The Meson Build System http://mesonbuild.com/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1417 lines
61 KiB

# Copyright 2016-2017 The Meson development team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This class contains the basic functionality needed to run any interpreter
# or an interpreter-based tool.
from . import mparser, mesonlib, mlog
from . import environment, dependencies
from functools import wraps
import abc
import collections.abc
import itertools
import os, copy, re
import typing as T
TV_fw_var = T.Union[str, int, float, bool, list, dict, 'InterpreterObject', 'ObjectHolder']
TV_fw_args = T.List[T.Union[mparser.BaseNode, TV_fw_var]]
TV_fw_kwargs = T.Dict[str, T.Union[mparser.BaseNode, TV_fw_var]]
TV_func = T.TypeVar('TV_func', bound=T.Callable[..., T.Any])
TYPE_elementary = T.Union[str, int, float, bool]
TYPE_var = T.Union[TYPE_elementary, T.List[T.Any], T.Dict[str, T.Any], 'InterpreterObject', 'ObjectHolder']
TYPE_nvar = T.Union[TYPE_var, mparser.BaseNode]
TYPE_nkwargs = T.Dict[str, TYPE_nvar]
TYPE_key_resolver = T.Callable[[mparser.BaseNode], str]
class InterpreterObject:
def __init__(self) -> None:
self.methods = {} # type: T.Dict[str, T.Callable[[T.List[TYPE_nvar], TYPE_nkwargs], TYPE_var]]
# Current node set during a method call. This can be used as location
# when printing a warning message during a method call.
self.current_node = None # type: mparser.BaseNode
def method_call(
self,
method_name: str,
args: TV_fw_args,
kwargs: TV_fw_kwargs
) -> TYPE_var:
if method_name in self.methods:
method = self.methods[method_name]
if not getattr(method, 'no-args-flattening', False):
args = flatten(args)
return method(args, kwargs)
raise InvalidCode('Unknown method "%s" in object.' % method_name)
TV_InterpreterObject = T.TypeVar('TV_InterpreterObject')
class ObjectHolder(T.Generic[TV_InterpreterObject]):
def __init__(self, obj: TV_InterpreterObject, subproject: str = '') -> None:
self.held_object = obj
self.subproject = subproject
def __repr__(self) -> str:
return f'<Holder: {self.held_object!r}>'
class MesonVersionString(str):
pass
class RangeHolder(InterpreterObject):
def __init__(self, start: int, stop: int, step: int) -> None:
super().__init__()
self.range = range(start, stop, step)
def __iter__(self) -> T.Iterator[int]:
return iter(self.range)
def __getitem__(self, key: int) -> int:
return self.range[key]
def __len__(self) -> int:
return len(self.range)
# Decorators for method calls.
def check_stringlist(a: T.Any, msg: str = 'Arguments must be strings.') -> None:
if not isinstance(a, list):
mlog.debug('Not a list:', str(a))
raise InvalidArguments('Argument not a list.')
if not all(isinstance(s, str) for s in a):
mlog.debug('Element not a string:', str(a))
raise InvalidArguments(msg)
def _get_callee_args(wrapped_args: T.Sequence[T.Any], want_subproject: bool = False) -> T.Tuple[T.Any, mparser.BaseNode, TV_fw_args, TV_fw_kwargs, T.Optional[str]]:
s = wrapped_args[0]
n = len(wrapped_args)
# Raise an error if the codepaths are not there
subproject = None # type: T.Optional[str]
if want_subproject and n == 2:
if hasattr(s, 'subproject'):
# Interpreter base types have 2 args: self, node
node = wrapped_args[1]
# args and kwargs are inside the node
args = None
kwargs = None
subproject = s.subproject
elif hasattr(wrapped_args[1], 'subproject'):
# Module objects have 2 args: self, interpreter
node = wrapped_args[1].current_node
# args and kwargs are inside the node
args = None
kwargs = None
subproject = wrapped_args[1].subproject
else:
raise AssertionError(f'Unknown args: {wrapped_args!r}')
elif n == 3:
# Methods on objects (*Holder, MesonMain, etc) have 3 args: self, args, kwargs
node = s.current_node
args = wrapped_args[1]
kwargs = wrapped_args[2]
if want_subproject:
if hasattr(s, 'subproject'):
subproject = s.subproject
elif hasattr(s, 'interpreter'):
subproject = s.interpreter.subproject
elif n == 4:
# Meson functions have 4 args: self, node, args, kwargs
# Module functions have 4 args: self, state, args, kwargs
if isinstance(s, InterpreterBase):
node = wrapped_args[1]
else:
node = wrapped_args[1].current_node
args = wrapped_args[2]
kwargs = wrapped_args[3]
if want_subproject:
if isinstance(s, InterpreterBase):
subproject = s.subproject
else:
subproject = wrapped_args[1].subproject
elif n == 5:
# Module snippets have 5 args: self, interpreter, state, args, kwargs
node = wrapped_args[2].current_node
args = wrapped_args[3]
kwargs = wrapped_args[4]
if want_subproject:
subproject = wrapped_args[2].subproject
else:
raise AssertionError(f'Unknown args: {wrapped_args!r}')
# Sometimes interpreter methods are called internally with None instead of
# empty list/dict
args = args if args is not None else []
kwargs = kwargs if kwargs is not None else {}
return s, node, args, kwargs, subproject
def flatten(args: T.Union[TYPE_nvar, T.List[TYPE_nvar]]) -> T.List[TYPE_nvar]:
if isinstance(args, mparser.StringNode):
assert isinstance(args.value, str)
return [args.value]
if not isinstance(args, collections.abc.Sequence):
return [args]
result = [] # type: T.List[TYPE_nvar]
for a in args:
if isinstance(a, list):
rest = flatten(a)
result = result + rest
elif isinstance(a, mparser.StringNode):
result.append(a.value)
else:
result.append(a)
return result
def noPosargs(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
args = _get_callee_args(wrapped_args)[2]
if args:
raise InvalidArguments('Function does not take positional arguments.')
return f(*wrapped_args, **wrapped_kwargs)
return T.cast(TV_func, wrapped)
def builtinMethodNoKwargs(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
node = wrapped_args[0].current_node
method_name = wrapped_args[2]
kwargs = wrapped_args[4]
if kwargs:
mlog.warning(f'Method {method_name!r} does not take keyword arguments.',
'This will become a hard error in the future',
location=node)
return f(*wrapped_args, **wrapped_kwargs)
return T.cast(TV_func, wrapped)
def noKwargs(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
kwargs = _get_callee_args(wrapped_args)[3]
if kwargs:
raise InvalidArguments('Function does not take keyword arguments.')
return f(*wrapped_args, **wrapped_kwargs)
return T.cast(TV_func, wrapped)
def stringArgs(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
args = _get_callee_args(wrapped_args)[2]
assert(isinstance(args, list))
check_stringlist(args)
return f(*wrapped_args, **wrapped_kwargs)
return T.cast(TV_func, wrapped)
def noArgsFlattening(f: TV_func) -> TV_func:
setattr(f, 'no-args-flattening', True) # noqa: B010
return f
def disablerIfNotFound(f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
kwargs = _get_callee_args(wrapped_args)[3]
disabler = kwargs.pop('disabler', False)
ret = f(*wrapped_args, **wrapped_kwargs)
if disabler and not ret.held_object.found():
return Disabler()
return ret
return T.cast(TV_func, wrapped)
class permittedKwargs:
def __init__(self, permitted: T.Set[str]):
self.permitted = permitted # type: T.Set[str]
def __call__(self, f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
s, node, args, kwargs, _ = _get_callee_args(wrapped_args)
for k in kwargs:
if k not in self.permitted:
mlog.warning(f'''Passed invalid keyword argument "{k}".''', location=node)
mlog.warning('This will become a hard error in the future.')
return f(*wrapped_args, **wrapped_kwargs)
return T.cast(TV_func, wrapped)
def typed_pos_args(name: str, *types: T.Union[T.Type, T.Tuple[T.Type, ...]],
varargs: T.Optional[T.Union[T.Type, T.Tuple[T.Type]]] = None,
optargs: T.Optional[T.List[T.Union[T.Type, T.Tuple[T.Type]]]] = None,
min_varargs: int = 0, max_varargs: int = 0) -> T.Callable[..., T.Any]:
"""Decorator that types type checking of positional arguments.
This supports two different models of optional aguments, the first is the
variadic argument model. Variadic arguments are a possibly bounded,
possibly unbounded number of arguments of the same type (unions are
supported). The second is the standard default value model, in this case
a number of optional arguments may be provided, but they are still
ordered, and they may have different types.
This function does not support mixing variadic and default arguments.
:name: The name of the decorated function (as displayed in error messages)
:varargs: They type(s) of any variadic arguments the function takes. If
None the function takes no variadic args
:min_varargs: the minimum number of variadic arguments taken
:max_varargs: the maximum number of variadic arguments taken. 0 means unlimited
:optargs: The types of any optional arguments parameters taken. If None
then no optional paramters are taken.
Some examples of usage blow:
>>> @typed_pos_args('mod.func', str, (str, int))
... def func(self, state: ModuleState, args: T.Tuple[str, T.Union[str, int]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
>>> @typed_pos_args('method', str, varargs=str)
... def method(self, node: BaseNode, args: T.Tuple[str, T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
>>> @typed_pos_args('method', varargs=str, min_varargs=1)
... def method(self, node: BaseNode, args: T.Tuple[T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
>>> @typed_pos_args('method', str, optargs=[(str, int), str])
... def method(self, node: BaseNode, args: T.Tuple[str, T.Optional[T.Union[str, int]], T.Optional[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
... pass
When should you chose `typed_pos_args('name', varargs=str,
min_varargs=1)` vs `typed_pos_args('name', str, varargs=str)`?
The answer has to do with the semantics of the function, if all of the
inputs are the same type (such as with `files()`) then the former is
correct, all of the arguments are string names of files. If the first
argument is something else the it should be separated.
"""
def inner(f: TV_func) -> TV_func:
@wraps(f)
def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
args = _get_callee_args(wrapped_args)[2]
# These are implementation programming errors, end users should never see them.
assert isinstance(args, list), args
assert max_varargs >= 0, 'max_varags cannot be negative'
assert min_varargs >= 0, 'min_varags cannot be negative'
assert optargs is None or varargs is None, \
'varargs and optargs not supported together as this would be ambiguous'
num_args = len(args)
num_types = len(types)
a_types = types
if varargs:
min_args = num_types + min_varargs
max_args = num_types + max_varargs
if max_varargs == 0 and num_args < min_args:
raise InvalidArguments(f'{name} takes at least {min_args} arguments, but got {num_args}.')
elif max_varargs != 0 and (num_args < min_args or num_args > max_args):
raise InvalidArguments(f'{name} takes between {min_args} and {max_args} arguments, but got {num_args}.')
elif optargs:
if num_args < num_types:
raise InvalidArguments(f'{name} takes at least {num_types} arguments, but got {num_args}.')
elif num_args > num_types + len(optargs):
raise InvalidArguments(f'{name} takes at most {num_types + len(optargs)} arguments, but got {num_args}.')
# Add the number of positional arguments required
if num_args > num_types:
diff = num_args - num_types
a_types = tuple(list(types) + list(optargs[:diff]))
elif num_args != num_types:
raise InvalidArguments(f'{name} takes exactly {num_types} arguments, but got {num_args}.')
for i, (arg, type_) in enumerate(itertools.zip_longest(args, a_types, fillvalue=varargs), start=1):
if not isinstance(arg, type_):
if isinstance(type_, tuple):
shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in type_))
else:
shouldbe = f'"{type_.__name__}"'
raise InvalidArguments(f'{name} argument {i} was of type "{type(arg).__name__}" but should have been {shouldbe}')
# Ensure that we're actually passing a tuple.
# Depending on what kind of function we're calling the length of
# wrapped_args can vary.
nargs = list(wrapped_args)
i = nargs.index(args)
if varargs:
# if we have varargs we need to split them into a separate
# tuple, as python's typing doesn't understand tuples with
# fixed elements and variadic elements, only one or the other.
# so in that case we need T.Tuple[int, str, float, T.Tuple[str, ...]]
pos = args[:len(types)]
var = list(args[len(types):])
pos.append(var)
nargs[i] = tuple(pos)
elif optargs:
if num_args < num_types + len(optargs):
diff = num_types + len(optargs) - num_args
nargs[i] = tuple(list(args) + [None] * diff)
else:
nargs[i] = args
else:
nargs[i] = tuple(args)
return f(*nargs, **wrapped_kwargs)
return T.cast(TV_func, wrapper)
return inner
class FeatureCheckBase(metaclass=abc.ABCMeta):
"Base class for feature version checks"
# In python 3.6 we can just forward declare this, but in 3.5 we can't
# This will be overwritten by the subclasses by necessity
feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]]
def __init__(self, feature_name: str, version: str, extra_message: T.Optional[str] = None):
self.feature_name = feature_name # type: str
self.feature_version = version # type: str
self.extra_message = extra_message or '' # type: str
@staticmethod
def get_target_version(subproject: str) -> str:
# Don't do any checks if project() has not been parsed yet
if subproject not in mesonlib.project_meson_versions:
return ''
return mesonlib.project_meson_versions[subproject]
@staticmethod
@abc.abstractmethod
def check_version(target_version: str, feature_Version: str) -> bool:
pass
def use(self, subproject: str) -> None:
tv = self.get_target_version(subproject)
# No target version
if tv == '':
return
# Target version is new enough
if self.check_version(tv, self.feature_version):
return
# Feature is too new for target version, register it
if subproject not in self.feature_registry:
self.feature_registry[subproject] = {self.feature_version: set()}
register = self.feature_registry[subproject]
if self.feature_version not in register:
register[self.feature_version] = set()
if self.feature_name in register[self.feature_version]:
# Don't warn about the same feature multiple times
# FIXME: This is needed to prevent duplicate warnings, but also
# means we won't warn about a feature used in multiple places.
return
register[self.feature_version].add(self.feature_name)
self.log_usage_warning(tv)
@classmethod
def report(cls, subproject: str) -> None:
if subproject not in cls.feature_registry:
return
warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject))
fv = cls.feature_registry[subproject]
for version in sorted(fv.keys()):
warning_str += '\n * {}: {}'.format(version, fv[version])
mlog.warning(warning_str)
def log_usage_warning(self, tv: str) -> None:
raise InterpreterException('log_usage_warning not implemented')
@staticmethod
def get_warning_str_prefix(tv: str) -> str:
raise InterpreterException('get_warning_str_prefix not implemented')
def __call__(self, f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
subproject = _get_callee_args(wrapped_args, want_subproject=True)[4]
if subproject is None:
raise AssertionError(f'{wrapped_args!r}')
self.use(subproject)
return f(*wrapped_args, **wrapped_kwargs)
return T.cast(TV_func, wrapped)
@classmethod
def single_use(cls, feature_name: str, version: str, subproject: str,
extra_message: T.Optional[str] = None) -> None:
"""Oneline version that instantiates and calls use()."""
cls(feature_name, version, extra_message).use(subproject)
class FeatureNew(FeatureCheckBase):
"""Checks for new features"""
# Class variable, shared across all instances
#
# Format: {subproject: {feature_version: set(feature_names)}}
feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]]
@staticmethod
def check_version(target_version: str, feature_version: str) -> bool:
return mesonlib.version_compare_condition_with_min(target_version, feature_version)
@staticmethod
def get_warning_str_prefix(tv: str) -> str:
return f'Project specifies a minimum meson_version \'{tv}\' but uses features which were added in newer versions:'
def log_usage_warning(self, tv: str) -> None:
args = [
'Project targeting', f"'{tv}'",
'but tried to use feature introduced in',
f"'{self.feature_version}':",
f'{self.feature_name}.',
]
if self.extra_message:
args.append(self.extra_message)
mlog.warning(*args)
class FeatureDeprecated(FeatureCheckBase):
"""Checks for deprecated features"""
# Class variable, shared across all instances
#
# Format: {subproject: {feature_version: set(feature_names)}}
feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]]
@staticmethod
def check_version(target_version: str, feature_version: str) -> bool:
5 years ago
# For deprecation checks we need to return the inverse of FeatureNew checks
return not mesonlib.version_compare_condition_with_min(target_version, feature_version)
@staticmethod
def get_warning_str_prefix(tv: str) -> str:
return 'Deprecated features used:'
def log_usage_warning(self, tv: str) -> None:
args = [
'Project targeting', f"'{tv}'",
'but tried to use feature deprecated since',
f"'{self.feature_version}':",
f'{self.feature_name}.',
]
if self.extra_message:
args.append(self.extra_message)
mlog.warning(*args)
class FeatureCheckKwargsBase(metaclass=abc.ABCMeta):
@property
@abc.abstractmethod
def feature_check_class(self) -> T.Type[FeatureCheckBase]:
pass
def __init__(self, feature_name: str, feature_version: str,
kwargs: T.List[str], extra_message: T.Optional[str] = None):
self.feature_name = feature_name
self.feature_version = feature_version
self.kwargs = kwargs
self.extra_message = extra_message
def __call__(self, f: TV_func) -> TV_func:
@wraps(f)
def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5]
if subproject is None:
raise AssertionError(f'{wrapped_args!r}')
for arg in self.kwargs:
if arg not in kwargs:
continue
name = arg + ' arg in ' + self.feature_name
self.feature_check_class.single_use(
name, self.feature_version, subproject, self.extra_message)
return f(*wrapped_args, **wrapped_kwargs)
return T.cast(TV_func, wrapped)
class FeatureNewKwargs(FeatureCheckKwargsBase):
feature_check_class = FeatureNew
class FeatureDeprecatedKwargs(FeatureCheckKwargsBase):
feature_check_class = FeatureDeprecated
class InterpreterException(mesonlib.MesonException):
pass
class InvalidCode(InterpreterException):
pass
class InvalidArguments(InterpreterException):
pass
class SubdirDoneRequest(BaseException):
pass
class ContinueRequest(BaseException):
pass
class BreakRequest(BaseException):
pass
class MutableInterpreterObject(InterpreterObject):
def __init__(self) -> None:
super().__init__()
class Disabler(InterpreterObject):
def __init__(self) -> None:
super().__init__()
self.methods.update({'found': self.found_method})
def found_method(self, args: T.Sequence[T.Any], kwargs: T.Dict[str, T.Any]) -> bool:
return False
def is_disabler(i: T.Any) -> bool:
return isinstance(i, Disabler)
def is_arg_disabled(arg: T.Any) -> bool:
if is_disabler(arg):
return True
if isinstance(arg, list):
for i in arg:
if is_arg_disabled(i):
return True
return False
def is_disabled(args: T.Sequence[T.Any], kwargs: T.Dict[str, T.Any]) -> bool:
for i in args:
if is_arg_disabled(i):
return True
for i in kwargs.values():
if is_arg_disabled(i):
return True
return False
def default_resolve_key(key: mparser.BaseNode) -> str:
if not isinstance(key, mparser.IdNode):
raise InterpreterException('Invalid kwargs format.')
return key.value
class InterpreterBase:
elementary_types = (int, float, str, bool, list)
def __init__(self, source_root: str, subdir: str, subproject: str):
self.source_root = source_root
self.funcs = {} # type: T.Dict[str, T.Callable[[mparser.BaseNode, T.List[TYPE_nvar], T.Dict[str, TYPE_nvar]], TYPE_var]]
self.builtin = {} # type: T.Dict[str, InterpreterObject]
self.subdir = subdir
self.root_subdir = subdir
self.subproject = subproject
self.variables = {} # type: T.Dict[str, TYPE_var]
self.argument_depth = 0
self.current_lineno = -1
# Current node set during a function call. This can be used as location
# when printing a warning message during a method call.
self.current_node = None # type: mparser.BaseNode
# This is set to `version_string` when this statement is evaluated:
# meson.version().compare_version(version_string)
# If it was part of a if-clause, it is used to temporally override the
# current meson version target within that if-block.
self.tmp_meson_version = None # type: T.Optional[str]
def load_root_meson_file(self) -> None:
mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename)
if not os.path.isfile(mesonfile):
raise InvalidArguments('Missing Meson file in %s' % mesonfile)
with open(mesonfile, encoding='utf8') as mf:
code = mf.read()
if code.isspace():
raise InvalidCode('Builder file is empty.')
assert(isinstance(code, str))
try:
self.ast = mparser.Parser(code, mesonfile).parse()
except mesonlib.MesonException as me:
me.file = mesonfile
raise me
def join_path_strings(self, args: T.Sequence[str]) -> str:
return os.path.join(*args).replace('\\', '/')
def parse_project(self) -> None:
"""
Parses project() and initializes languages, compilers etc. Do this
early because we need this before we parse the rest of the AST.
"""
self.evaluate_codeblock(self.ast, end=1)
def sanity_check_ast(self) -> None:
if not isinstance(self.ast, mparser.CodeBlockNode):
raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.')
if not self.ast.lines:
raise InvalidCode('No statements in code.')
first = self.ast.lines[0]
if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project':
raise InvalidCode('First statement must be a call to project')
def run(self) -> None:
# Evaluate everything after the first line, which is project() because
# we already parsed that in self.parse_project()
try:
self.evaluate_codeblock(self.ast, start=1)
except SubdirDoneRequest:
pass
def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None:
if node is None:
return
if not isinstance(node, mparser.CodeBlockNode):
e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.')
e.lineno = node.lineno
e.colno = node.colno
raise e
statements = node.lines[start:end]
i = 0
while i < len(statements):
cur = statements[i]
try:
self.current_lineno = cur.lineno
self.evaluate_statement(cur)
except Exception as e:
if getattr(e, 'lineno', None) is None:
# We are doing the equivalent to setattr here and mypy does not like it
e.lineno = cur.lineno # type: ignore
e.colno = cur.colno # type: ignore
e.file = os.path.join(self.source_root, self.subdir, environment.build_filename) # type: ignore
raise e
i += 1 # In THE FUTURE jump over blocks and stuff.
def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[TYPE_var]:
self.current_node = cur
if isinstance(cur, mparser.FunctionNode):
return self.function_call(cur)
elif isinstance(cur, mparser.AssignmentNode):
self.assignment(cur)
elif isinstance(cur, mparser.MethodNode):
return self.method_call(cur)
elif isinstance(cur, mparser.StringNode):
return cur.value
elif isinstance(cur, mparser.BooleanNode):
return cur.value
elif isinstance(cur, mparser.IfClauseNode):
return self.evaluate_if(cur)
elif isinstance(cur, mparser.IdNode):
return self.get_variable(cur.value)
elif isinstance(cur, mparser.ComparisonNode):
return self.evaluate_comparison(cur)
elif isinstance(cur, mparser.ArrayNode):
return self.evaluate_arraystatement(cur)
elif isinstance(cur, mparser.DictNode):
return self.evaluate_dictstatement(cur)
elif isinstance(cur, mparser.NumberNode):
return cur.value
elif isinstance(cur, mparser.AndNode):
return self.evaluate_andstatement(cur)
elif isinstance(cur, mparser.OrNode):
return self.evaluate_orstatement(cur)
elif isinstance(cur, mparser.NotNode):
return self.evaluate_notstatement(cur)
elif isinstance(cur, mparser.UMinusNode):
return self.evaluate_uminusstatement(cur)
elif isinstance(cur, mparser.ArithmeticNode):
return self.evaluate_arithmeticstatement(cur)
elif isinstance(cur, mparser.ForeachClauseNode):
self.evaluate_foreach(cur)
elif isinstance(cur, mparser.PlusAssignmentNode):
self.evaluate_plusassign(cur)
elif isinstance(cur, mparser.IndexNode):
return self.evaluate_indexing(cur)
elif isinstance(cur, mparser.TernaryNode):
return self.evaluate_ternary(cur)
elif isinstance(cur, mparser.FormatStringNode):
return self.evaluate_fstring(cur)
elif isinstance(cur, mparser.ContinueNode):
raise ContinueRequest()
elif isinstance(cur, mparser.BreakNode):
raise BreakRequest()
elif isinstance(cur, self.elementary_types):
return cur
else:
raise InvalidCode("Unknown statement.")
return None
def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> list:
(arguments, kwargs) = self.reduce_arguments(cur.args)
if len(kwargs) > 0:
raise InvalidCode('Keyword arguments are invalid in array construction.')
return arguments
@FeatureNew('dict', '0.47.0')
def evaluate_dictstatement(self, cur: mparser.DictNode) -> TYPE_nkwargs:
def resolve_key(key: mparser.BaseNode) -> str:
if not isinstance(key, mparser.StringNode):
FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject)
str_key = self.evaluate_statement(key)
if not isinstance(str_key, str):
raise InvalidArguments('Key must be a string')
return str_key
arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}')
assert not arguments
return kwargs
def evaluate_notstatement(self, cur: mparser.NotNode) -> T.Union[bool, Disabler]:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
if not isinstance(v, bool):
raise InterpreterException('Argument to "not" is not a boolean.')
return not v
def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]:
assert(isinstance(node, mparser.IfClauseNode))
for i in node.ifs:
# Reset self.tmp_meson_version to know if it gets set during this
# statement evaluation.
self.tmp_meson_version = None
result = self.evaluate_statement(i.condition)
if isinstance(result, Disabler):
return result
if not(isinstance(result, bool)):
raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.')
if result:
prev_meson_version = mesonlib.project_meson_versions[self.subproject]
if self.tmp_meson_version:
mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version
try:
self.evaluate_codeblock(i.block)
finally:
mesonlib.project_meson_versions[self.subproject] = prev_meson_version
return None
if not isinstance(node.elseblock, mparser.EmptyNode):
self.evaluate_codeblock(node.elseblock)
return None
def validate_comparison_types(self, val1: T.Any, val2: T.Any) -> bool:
if type(val1) != type(val2):
return False
return True
def evaluate_in(self, val1: T.Any, val2: T.Any) -> bool:
if not isinstance(val1, (str, int, float, ObjectHolder)):
raise InvalidArguments('lvalue of "in" operator must be a string, integer, float, or object')
if not isinstance(val2, (list, dict)):
raise InvalidArguments('rvalue of "in" operator must be an array or a dict')
return val1 in val2
def evaluate_comparison(self, node: mparser.ComparisonNode) -> T.Union[bool, Disabler]:
val1 = self.evaluate_statement(node.left)
if isinstance(val1, Disabler):
return val1
val2 = self.evaluate_statement(node.right)
if isinstance(val2, Disabler):
return val2
if node.ctype == 'in':
return self.evaluate_in(val1, val2)
elif node.ctype == 'notin':
return not self.evaluate_in(val1, val2)
valid = self.validate_comparison_types(val1, val2)
# Ordering comparisons of different types isn't allowed since PR #1810
# (0.41.0). Since PR #2884 we also warn about equality comparisons of
# different types, which will one day become an error.
if not valid and (node.ctype == '==' or node.ctype == '!='):
mlog.warning('''Trying to compare values of different types ({}, {}) using {}.
The result of this is undefined and will become a hard error in a future Meson release.'''
.format(type(val1).__name__, type(val2).__name__, node.ctype), location=node)
if node.ctype == '==':
return val1 == val2
elif node.ctype == '!=':
return val1 != val2
elif not valid:
raise InterpreterException(
'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__,
type(val2).__name__,
node.ctype))
elif not isinstance(val1, self.elementary_types):
raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.left, 'value', '<ERROR>')))
elif not isinstance(val2, self.elementary_types):
raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.right, 'value', '<ERROR>')))
# Use type: ignore because mypy will complain that we are comparing two Unions,
# but we actually guarantee earlier that both types are the same
elif node.ctype == '<':
return val1 < val2 # type: ignore
elif node.ctype == '<=':
return val1 <= val2 # type: ignore
elif node.ctype == '>':
return val1 > val2 # type: ignore
elif node.ctype == '>=':
return val1 >= val2 # type: ignore
else:
raise InvalidCode('You broke my compare eval.')
def evaluate_andstatement(self, cur: mparser.AndNode) -> T.Union[bool, Disabler]:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
if not isinstance(l, bool):
raise InterpreterException('First argument to "and" is not a boolean.')
if not l:
return False
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
if not isinstance(r, bool):
raise InterpreterException('Second argument to "and" is not a boolean.')
return r
def evaluate_orstatement(self, cur: mparser.OrNode) -> T.Union[bool, Disabler]:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
if not isinstance(l, bool):
raise InterpreterException('First argument to "or" is not a boolean.')
if l:
return True
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
if not isinstance(r, bool):
raise InterpreterException('Second argument to "or" is not a boolean.')
return r
def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> T.Union[int, Disabler]:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
if not isinstance(v, int):
raise InterpreterException('Argument to negation is not an integer.')
return -v
@FeatureNew('/ with string arguments', '0.49.0')
def evaluate_path_join(self, l: str, r: str) -> str:
if not isinstance(l, str):
raise InvalidCode('The division operator can only append to a string.')
if not isinstance(r, str):
raise InvalidCode('The division operator can only append a string.')
return self.join_path_strings((l, r))
def evaluate_division(self, l: T.Any, r: T.Any) -> T.Union[int, str]:
if isinstance(l, str) or isinstance(r, str):
return self.evaluate_path_join(l, r)
if isinstance(l, int) and isinstance(r, int):
if r == 0:
raise InvalidCode('Division by zero.')
return l // r
raise InvalidCode('Division works only with strings or integers.')
def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> T.Union[int, str, dict, list, Disabler]:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
if cur.operation == 'add':
if isinstance(l, dict) and isinstance(r, dict):
return {**l, **r}
try:
# MyPy error due to handling two Unions (we are catching all exceptions anyway)
return l + r # type: ignore
except Exception as e:
raise InvalidCode('Invalid use of addition: ' + str(e))
elif cur.operation == 'sub':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Subtraction works only with integers.')
return l - r
elif cur.operation == 'mul':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Multiplication works only with integers.')
return l * r
elif cur.operation == 'div':
return self.evaluate_division(l, r)
elif cur.operation == 'mod':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Modulo works only with integers.')
return l % r
else:
raise InvalidCode('You broke me.')
def evaluate_ternary(self, node: mparser.TernaryNode) -> TYPE_var:
assert(isinstance(node, mparser.TernaryNode))
result = self.evaluate_statement(node.condition)
if isinstance(result, Disabler):
return result
if not isinstance(result, bool):
raise InterpreterException('Ternary condition is not boolean.')
if result:
return self.evaluate_statement(node.trueblock)
else:
return self.evaluate_statement(node.falseblock)
@FeatureNew('format strings', '0.58.0')
def evaluate_fstring(self, node: mparser.FormatStringNode) -> TYPE_var:
assert(isinstance(node, mparser.FormatStringNode))
def replace(match: T.Match[str]) -> str:
var = str(match.group(1))
try:
val = self.variables[var]
if not isinstance(val, (str, int, float, bool)):
raise InvalidCode(f'Identifier "{var}" does not name a formattable variable ' +
'(has to be an integer, a string, a floating point number or a boolean).')
return str(val)
except KeyError:
raise InvalidCode(f'Identifier "{var}" does not name a variable.')
return re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None:
assert(isinstance(node, mparser.ForeachClauseNode))
items = self.evaluate_statement(node.items)
if isinstance(items, (list, RangeHolder)):
if len(node.varnames) != 1:
raise InvalidArguments('Foreach on array does not unpack')
varname = node.varnames[0]
for item in items:
self.set_variable(varname, item)
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
elif isinstance(items, dict):
if len(node.varnames) != 2:
raise InvalidArguments('Foreach on dict unpacks key and value')
for key, value in sorted(items.items()):
self.set_variable(node.varnames[0], key)
self.set_variable(node.varnames[1], value)
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
else:
raise InvalidArguments('Items of foreach loop must be an array or a dict')
def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None:
assert(isinstance(node, mparser.PlusAssignmentNode))
varname = node.var_name
addition = self.evaluate_statement(node.value)
# Remember that all variables are immutable. We must always create a
# full new variable and then assign it.
old_variable = self.get_variable(varname)
new_value = None # type: T.Union[str, int, float, bool, dict, list]
if isinstance(old_variable, str):
if not isinstance(addition, str):
raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string')
new_value = old_variable + addition
elif isinstance(old_variable, int):
if not isinstance(addition, int):
raise InvalidArguments('The += operator requires an int on the right hand side if the variable on the left is an int')
new_value = old_variable + addition
elif isinstance(old_variable, list):
if isinstance(addition, list):
new_value = old_variable + addition
else:
new_value = old_variable + [addition]
elif isinstance(old_variable, dict):
if not isinstance(addition, dict):
raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict')
new_value = {**old_variable, **addition}
# Add other data types here.
else:
raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints')
self.set_variable(varname, new_value)
def evaluate_indexing(self, node: mparser.IndexNode) -> TYPE_var:
assert(isinstance(node, mparser.IndexNode))
iobject = self.evaluate_statement(node.iobject)
if isinstance(iobject, Disabler):
return iobject
if not hasattr(iobject, '__getitem__'):
raise InterpreterException(
'Tried to index an object that doesn\'t support indexing.')
index = self.evaluate_statement(node.index)
if isinstance(iobject, dict):
if not isinstance(index, str):
raise InterpreterException('Key is not a string')
try:
# The cast is required because we don't have recursive types...
return T.cast(TYPE_var, iobject[index])
except KeyError:
raise InterpreterException('Key %s is not in dict' % index)
else:
if not isinstance(index, int):
raise InterpreterException('Index value is not an integer.')
try:
# Ignore the MyPy error, since we don't know all indexable types here
# and we handle non indexable types with an exception
# TODO maybe find a better solution
return iobject[index] # type: ignore
except IndexError:
# We are already checking for the existence of __getitem__, so this should be save
raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject))) # type: ignore
def function_call(self, node: mparser.FunctionNode) -> T.Optional[TYPE_var]:
func_name = node.func_name
(posargs, kwargs) = self.reduce_arguments(node.args)
if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'is_disabler'}:
return Disabler()
if func_name in self.funcs:
func = self.funcs[func_name]
func_args = posargs # type: T.Any
if not getattr(func, 'no-args-flattening', False):
func_args = flatten(posargs)
return func(node, func_args, kwargs)
else:
self.unknown_function_called(func_name)
return None
def method_call(self, node: mparser.MethodNode) -> TYPE_var:
invokable = node.source_object
if isinstance(invokable, mparser.IdNode):
object_name = invokable.value
obj = self.get_variable(object_name)
else:
obj = self.evaluate_statement(invokable)
method_name = node.name
(args, kwargs) = self.reduce_arguments(node.args)
if is_disabled(args, kwargs):
return Disabler()
if isinstance(obj, str):
return self.string_method_call(obj, method_name, args, kwargs)
if isinstance(obj, bool):
return self.bool_method_call(obj, method_name, args, kwargs)
if isinstance(obj, int):
return self.int_method_call(obj, method_name, args, kwargs)
if isinstance(obj, list):
return self.array_method_call(obj, method_name, args, kwargs)
if isinstance(obj, dict):
return self.dict_method_call(obj, method_name, args, kwargs)
if isinstance(obj, mesonlib.File):
raise InvalidArguments('File object "%s" is not callable.' % obj)
if not isinstance(obj, InterpreterObject):
raise InvalidArguments('Variable "%s" is not callable.' % object_name)
# Special case. This is the only thing you can do with a disabler
# object. Every other use immediately returns the disabler object.
if isinstance(obj, Disabler):
if method_name == 'found':
return False
else:
return Disabler()
if method_name == 'extract_objects':
if not isinstance(obj, ObjectHolder):
raise InvalidArguments(f'Invalid operation "extract_objects" on variable "{object_name}"')
self.validate_extraction(obj.held_object)
obj.current_node = node
return obj.method_call(method_name, args, kwargs)
@builtinMethodNoKwargs
def bool_method_call(self, obj: bool, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int]:
if method_name == 'to_string':
if not posargs:
if obj:
return 'true'
else:
return 'false'
elif len(posargs) == 2 and isinstance(posargs[0], str) and isinstance(posargs[1], str):
if obj:
return posargs[0]
else:
return posargs[1]
else:
raise InterpreterException('bool.to_string() must have either no arguments or exactly two string arguments that signify what values to return for true and false.')
elif method_name == 'to_int':
if obj:
return 1
else:
return 0
else:
raise InterpreterException('Unknown method "%s" for a boolean.' % method_name)
@builtinMethodNoKwargs
def int_method_call(self, obj: int, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, bool]:
if method_name == 'is_even':
if not posargs:
return obj % 2 == 0
else:
raise InterpreterException('int.is_even() must have no arguments.')
elif method_name == 'is_odd':
if not posargs:
return obj % 2 != 0
else:
raise InterpreterException('int.is_odd() must have no arguments.')
elif method_name == 'to_string':
if not posargs:
return str(obj)
else:
raise InterpreterException('int.to_string() must have no arguments.')
else:
raise InterpreterException('Unknown method "%s" for an integer.' % method_name)
@staticmethod
def _get_one_string_posarg(posargs: T.List[TYPE_nvar], method_name: str) -> str:
if len(posargs) > 1:
m = '{}() must have zero or one arguments'
raise InterpreterException(m.format(method_name))
elif len(posargs) == 1:
s = posargs[0]
if not isinstance(s, str):
m = '{}() argument must be a string'
raise InterpreterException(m.format(method_name))
return s
return None
@builtinMethodNoKwargs
def string_method_call(self, obj: str, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int, bool, T.List[str]]:
if method_name == 'strip':
s1 = self._get_one_string_posarg(posargs, 'strip')
if s1 is not None:
return obj.strip(s1)
return obj.strip()
elif method_name == 'format':
return self.format_string(obj, posargs)
elif method_name == 'to_upper':
return obj.upper()
elif method_name == 'to_lower':
return obj.lower()
elif method_name == 'underscorify':
return re.sub(r'[^a-zA-Z0-9]', '_', obj)
elif method_name == 'split':
s2 = self._get_one_string_posarg(posargs, 'split')
if s2 is not None:
return obj.split(s2)
return obj.split()
elif method_name == 'startswith' or method_name == 'contains' or method_name == 'endswith':
s3 = posargs[0]
if not isinstance(s3, str):
raise InterpreterException('Argument must be a string.')
if method_name == 'startswith':
return obj.startswith(s3)
elif method_name == 'contains':
return obj.find(s3) >= 0
return obj.endswith(s3)
elif method_name == 'to_int':
try:
return int(obj)
except Exception:
raise InterpreterException(f'String {obj!r} cannot be converted to int')
elif method_name == 'join':
if len(posargs) != 1:
raise InterpreterException('Join() takes exactly one argument.')
strlist = posargs[0]
check_stringlist(strlist)
assert isinstance(strlist, list) # Required for mypy
return obj.join(strlist)
elif method_name == 'version_compare':
if len(posargs) != 1:
raise InterpreterException('Version_compare() takes exactly one argument.')
cmpr = posargs[0]
if not isinstance(cmpr, str):
raise InterpreterException('Version_compare() argument must be a string.')
if isinstance(obj, MesonVersionString):
self.tmp_meson_version = cmpr
return mesonlib.version_compare(obj, cmpr)
elif method_name == 'substring':
if len(posargs) > 2:
raise InterpreterException('substring() takes maximum two arguments.')
start = 0
end = len(obj)
if len (posargs) > 0:
if not isinstance(posargs[0], int):
raise InterpreterException('substring() argument must be an int')
start = posargs[0]
if len (posargs) > 1:
if not isinstance(posargs[1], int):
raise InterpreterException('substring() argument must be an int')
end = posargs[1]
return obj[start:end]
elif method_name == 'replace':
FeatureNew.single_use('str.replace', '0.58.0', self.subproject)
if len(posargs) != 2:
raise InterpreterException('replace() takes exactly two arguments.')
if not isinstance(posargs[0], str) or not isinstance(posargs[1], str):
raise InterpreterException('replace() requires that both arguments be strings')
return obj.replace(posargs[0], posargs[1])
raise InterpreterException('Unknown method "%s" for a string.' % method_name)
def format_string(self, templ: str, args: T.List[TYPE_nvar]) -> str:
arg_strings = []
for arg in args:
if isinstance(arg, mparser.BaseNode):
arg = self.evaluate_statement(arg)
if isinstance(arg, bool): # Python boolean is upper case.
arg = str(arg).lower()
arg_strings.append(str(arg))
def arg_replace(match: T.Match[str]) -> str:
idx = int(match.group(1))
if idx >= len(arg_strings):
raise InterpreterException(f'Format placeholder @{idx}@ out of range.')
return arg_strings[idx]
return re.sub(r'@(\d+)@', arg_replace, templ)
def unknown_function_called(self, func_name: str) -> None:
raise InvalidCode('Unknown function "%s".' % func_name)
@builtinMethodNoKwargs
def array_method_call(self, obj: T.List[TYPE_var], method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var:
if method_name == 'contains':
def check_contains(el: list) -> bool:
if len(posargs) != 1:
raise InterpreterException('Contains method takes exactly one argument.')
item = posargs[0]
for element in el:
if isinstance(element, list):
found = check_contains(element)
if found:
return True
if element == item:
return True
return False
return check_contains(obj)
elif method_name == 'length':
return len(obj)
elif method_name == 'get':
index = posargs[0]
fallback = None
if len(posargs) == 2:
fallback = posargs[1]
elif len(posargs) > 2:
m = 'Array method \'get()\' only takes two arguments: the ' \
'index and an optional fallback value if the index is ' \
'out of range.'
raise InvalidArguments(m)
if not isinstance(index, int):
raise InvalidArguments('Array index must be a number.')
if index < -len(obj) or index >= len(obj):
if fallback is None:
m = 'Array index {!r} is out of bounds for array of size {!r}.'
raise InvalidArguments(m.format(index, len(obj)))
if isinstance(fallback, mparser.BaseNode):
return self.evaluate_statement(fallback)
return fallback
return obj[index]
m = 'Arrays do not have a method called {!r}.'
raise InterpreterException(m.format(method_name))
@builtinMethodNoKwargs
def dict_method_call(self, obj: T.Dict[str, TYPE_var], method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var:
if method_name in ('has_key', 'get'):
if method_name == 'has_key':
if len(posargs) != 1:
raise InterpreterException('has_key() takes exactly one argument.')
else:
if len(posargs) not in (1, 2):
raise InterpreterException('get() takes one or two arguments.')
key = posargs[0]
if not isinstance(key, (str)):
raise InvalidArguments('Dictionary key must be a string.')
has_key = key in obj
if method_name == 'has_key':
return has_key
if has_key:
return obj[key]
if len(posargs) == 2:
fallback = posargs[1]
if isinstance(fallback, mparser.BaseNode):
return self.evaluate_statement(fallback)
return fallback
raise InterpreterException(f'Key {key!r} is not in the dictionary.')
if method_name == 'keys':
if len(posargs) != 0:
raise InterpreterException('keys() takes no arguments.')
return sorted(obj.keys())
raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name)
def reduce_arguments(
self,
args: mparser.ArgumentNode,
key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key,
duplicate_key_error: T.Optional[str] = None,
) -> T.Tuple[T.List[TYPE_nvar], TYPE_nkwargs]:
assert(isinstance(args, mparser.ArgumentNode))
if args.incorrect_order():
raise InvalidArguments('All keyword arguments must be after positional arguments.')
self.argument_depth += 1
reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments] # type: T.List[TYPE_nvar]
reduced_kw = {} # type: TYPE_nkwargs
for key, val in args.kwargs.items():
reduced_key = key_resolver(key)
reduced_val = val # type: TYPE_nvar
if isinstance(reduced_val, mparser.BaseNode):
reduced_val = self.evaluate_statement(reduced_val)
if duplicate_key_error and reduced_key in reduced_kw:
raise InvalidArguments(duplicate_key_error.format(reduced_key))
reduced_kw[reduced_key] = reduced_val
self.argument_depth -= 1
final_kw = self.expand_default_kwargs(reduced_kw)
return reduced_pos, final_kw
def expand_default_kwargs(self, kwargs: TYPE_nkwargs) -> TYPE_nkwargs:
if 'kwargs' not in kwargs:
return kwargs
to_expand = kwargs.pop('kwargs')
if not isinstance(to_expand, dict):
raise InterpreterException('Value of "kwargs" must be dictionary.')
if 'kwargs' in to_expand:
raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P')
for k, v in to_expand.items():
if k in kwargs:
raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.')
kwargs[k] = v
return kwargs
def assignment(self, node: mparser.AssignmentNode) -> None:
assert(isinstance(node, mparser.AssignmentNode))
if self.argument_depth != 0:
raise InvalidArguments('''Tried to assign values inside an argument list.
To specify a keyword argument, use : instead of =.''')
var_name = node.var_name
if not isinstance(var_name, str):
raise InvalidArguments('Tried to assign value to a non-variable.')
value = self.evaluate_statement(node.value)
if not self.is_assignable(value):
raise InvalidCode('Tried to assign an invalid value to variable.')
# For mutable objects we need to make a copy on assignment
if isinstance(value, MutableInterpreterObject):
value = copy.deepcopy(value)
self.set_variable(var_name, value)
return None
def set_variable(self, varname: str, variable: TYPE_var) -> None:
if variable is None:
raise InvalidCode('Can not assign None to variable.')
if not isinstance(varname, str):
raise InvalidCode('First argument to set_variable must be a string.')
if not self.is_assignable(variable):
raise InvalidCode('Assigned value not of assignable type.')
if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
raise InvalidCode('Invalid variable name: ' + varname)
if varname in self.builtin:
raise InvalidCode('Tried to overwrite internal variable "%s"' % varname)
self.variables[varname] = variable
def get_variable(self, varname: str) -> TYPE_var:
if varname in self.builtin:
return self.builtin[varname]
if varname in self.variables:
return self.variables[varname]
raise InvalidCode('Unknown variable "%s".' % varname)
def is_assignable(self, value: T.Any) -> bool:
return isinstance(value, (InterpreterObject, dependencies.Dependency,
str, int, list, dict, mesonlib.File))
def validate_extraction(self, buildtarget: InterpreterObject) -> None:
raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')