreterException ( ' {} can only be compared for equality. ' . format ( getattr ( node . right , ' value ' , ' <ERROR> ' ) ) )
# Use type: ignore because mypy will complain that we are comparing two Unions,
# but we actually guarantee earlier that both types are the same
elif node . ctype == ' < ' :
return val1 < val2 # type: ignore
elif node . ctype == ' <= ' :
return val1 < = val2 # type: ignore
elif node . ctype == ' > ' :
return val1 > val2 # type: ignore
elif node . ctype == ' >= ' :
return val1 > = val2 # type: ignore
else :
raise InvalidCode ( ' You broke my compare eval. ' )
def evaluate_andstatement ( self , cur : mparser . AndNode ) - > T . Union [ bool , Disabler ] :
l = self . evaluate_statement ( cur . left )
if isinstance ( l , Disabler ) :
return l
if not isinstance ( l , bool ) :
raise InterpreterException ( ' First argument to " and " is not a boolean. ' )
if not l :
return False
r = self . evaluate_statement ( cur . right )
if isinstance ( r , Disabler ) :
return r
if not isinstance ( r , bool ) :
raise InterpreterException ( ' Second argument to " and " is not a boolean. ' )
return r
def evaluate_orstatement ( self , cur : mparser . OrNode ) - > T . Union [ bool , Disabler ] :
l = self . evaluate_statement ( cur . left )
if isinstance ( l , Disabler ) :
return l
if not isinstance ( l , bool ) :
raise InterpreterException ( ' First argument to " or " is not a boolean. ' )
if l :
return True
r = self . evaluate_statement ( cur . right )
if isinstance ( r , Disabler ) :
return r
if not isinstance ( r , bool ) :
raise InterpreterException ( ' Second argument to " or " is not a boolean. ' )
return r
def evaluate_uminusstatement ( self , cur : mparser . UMinusNode ) - > T . Union [ int , Disabler ] :
v = self . evaluate_statement ( cur . value )
if isinstance ( v , Disabler ) :
return v
if not isinstance ( v , int ) :
raise InterpreterException ( ' Argument to negation is not an integer. ' )
return - v
@FeatureNew ( ' / with string arguments ' , ' 0.49.0 ' )
def evaluate_path_join ( self , l : str , r : str ) - > str :
if not isinstance ( l , str ) :
raise InvalidCode ( ' The division operator can only append to a string. ' )
if not isinstance ( r , str ) :
raise InvalidCode ( ' The division operator can only append a string. ' )
return self . join_path_strings ( ( l , r ) )
def evaluate_division ( self , l : T . Any , r : T . Any ) - > T . Union [ int , str ] :
if isinstance ( l , str ) or isinstance ( r , str ) :
return self . evaluate_path_join ( l , r )
if isinstance ( l , int ) and isinstance ( r , int ) :
if r == 0 :
raise InvalidCode ( ' Division by zero. ' )
return l / / r
raise InvalidCode ( ' Division works only with strings or integers. ' )
def evaluate_arithmeticstatement ( self , cur : mparser . ArithmeticNode ) - > T . Union [ int , str , dict , list , Disabler ] :
l = self . evaluate_statement ( cur . left )
if isinstance ( l , Disabler ) :
return l
r = self . evaluate_statement ( cur . right )
if isinstance ( r , Disabler ) :
return r
if cur . operation == ' add ' :
if isinstance ( l , dict ) and isinstance ( r , dict ) :
return { * * l , * * r }
try :
# MyPy error due to handling two Unions (we are catching all exceptions anyway)
return l + r # type: ignore
except Exception as e :
raise InvalidCode ( ' Invalid use of addition: ' + str ( e ) )
elif cur . operation == ' sub ' :
if not isinstance ( l , int ) or not isinstance ( r , int ) :
raise InvalidCode ( ' Subtraction works only with integers. ' )
return l - r
elif cur . operation == ' mul ' :
if not isinstance ( l , int ) or not isinstance ( r , int ) :
raise InvalidCode ( ' Multiplication works only with integers. ' )
return l * r
elif cur . operation == ' div ' :
return self . evaluate_division ( l , r )
elif cur . operation == ' mod ' :
if not isinstance ( l , int ) or not isinstance ( r , int ) :
raise InvalidCode ( ' Modulo works only with integers. ' )
return l % r
else :
raise InvalidCode ( ' You broke me. ' )
def evaluate_ternary ( self , node : mparser . TernaryNode ) - > T . Union [ TYPE_var , InterpreterObject ] :
assert ( isinstance ( node , mparser . TernaryNode ) )
result = self . evaluate_statement ( node . condition )
if isinstance ( result , Disabler ) :
return result
if not isinstance ( result , bool ) :
raise InterpreterException ( ' Ternary condition is not boolean. ' )
if result :
return self . evaluate_statement ( node . trueblock )
else :
return self . evaluate_statement ( node . falseblock )
@FeatureNew ( ' format strings ' , ' 0.58.0 ' )
def evaluate_fstring ( self , node : mparser . FormatStringNode ) - > TYPE_var :
assert ( isinstance ( node , mparser . FormatStringNode ) )
def replace ( match : T . Match [ str ] ) - > str :
var = str ( match . group ( 1 ) )
try :
val = self . variables [ var ]
if not isinstance ( val , ( str , int , float , bool ) ) :
raise InvalidCode ( f ' Identifier " { var } " does not name a formattable variable ' +
' (has to be an integer, a string, a floating point number or a boolean). ' )
return str ( val )
except KeyError :
raise InvalidCode ( f ' Identifier " { var } " does not name a variable. ' )
return re . sub ( r ' @([_a-zA-Z][_0-9a-zA-Z]*)@ ' , replace , node . value )
def evaluate_foreach ( self , node : mparser . ForeachClauseNode ) - > None :
assert ( isinstance ( node , mparser . ForeachClauseNode ) )
items = self . evaluate_statement ( node . items )
if isinstance ( items , ( list , RangeHolder ) ) :
if len ( node . varnames ) != 1 :
raise InvalidArguments ( ' Foreach on array does not unpack ' )
varname = node . varnames [ 0 ]
for item in items :
self . set_variable ( varname , item )
try :
self . evaluate_codeblock ( node . block )
except ContinueRequest :
continue
except BreakRequest :
break
elif isinstance ( items , dict ) :
if len ( node . varnames ) != 2 :
raise InvalidArguments ( ' Foreach on dict unpacks key and value ' )
for key , value in sorted ( items . items ( ) ) :
self . set_variable ( node . varnames [ 0 ] , key )
self . set_variable ( node . varnames [ 1 ] , value )
try :
self . evaluate_codeblock ( node . block )
except ContinueRequest :
continue
except BreakRequest :
break
else :
raise InvalidArguments ( ' Items of foreach loop must be an array or a dict ' )
def evaluate_plusassign ( self , node : mparser . PlusAssignmentNode ) - > None :
assert ( isinstance ( node , mparser . PlusAssignmentNode ) )
varname = node . var_name
addition = self . evaluate_statement ( node . value )
# Remember that all variables are immutable. We must always create a
# full new variable and then assign it.
old_variable = self . get_variable ( varname )
new_value = None # type: T.Union[str, int, float, bool, dict, list]
if isinstance ( old_variable , str ) :
if not isinstance ( addition , str ) :
raise InvalidArguments ( ' The += operator requires a string on the right hand side if the variable on the left is a string ' )
new_value = old_variable + addition
elif isinstance ( old_variable , int ) :
if not isinstance ( addition , int ) :
raise InvalidArguments ( ' The += operator requires an int on the right hand side if the variable on the left is an int ' )
new_value = old_variable + addition
elif isinstance ( old_variable , list ) :
if isinstance ( addition , list ) :
new_value = old_variable + addition
else :
new_value = old_variable + [ addition ]
elif isinstance ( old_variable , dict ) :
if not isinstance ( addition , dict ) :
raise InvalidArguments ( ' The += operator requires a dict on the right hand side if the variable on the left is a dict ' )
new_value = { * * old_variable , * * addition }
# Add other data types here.
else :
raise InvalidArguments ( ' The += operator currently only works with arrays, dicts, strings or ints ' )
self . set_variable ( varname , new_value )
def evaluate_indexing ( self , node : mparser . IndexNode ) - > T . Union [ TYPE_elementary , InterpreterObject ] :
assert ( isinstance ( node , mparser . IndexNode ) )
iobject = self . evaluate_statement ( node . iobject )
if isinstance ( iobject , Disabler ) :
return iobject
if not hasattr ( iobject , ' __getitem__ ' ) :
raise InterpreterException (
' Tried to index an object that doesn \' t support indexing. ' )
index = self . evaluate_statement ( node . index )
if isinstance ( iobject , dict ) :
if not isinstance ( index , str ) :
raise InterpreterException ( ' Key is not a string ' )
try :
# The cast is required because we don't have recursive types...
return T . cast ( T . Union [ TYPE_elementary , InterpreterObject ] , iobject [ index ] )
except KeyError :
raise InterpreterException ( ' Key %s is not in dict ' % index )
else :
if not isinstance ( index , int ) :
raise InterpreterException ( ' Index value is not an integer. ' )
try :
# Ignore the MyPy error, since we don't know all indexable types here
# and we handle non indexable types with an exception
# TODO maybe find a better solution
res = iobject [ index ] # type: ignore
# Only holderify if we are dealing with `InterpreterObject`, since raw
# lists already store ObjectHolders
if isinstance ( iobject , InterpreterObject ) :
return self . _holderify ( res )
else :
return res
except IndexError :
# We are already checking for the existence of __getitem__, so this should be save
raise InterpreterException ( ' Index %d out of bounds of array of size %d . ' % ( index , len ( iobject ) ) ) # type: ignore
def function_call ( self , node : mparser . FunctionNode ) - > T . Optional [ T . Union [ TYPE_elementary , InterpreterObject ] ] :
func_name = node . func_name
( h_posargs , h_kwargs ) = self . reduce_arguments ( node . args )
( posargs , kwargs ) = self . _unholder_args ( h_posargs , h_kwargs )
if is_disabled ( posargs , kwargs ) and func_name not in { ' get_variable ' , ' set_variable ' , ' unset_variable ' , ' is_disabler ' } :
return Disabler ( )
if func_name in self . funcs :
func = self . funcs [ func_name ]
func_args = posargs
if not getattr ( func , ' no-args-flattening ' , False ) :
func_args = flatten ( posargs )
if not getattr ( func , ' no-second-level-holder-flattening ' , False ) :
func_args , kwargs = resolve_second_level_holders ( func_args , kwargs )
res = func ( node , func_args , kwargs )
return self . _holderify ( res )
else :
self . unknown_function_called ( func_name )
return None
def method_call ( self , node : mparser . MethodNode ) - > T . Optional [ T . Union [ TYPE_var , InterpreterObject ] ] :
invokable = node . source_object
obj : T . Union [ TYPE_var , InterpreterObject ]
if isinstance ( invokable , mparser . IdNode ) :
object_name = invokable . value
obj = self . get_variable ( object_name )
else :
obj = self . evaluate_statement ( invokable )
method_name = node . name
( h_args , h_kwargs ) = self . reduce_arguments ( node . args )
( args , kwargs ) = self . _unholder_args ( h_args , h_kwargs )
if is_disabled ( args , kwargs ) :
return Disabler ( )
if isinstance ( obj , str ) :
return self . string_method_call ( obj , method_name , args , kwargs )
if isinstance ( obj , bool ) :
return self . bool_method_call ( obj , method_name , args , kwargs )
if isinstance ( obj , int ) :
return self . int_method_call ( obj , method_name , args , kwargs )
if isinstance ( obj , list ) :
return self . array_method_call ( obj , method_name , args , kwargs )
if isinstance ( obj , dict ) :
return self . dict_method_call ( obj , method_name , args , kwargs )
if not isinstance ( obj , InterpreterObject ) :
raise InvalidArguments ( ' Variable " %s " is not callable. ' % object_name )
# Special case. This is the only thing you can do with a disabler
# object. Every other use immediately returns the disabler object.
if isinstance ( obj , Disabler ) :
if method_name == ' found ' :
return False
else :
return Disabler ( )
# TODO: InterpreterBase **really** shouldn't be in charge of checking this
if method_name == ' extract_objects ' :
if not isinstance ( obj , ObjectHolder ) :
raise InvalidArguments ( f ' Invalid operation " extract_objects " on variable " { object_name } " of type { type ( obj ) . __name__ } ' )
self . validate_extraction ( obj . held_object )
obj . current_node = node
return self . _holderify ( obj . method_call ( method_name , args , kwargs ) )
def _holderify ( self , res : T . Union [ TYPE_var , InterpreterObject , None ] ) - > T . Union [ TYPE_elementary , InterpreterObject ] :
if res is None :
return None
if isinstance ( res , ( int , bool , str ) ) :
return res
elif isinstance ( res , list ) :
return [ self . _holderify ( x ) for x in res ]
elif isinstance ( res , dict ) :
return { k : self . _holderify ( v ) for k , v in res . items ( ) }
elif isinstance ( res , mesonlib . HoldableObject ) :
# Always check for an exact match first.
cls = self . holder_map . get ( type ( res ) , None )
if cls is not None :
# Casts to Interpreter are required here since an assertion would
# not work for the `ast` module.
return cls ( res , T . cast ( ' Interpreter ' , self ) )
# Try the boundary types next.
for typ , cls in self . bound_holder_map . items ( ) :
if isinstance ( res , typ ) :
return cls ( res , T . cast ( ' Interpreter ' , self ) )
raise mesonlib . MesonBugException ( f ' Object { res } of type { type ( res ) . __name__ } is neither in self.holder_map nor self.bound_holder_map. ' )
elif isinstance ( res , ObjectHolder ) :
raise mesonlib . MesonBugException ( f ' Returned object { res } of type { type ( res ) . __name__ } is an object holder. ' )
elif isinstance ( res , MesonInterpreterObject ) :
return res
raise mesonlib . MesonBugException ( f ' Unknown returned object { res } of type { type ( res ) . __name__ } in the parameters. ' )
def _unholder_args ( self ,
args : T . List [ T . Union [ TYPE_var , InterpreterObject ] ] ,
kwargs : T . Dict [ str , T . Union [ TYPE_var , InterpreterObject ] ] ) - > T . Tuple [ T . List [ TYPE_var ] , TYPE_kwargs ] :
return [ _unholder ( x ) for x in args ] , { k : _unholder ( v ) for k , v in kwargs . items ( ) }
@builtinMethodNoKwargs
def bool_method_call ( self , obj : bool , method_name : str , posargs : T . List [ TYPE_var ] , kwargs : TYPE_kwargs ) - > T . Union [ str , int ] :
if method_name == ' to_string ' :
Don't use len() to test emptiness vs not emptiness
Meson has a common pattern of using 'if len(foo) == 0:' or
'if len(foo) != 0:', however, this is a common anti-pattern in python.
Instead tests for emptiness/non-emptiness should be done with a simple
'if foo:' or 'if not foo:'
Consider the following:
>>> import timeit
>>> timeit.timeit('if len([]) == 0: pass')
0.10730923599840025
>>> timeit.timeit('if not []: pass')
0.030033907998586074
>>> timeit.timeit('if len(['a', 'b', 'c', 'd']) == 0: pass')
0.1154778649979562
>>> timeit.timeit("if not ['a', 'b', 'c', 'd']: pass")
0.08259823200205574
>>> timeit.timeit('if len("") == 0: pass')
0.089759664999292
>>> timeit.timeit('if not "": pass')
0.02340641999762738
>>> timeit.timeit('if len("foo") == 0: pass')
0.08848102600313723
>>> timeit.timeit('if not "foo": pass')
0.04032287199879647
And for the one additional case of 'if len(foo.strip()) == 0', which can
be replaced with 'if not foo.isspace()'
>>> timeit.timeit('if len(" ".strip()) == 0: pass')
0.15294511600222904
>>> timeit.timeit('if " ".isspace(): pass')
0.09413968399894657
>>> timeit.timeit('if len(" abc".strip()) == 0: pass')
0.2023209120015963
>>> timeit.timeit('if " abc".isspace(): pass')
0.09571301700270851
In other words, it's always a win to not use len(), when you don't
actually want to check the length.
8 years ago
if not posargs :
if obj :
return ' true '
else :
return ' false '
elif len ( posargs ) == 2 and isinstance ( posargs [ 0 ] , str ) and isinstance ( posargs [ 1 ] , str ) :
if obj :
return posargs [ 0 ]
else :
return posargs [ 1 ]
else :
raise InterpreterException ( ' bool.to_string() must have either no arguments or exactly two string arguments that signify what values to return for true and false. ' )
elif method_name == ' to_int ' :
if obj :
return 1
else :
return 0
else :
raise InterpreterException ( ' Unknown method " %s " for a boolean. ' % method_name )
@builtinMethodNoKwargs
def int_method_call ( self , obj : int , method_name : str , posargs : T . List [ TYPE_var ] , kwargs : TYPE_kwargs ) - > T . Union [ str , bool ] :
if method_name == ' is_even ' :
Don't use len() to test emptiness vs not emptiness
Meson has a common pattern of using 'if len(foo) == 0:' or
'if len(foo) != 0:', however, this is a common anti-pattern in python.
Instead tests for emptiness/non-emptiness should be done with a simple
'if foo:' or 'if not foo:'
Consider the following:
>>> import timeit
>>> timeit.timeit('if len([]) == 0: pass')
0.10730923599840025
>>> timeit.timeit('if not []: pass')
0.030033907998586074
>>> timeit.timeit('if len(['a', 'b', 'c', 'd']) == 0: pass')
0.1154778649979562
>>> timeit.timeit("if not ['a', 'b', 'c', 'd']: pass")
0.08259823200205574
>>> timeit.timeit('if len("") == 0: pass')
0.089759664999292
>>> timeit.timeit('if not "": pass')
0.02340641999762738
>>> timeit.timeit('if len("foo") == 0: pass')
0.08848102600313723
>>> timeit.timeit('if not "foo": pass')
0.04032287199879647
And for the one additional case of 'if len(foo.strip()) == 0', which can
be replaced with 'if not foo.isspace()'
>>> timeit.timeit('if len(" ".strip()) == 0: pass')
0.15294511600222904
>>> timeit.timeit('if " ".isspace(): pass')
0.09413968399894657
>>> timeit.timeit('if len(" abc".strip()) == 0: pass')
0.2023209120015963
>>> timeit.timeit('if " abc".isspace(): pass')
0.09571301700270851
In other words, it's always a win to not use len(), when you don't
actually want to check the length.
8 years ago
if not posargs :
return obj % 2 == 0
else :
raise InterpreterException ( ' int.is_even() must have no arguments. ' )
elif method_name == ' is_odd ' :
Don't use len() to test emptiness vs not emptiness
Meson has a common pattern of using 'if len(foo) == 0:' or
'if len(foo) != 0:', however, this is a common anti-pattern in python.
Instead tests for emptiness/non-emptiness should be done with a simple
'if foo:' or 'if not foo:'
Consider the following:
>>> import timeit
>>> timeit.timeit('if len([]) == 0: pass')
0.10730923599840025
>>> timeit.timeit('if not []: pass')
0.030033907998586074
>>> timeit.timeit('if len(['a', 'b', 'c', 'd']) == 0: pass')
0.1154778649979562
>>> timeit.timeit("if not ['a', 'b', 'c', 'd']: pass")
0.08259823200205574
>>> timeit.timeit('if len("") == 0: pass')
0.089759664999292
>>> timeit.timeit('if not "": pass')
0.02340641999762738
>>> timeit.timeit('if len("foo") == 0: pass')
0.08848102600313723
>>> timeit.timeit('if not "foo": pass')
0.04032287199879647
And for the one additional case of 'if len(foo.strip()) == 0', which can
be replaced with 'if not foo.isspace()'
>>> timeit.timeit('if len(" ".strip()) == 0: pass')
0.15294511600222904
>>> timeit.timeit('if " ".isspace(): pass')
0.09413968399894657
>>> timeit.timeit('if len(" abc".strip()) == 0: pass')
0.2023209120015963
>>> timeit.timeit('if " abc".isspace(): pass')
0.09571301700270851
In other words, it's always a win to not use len(), when you don't
actually want to check the length.
8 years ago
if not posargs :
return obj % 2 != 0
else :
raise InterpreterException ( ' int.is_odd() must have no arguments. ' )
elif method_name == ' to_string ' :
if not posargs :
return str ( obj )
else :
raise InterpreterException ( ' int.to_string() must have no arguments. ' )
else :
raise InterpreterException ( ' Unknown method " %s " for an integer. ' % method_name )
@staticmethod
def _get_one_string_posarg ( posargs : T . List [ TYPE_var ] , method_name : str ) - > str :
if len ( posargs ) > 1 :
raise InterpreterException ( f ' { method_name } () must have zero or one arguments ' )
elif len ( posargs ) == 1 :
s = posargs [ 0 ]
if not isinstance ( s , str ) :
raise InterpreterException ( f ' { method_name } () argument must be a string ' )
return s
return None
@builtinMethodNoKwargs
def string_method_call ( self , obj : str , method_name : str , posargs : T . List [ TYPE_var ] , kwargs : TYPE_kwargs ) - > T . Union [ str , int , bool , T . List [ str ] ] :
if method_name == ' strip ' :
s1 = self . _get_one_string_posarg ( posargs , ' strip ' )
if s1 is not None :
return obj . strip ( s1 )
return obj . strip ( )
elif method_name == ' format ' :
return self . format_string ( obj , posargs )
elif method_name == ' to_upper ' :
return obj . upper ( )
elif method_name == ' to_lower ' :
return obj . lower ( )
elif method_name == ' underscorify ' :
return re . sub ( r ' [^a-zA-Z0-9] ' , ' _ ' , obj )
elif method_name == ' split ' :
s2 = self . _get_one_string_posarg ( posargs , ' split ' )
if s2 is not None :
return obj . split ( s2 )
return obj . split ( )
elif method_name == ' startswith ' or method_name == ' contains ' or method_name == ' endswith ' :
s3 = posargs [ 0 ]
if not isinstance ( s3 , str ) :
raise InterpreterException ( ' Argument must be a string. ' )
if method_name == ' startswith ' :
return obj . startswith ( s3 )
elif method_name == ' contains ' :
return obj . find ( s3 ) > = 0
return obj . endswith ( s3 )
elif method_name == ' to_int ' :
try :
return int ( obj )
except Exception :
raise InterpreterException ( f ' String { obj !r} cannot be converted to int ' )
elif method_name == ' join ' :
if len ( posargs ) != 1 :
raise InterpreterException ( ' Join() takes exactly one argument. ' )
strlist = posargs [ 0 ]
check_stringlist ( strlist )
assert isinstance ( strlist , list ) # Required for mypy
return obj . join ( strlist )
elif method_name == ' version_compare ' :
if len ( posargs ) != 1 :
raise InterpreterException ( ' Version_compare() takes exactly one argument. ' )
cmpr = posargs [ 0 ]
if not isinstance ( cmpr , str ) :
raise InterpreterException ( ' Version_compare() argument must be a string. ' )
if isinstance ( obj , MesonVersionString ) :
self . tmp_meson_version = cmpr
return mesonlib . version_compare ( obj , cmpr )
elif method_name == ' substring ' :
if len ( posargs ) > 2 :
raise InterpreterException ( ' substring() takes maximum two arguments. ' )
start = 0
end = len ( obj )
if len ( posargs ) > 0 :
if not isinstance ( posargs [ 0 ] , int ) :
raise InterpreterException ( ' substring() argument must be an int ' )
start = posargs [ 0 ]
if len ( posargs ) > 1 :
if not isinstance ( posargs [ 1 ] , int ) :
raise InterpreterException ( ' substring() argument must be an int ' )
end = posargs [ 1 ]
return obj [ start : end ]
elif method_name == ' replace ' :
FeatureNew . single_use ( ' str.replace ' , ' 0.58.0 ' , self . subproject )
if len ( posargs ) != 2 :
raise InterpreterException ( ' replace() takes exactly two arguments. ' )
if not isinstance ( posargs [ 0 ] , str ) or not isinstance ( posargs [ 1 ] , str ) :
raise InterpreterException ( ' replace() requires that both arguments be strings ' )
return obj . replace ( posargs [ 0 ] , posargs [ 1 ] )
raise InterpreterException ( ' Unknown method " %s " for a string. ' % method_name )
def format_string ( self , templ : str , args : T . List [ TYPE_var ] ) - > str :
arg_strings = [ ]
for arg in args :
if isinstance ( arg , mparser . BaseNode ) :
arg = self . evaluate_statement ( arg )
if isinstance ( arg , bool ) : # Python boolean is upper case.
arg = str ( arg ) . lower ( )
arg_strings . append ( str ( arg ) )
def arg_replace ( match : T . Match [ str ] ) - > str :
idx = int ( match . group ( 1 ) )
if idx > = len ( arg_strings ) :
raise InterpreterException ( f ' Format placeholder @ { idx } @ out of range. ' )
return arg_strings [ idx ]
return re . sub ( r ' @( \ d+)@ ' , arg_replace , templ )
def unknown_function_called ( self , func_name : str ) - > None :
raise InvalidCode ( ' Unknown function " %s " . ' % func_name )
@builtinMethodNoKwargs
def array_method_call ( self ,
obj : T . List [ T . Union [ TYPE_elementary , InterpreterObject ] ] ,
method_name : str ,
posargs : T . List [ TYPE_var ] ,
kwargs : TYPE_kwargs ) - > T . Union [ TYPE_var , InterpreterObject ] :
if method_name == ' contains ' :
def check_contains ( el : T . List [ TYPE_var ] ) - > bool :
if len ( posargs ) != 1 :
raise InterpreterException ( ' Contains method takes exactly one argument. ' )
item = posargs [ 0 ]
for element in el :
if isinstance ( element , list ) :
found = check_contains ( element )
if found :
return True
if element == item :
return True
return False
return check_contains ( [ _unholder ( x ) for x in obj ] )
elif method_name == ' length ' :
return len ( obj )
elif method_name == ' get ' :
index = posargs [ 0 ]
fallback = None
if len ( posargs ) == 2 :
fallback = self . _holderify ( posargs [ 1 ] )
elif len ( posargs ) > 2 :
m = ' Array method \' get() \' only takes two arguments: the ' \
' index and an optional fallback value if the index is ' \
' out of range. '
raise InvalidArguments ( m )
if not isinstance ( index , int ) :
raise InvalidArguments ( ' Array index must be a number. ' )
if index < - len ( obj ) or index > = len ( obj ) :
if fallback is None :
m = ' Array index {!r} is out of bounds for array of size {!r} . '
raise InvalidArguments ( m . format ( index , len ( obj ) ) )
if isinstance ( fallback , mparser . BaseNode ) :
return self . evaluate_statement ( fallback )
return fallback
return obj [ index ]
raise InterpreterException ( f ' Arrays do not have a method called { method_name !r} . ' )
@builtinMethodNoKwargs
def dict_method_call ( self ,
obj : T . Dict [ str , T . Union [ TYPE_elementary , InterpreterObject ] ] ,
method_name : str ,
posargs : T . List [ TYPE_var ] ,
kwargs : TYPE_kwargs ) - > T . Union [ TYPE_var , InterpreterObject ] :
if method_name in ( ' has_key ' , ' get ' ) :
if method_name == ' has_key ' :
if len ( posargs ) != 1 :
raise InterpreterException ( ' has_key() takes exactly one argument. ' )
else :
if len ( posargs ) not in ( 1 , 2 ) :
raise InterpreterException ( ' get() takes one or two arguments. ' )
key = posargs [ 0 ]
if not isinstance ( key , ( str ) ) :
raise InvalidArguments ( ' Dictionary key must be a string. ' )
has_key = key in obj
if method_name == ' has_key ' :
return has_key
if has_key :
return obj [ key ]
if len ( posargs ) == 2 :
fallback = self . _holderify ( posargs [ 1 ] )
if isinstance ( fallback , mparser . BaseNode ) :
return self . evaluate_statement ( fallback )
return fallback
raise InterpreterException ( f ' Key { key !r} is not in the dictionary. ' )
if method_name == ' keys ' :
if len ( posargs ) != 0 :
raise InterpreterException ( ' keys() takes no arguments. ' )
return sorted ( obj . keys ( ) )
raise InterpreterException ( ' Dictionaries do not have a method called " %s " . ' % method_name )
def reduce_arguments (
self ,
args : mparser . ArgumentNode ,
key_resolver : T . Callable [ [ mparser . BaseNode ] , str ] = default_resolve_key ,
duplicate_key_error : T . Optional [ str ] = None ,
) - > T . Tuple [
T . List [ T . Union [ TYPE_var , InterpreterObject ] ] ,
T . Dict [ str , T . Union [ TYPE_var , InterpreterObject ] ]
] :
assert ( isinstance ( args , mparser . ArgumentNode ) )
if args . incorrect_order ( ) :
raise InvalidArguments ( ' All keyword arguments must be after positional arguments. ' )
self . argument_depth + = 1
reduced_pos : T . List [ T . Union [ TYPE_var , InterpreterObject ] ] = [ self . evaluate_statement ( arg ) for arg in args . arguments ]
reduced_kw : T . Dict [ str , T . Union [ TYPE_var , InterpreterObject ] ] = { }
for key , val in args . kwargs . items ( ) :
reduced_key = key_resolver ( key )
assert isinstance ( val , mparser . BaseNode )
reduced_val = self . evaluate_statement ( val )
if duplicate_key_error and reduced_key in reduced_kw :
raise InvalidArguments ( duplicate_key_error . format ( reduced_key ) )
reduced_kw [ reduced_key ] = reduced_val
self . argument_depth - = 1
final_kw = self . expand_default_kwargs ( reduced_kw )
return reduced_pos , final_kw
def expand_default_kwargs ( self , kwargs : T . Dict [ str , T . Union [ TYPE_var , InterpreterObject ] ] ) - > T . Dict [ str , T . Union [ TYPE_var , InterpreterObject ] ] :
if ' kwargs ' not in kwargs :
return kwargs
to_expand = kwargs . pop ( ' kwargs ' )
if not isinstance ( to_expand , dict ) :
raise InterpreterException ( ' Value of " kwargs " must be dictionary. ' )
if ' kwargs ' in to_expand :
raise InterpreterException ( ' Kwargs argument must not contain a " kwargs " entry. Points for thinking meta, though. :P ' )
for k , v in to_expand . items ( ) :
if k in kwargs :
raise InterpreterException ( f ' Entry " { k } " defined both as a keyword argument and in a " kwarg " entry. ' )
kwargs [ k ] = v
return kwargs
def assignment ( self , node : mparser . AssignmentNode ) - > None :
assert ( isinstance ( node , mparser . AssignmentNode ) )
if self . argument_depth != 0 :
raise InvalidArguments ( ''' Tried to assign values inside an argument list.
To specify a keyword argument , use : instead of = . ''' )
var_name = node . var_name
if not isinstance ( var_name , str ) :
raise InvalidArguments ( ' Tried to assign value to a non-variable. ' )
value = self . evaluate_statement ( node . value )
if not self . is_assignable ( value ) :
raise InvalidCode ( f ' Tried to assign the invalid value " { value } " of type { type ( value ) . __name__ } to variable. ' )
# For mutable objects we need to make a copy on assignment
if isinstance ( value , MutableInterpreterObject ) :
value = copy . deepcopy ( value )
self . set_variable ( var_name , value )
return None
def set_variable ( self , varname : str , variable : T . Union [ TYPE_var , InterpreterObject ] , * , holderify : bool = False ) - > None :
if variable is None :
raise InvalidCode ( ' Can not assign None to variable. ' )
if holderify :
variable = self . _holderify ( variable )
else :
# Ensure that we are never storing a HoldableObject
def check ( x : T . Union [ TYPE_var , InterpreterObject ] ) - > None :
if isinstance ( x , mesonlib . HoldableObject ) :
raise mesonlib . MesonBugException ( f ' set_variable in InterpreterBase called with a HoldableObject { x } of type { type ( x ) . __name__ } ' )
elif isinstance ( x , list ) :
for y in x :
check ( y )
elif isinstance ( x , dict ) :
for v in x . values ( ) :
check ( v )
check ( variable )
if not isinstance ( varname , str ) :
raise InvalidCode ( ' First argument to set_variable must be a string. ' )
if not self . is_assignable ( variable ) :
raise InvalidCode ( f ' Assigned value " { variable } " of type { type ( variable ) . __name__ } is not an assignable type. ' )
if re . match ( ' [_a-zA-Z][_0-9a-zA-Z]*$ ' , varname ) is None :
raise InvalidCode ( ' Invalid variable name: ' + varname )
if varname in self . builtin :
raise InvalidCode ( ' Tried to overwrite internal variable " %s " ' % varname )
self . variables [ varname ] = variable
def get_variable ( self , varname : str ) - > T . Union [ TYPE_var , InterpreterObject ] :
if varname in self . builtin :
return self . builtin [ varname ]
if varname in self . variables :
return self . variables [ varname ]
raise InvalidCode ( ' Unknown variable " %s " . ' % varname )
def is_assignable ( self , value : T . Any ) - > bool :
return isinstance ( value , ( InterpreterObject , str , int , list , dict ) )
def validate_extraction ( self , buildtarget : mesonlib . HoldableObject ) - > None :
raise InterpreterException ( ' validate_extraction is not implemented in this context (please file a bug) ' )