The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

365 lines
13 KiB

//
//
// Copyright 2015 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
#include "test/core/iomgr/endpoint_tests.h"
#include <limits.h>
#include <stdbool.h>
#include <sys/types.h>
#include "absl/log/check.h"
#include "absl/log/log.h"
#include <grpc/slice.h>
#include <grpc/support/alloc.h>
#include <grpc/support/time.h>
#include "src/core/lib/gprpp/crash.h"
#include "src/core/lib/gprpp/time.h"
#include "src/core/lib/iomgr/error.h"
#include "src/core/lib/slice/slice_internal.h"
#include "src/core/util/useful.h"
#include "test/core/test_util/test_config.h"
//
// General test notes:
// All tests which write data into an endpoint write i%256 into byte i, which
// is verified by readers.
// In general there are a few interesting things to vary which may lead to
// exercising different codepaths in an implementation:
// 1. Total amount of data written to the endpoint
// 2. Size of slice allocations
// 3. Amount of data we read from or write to the endpoint at once
// The tests here tend to parameterize these where applicable.
//
static gpr_mu* g_mu;
static grpc_pollset* g_pollset;
size_t count_slices(grpc_slice* slices, size_t nslices, int* current_data) {
size_t num_bytes = 0;
size_t i;
size_t j;
unsigned char* buf;
for (i = 0; i < nslices; ++i) {
buf = GRPC_SLICE_START_PTR(slices[i]);
for (j = 0; j < GRPC_SLICE_LENGTH(slices[i]); ++j) {
CHECK(buf[j] == *current_data);
*current_data = (*current_data + 1) % 256;
}
num_bytes += GRPC_SLICE_LENGTH(slices[i]);
}
return num_bytes;
}
static grpc_endpoint_test_fixture begin_test(grpc_endpoint_test_config config,
const char* test_name,
size_t slice_size) {
LOG(INFO) << test_name << "/" << config.name;
return config.create_fixture(slice_size);
}
static void end_test(grpc_endpoint_test_config config) { config.clean_up(); }
static grpc_slice* allocate_blocks(size_t num_bytes, size_t slice_size,
size_t* num_blocks, uint8_t* current_data) {
size_t nslices = num_bytes / slice_size + (num_bytes % slice_size ? 1 : 0);
grpc_slice* slices =
static_cast<grpc_slice*>(gpr_malloc(sizeof(grpc_slice) * nslices));
size_t num_bytes_left = num_bytes;
size_t i;
size_t j;
unsigned char* buf;
*num_blocks = nslices;
for (i = 0; i < nslices; ++i) {
slices[i] = grpc_slice_malloc(slice_size > num_bytes_left ? num_bytes_left
: slice_size);
num_bytes_left -= GRPC_SLICE_LENGTH(slices[i]);
buf = GRPC_SLICE_START_PTR(slices[i]);
for (j = 0; j < GRPC_SLICE_LENGTH(slices[i]); ++j) {
buf[j] = *current_data;
(*current_data)++;
}
}
CHECK_EQ(num_bytes_left, 0u);
return slices;
}
struct read_and_write_test_state {
grpc_endpoint* read_ep;
grpc_endpoint* write_ep;
size_t target_bytes;
size_t bytes_read;
size_t current_write_size;
size_t bytes_written;
int current_read_data;
uint8_t current_write_data;
int read_done;
int write_done;
int max_write_frame_size;
grpc_slice_buffer incoming;
grpc_slice_buffer outgoing;
grpc_closure done_read;
grpc_closure done_write;
grpc_closure read_scheduler;
grpc_closure write_scheduler;
};
static void read_scheduler(void* data, grpc_error_handle /* error */) {
struct read_and_write_test_state* state =
static_cast<struct read_and_write_test_state*>(data);
grpc_endpoint_read(state->read_ep, &state->incoming, &state->done_read,
/*urgent=*/false, /*min_progress_size=*/1);
}
static void read_and_write_test_read_handler_read_done(
read_and_write_test_state* state, int read_done_state) {
VLOG(2) << "Read handler done";
gpr_mu_lock(g_mu);
state->read_done = read_done_state;
GRPC_LOG_IF_ERROR("pollset_kick", grpc_pollset_kick(g_pollset, nullptr));
gpr_mu_unlock(g_mu);
}
static void read_and_write_test_read_handler(void* data,
grpc_error_handle error) {
struct read_and_write_test_state* state =
static_cast<struct read_and_write_test_state*>(data);
if (!error.ok()) {
read_and_write_test_read_handler_read_done(state, 1);
return;
}
state->bytes_read += count_slices(
state->incoming.slices, state->incoming.count, &state->current_read_data);
if (state->bytes_read == state->target_bytes) {
read_and_write_test_read_handler_read_done(state, 2);
return;
}
// We perform many reads one after another. If grpc_endpoint_read and the
// read_handler are both run inline, we might end up growing the stack
// beyond the limit. Schedule the read on ExecCtx to avoid this.
grpc_core::ExecCtx::Run(DEBUG_LOCATION, &state->read_scheduler,
absl::OkStatus());
}
static void write_scheduler(void* data, grpc_error_handle /* error */) {
struct read_and_write_test_state* state =
static_cast<struct read_and_write_test_state*>(data);
grpc_endpoint_write(state->write_ep, &state->outgoing, &state->done_write,
nullptr, /*max_frame_size=*/state->max_write_frame_size);
}
static void read_and_write_test_write_handler(void* data,
grpc_error_handle error) {
struct read_and_write_test_state* state =
static_cast<struct read_and_write_test_state*>(data);
grpc_slice* slices = nullptr;
size_t nslices;
if (error.ok()) {
state->bytes_written += state->current_write_size;
if (state->target_bytes - state->bytes_written <
state->current_write_size) {
state->current_write_size = state->target_bytes - state->bytes_written;
}
if (state->current_write_size != 0) {
slices = allocate_blocks(state->current_write_size, 8192, &nslices,
&state->current_write_data);
grpc_slice_buffer_reset_and_unref(&state->outgoing);
grpc_slice_buffer_addn(&state->outgoing, slices, nslices);
// We perform many writes one after another. If grpc_endpoint_write and
// the write_handler are both run inline, we might end up growing the
// stack beyond the limit. Schedule the write on ExecCtx to avoid this.
grpc_core::ExecCtx::Run(DEBUG_LOCATION, &state->write_scheduler,
absl::OkStatus());
gpr_free(slices);
return;
}
}
VLOG(2) << "Write handler done";
gpr_mu_lock(g_mu);
state->write_done = 1 + (error.ok());
GRPC_LOG_IF_ERROR("pollset_kick", grpc_pollset_kick(g_pollset, nullptr));
gpr_mu_unlock(g_mu);
}
// Do both reading and writing using the grpc_endpoint API.
// This also includes a test of the shutdown behavior.
//
static void read_and_write_test(grpc_endpoint_test_config config,
size_t num_bytes, size_t write_size,
size_t slice_size, int max_write_frame_size,
bool shutdown) {
struct read_and_write_test_state state;
grpc_endpoint_test_fixture f =
begin_test(config, "read_and_write_test", slice_size);
grpc_core::ExecCtx exec_ctx;
auto deadline = grpc_core::Timestamp::FromTimespecRoundUp(
grpc_timeout_seconds_to_deadline(300));
VLOG(2) << "num_bytes=" << num_bytes << " write_size=" << write_size
<< " slice_size=" << slice_size << " shutdown=" << shutdown;
if (shutdown) {
LOG(INFO) << "Start read and write shutdown test";
} else {
LOG(INFO) << "Start read and write test with " << num_bytes
<< " bytes, slice size " << slice_size;
}
state.read_ep = f.client_ep;
state.write_ep = f.server_ep;
state.target_bytes = num_bytes;
state.bytes_read = 0;
state.current_write_size = write_size;
state.max_write_frame_size = max_write_frame_size;
state.bytes_written = 0;
state.read_done = 0;
state.write_done = 0;
state.current_read_data = 0;
state.current_write_data = 0;
GRPC_CLOSURE_INIT(&state.read_scheduler, read_scheduler, &state,
grpc_schedule_on_exec_ctx);
GRPC_CLOSURE_INIT(&state.done_read, read_and_write_test_read_handler, &state,
grpc_schedule_on_exec_ctx);
GRPC_CLOSURE_INIT(&state.write_scheduler, write_scheduler, &state,
grpc_schedule_on_exec_ctx);
GRPC_CLOSURE_INIT(&state.done_write, read_and_write_test_write_handler,
&state, grpc_schedule_on_exec_ctx);
grpc_slice_buffer_init(&state.outgoing);
grpc_slice_buffer_init(&state.incoming);
// Get started by pretending an initial write completed
// NOTE: Sets up initial conditions so we can have the same write handler
// for the first iteration as for later iterations. It does the right thing
// even when bytes_written is unsigned.
state.bytes_written -= state.current_write_size;
read_and_write_test_write_handler(&state, absl::OkStatus());
grpc_core::ExecCtx::Get()->Flush();
grpc_endpoint_read(state.read_ep, &state.incoming, &state.done_read,
/*urgent=*/false, /*min_progress_size=*/1);
if (shutdown) {
VLOG(2) << "shutdown read";
grpc_endpoint_shutdown(state.read_ep, GRPC_ERROR_CREATE("Test Shutdown"));
VLOG(2) << "shutdown write";
grpc_endpoint_shutdown(state.write_ep, GRPC_ERROR_CREATE("Test Shutdown"));
}
grpc_core::ExecCtx::Get()->Flush();
gpr_mu_lock(g_mu);
while (!state.read_done || !state.write_done) {
grpc_pollset_worker* worker = nullptr;
CHECK(grpc_core::Timestamp::Now() < deadline);
CHECK(GRPC_LOG_IF_ERROR("pollset_work",
grpc_pollset_work(g_pollset, &worker, deadline)));
}
gpr_mu_unlock(g_mu);
grpc_core::ExecCtx::Get()->Flush();
end_test(config);
grpc_slice_buffer_destroy(&state.outgoing);
grpc_slice_buffer_destroy(&state.incoming);
grpc_endpoint_destroy(state.read_ep);
grpc_endpoint_destroy(state.write_ep);
}
static void inc_on_failure(void* arg, grpc_error_handle error) {
gpr_mu_lock(g_mu);
*static_cast<int*>(arg) += (!error.ok());
CHECK(GRPC_LOG_IF_ERROR("kick", grpc_pollset_kick(g_pollset, nullptr)));
gpr_mu_unlock(g_mu);
}
static void wait_for_fail_count(int* fail_count, int want_fail_count) {
grpc_core::ExecCtx::Get()->Flush();
gpr_mu_lock(g_mu);
grpc_core::Timestamp deadline = grpc_core::Timestamp::FromTimespecRoundUp(
grpc_timeout_seconds_to_deadline(10));
while (grpc_core::Timestamp::Now() < deadline &&
*fail_count < want_fail_count) {
grpc_pollset_worker* worker = nullptr;
CHECK(GRPC_LOG_IF_ERROR("pollset_work",
grpc_pollset_work(g_pollset, &worker, deadline)));
gpr_mu_unlock(g_mu);
grpc_core::ExecCtx::Get()->Flush();
gpr_mu_lock(g_mu);
}
CHECK(*fail_count == want_fail_count);
gpr_mu_unlock(g_mu);
}
static void multiple_shutdown_test(grpc_endpoint_test_config config) {
grpc_endpoint_test_fixture f =
begin_test(config, "multiple_shutdown_test", 128);
int fail_count = 0;
grpc_slice_buffer slice_buffer;
grpc_slice_buffer_init(&slice_buffer);
grpc_core::ExecCtx exec_ctx;
grpc_endpoint_add_to_pollset(f.client_ep, g_pollset);
grpc_endpoint_read(f.client_ep, &slice_buffer,
GRPC_CLOSURE_CREATE(inc_on_failure, &fail_count,
grpc_schedule_on_exec_ctx),
/*urgent=*/false, /*min_progress_size=*/1);
wait_for_fail_count(&fail_count, 0);
grpc_endpoint_shutdown(f.client_ep, GRPC_ERROR_CREATE("Test Shutdown"));
wait_for_fail_count(&fail_count, 1);
grpc_endpoint_read(f.client_ep, &slice_buffer,
GRPC_CLOSURE_CREATE(inc_on_failure, &fail_count,
grpc_schedule_on_exec_ctx),
/*urgent=*/false, /*min_progress_size=*/1);
wait_for_fail_count(&fail_count, 2);
grpc_slice_buffer_add(&slice_buffer, grpc_slice_from_copied_string("a"));
grpc_endpoint_write(f.client_ep, &slice_buffer,
GRPC_CLOSURE_CREATE(inc_on_failure, &fail_count,
grpc_schedule_on_exec_ctx),
nullptr, /*max_frame_size=*/INT_MAX);
wait_for_fail_count(&fail_count, 3);
grpc_endpoint_shutdown(f.client_ep, GRPC_ERROR_CREATE("Test Shutdown"));
wait_for_fail_count(&fail_count, 3);
grpc_slice_buffer_destroy(&slice_buffer);
grpc_endpoint_destroy(f.client_ep);
grpc_endpoint_destroy(f.server_ep);
}
void grpc_endpoint_tests(grpc_endpoint_test_config config,
grpc_pollset* pollset, gpr_mu* mu) {
size_t i;
g_pollset = pollset;
g_mu = mu;
multiple_shutdown_test(config);
for (int i = 1; i <= 10000; i = i * 10) {
read_and_write_test(config, 10000000, 100000, 8192, i, false);
read_and_write_test(config, 1000000, 100000, 1, i, false);
read_and_write_test(config, 100000000, 100000, 1, i, true);
}
for (i = 1; i < 1000; i = std::max(i + 1, i * 5 / 4)) {
read_and_write_test(config, 40320, i, i, i, false);
}
g_pollset = nullptr;
g_mu = nullptr;
}