mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1120 lines
36 KiB
1120 lines
36 KiB
/* |
|
* Brute force collision tester for 64-bit hashes |
|
* Part of the xxHash project |
|
* Copyright (C) 2019-2020 Yann Collet |
|
* |
|
* GPL v2 License |
|
* |
|
* This program is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This program is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program; if not, write to the Free Software Foundation, Inc., |
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* You can contact the author at: |
|
* - xxHash homepage: https://www.xxhash.com |
|
* - xxHash source repository: https://github.com/Cyan4973/xxHash |
|
*/ |
|
|
|
/* |
|
* The collision tester will generate 24 billion hashes (by default), |
|
* and count how many collisions were produced by the 64-bit hash algorithm. |
|
* The optimal amount of collisions for 64-bit is ~18 collisions. |
|
* A good hash should be close to this figure. |
|
* |
|
* This program requires a lot of memory: |
|
* - Either store hash values directly => 192 GB |
|
* - Or use a filter: |
|
* - 32 GB (by default) for the filter itself |
|
* - + ~14 GB for the list of hashes (depending on the filter's outcome) |
|
* Due to these memory constraints, it requires a 64-bit system. |
|
*/ |
|
|
|
|
|
/* === Dependencies === */ |
|
|
|
#include <stdint.h> /* uint64_t */ |
|
#include <stdlib.h> /* malloc, free, qsort, exit */ |
|
#include <string.h> /* memset */ |
|
#include <stdio.h> /* printf, fflush */ |
|
|
|
#undef NDEBUG /* ensure assert is _not_ disabled */ |
|
#include <assert.h> |
|
|
|
#include "hashes.h" /* UniHash, hashfn, hashfnTable */ |
|
|
|
#include "sort.hh" /* sort64 */ |
|
|
|
|
|
|
|
typedef enum { ht32, ht64, ht128 } Htype_e; |
|
|
|
/* === Debug === */ |
|
|
|
#define EXIT(...) { printf(__VA_ARGS__); printf("\n"); exit(1); } |
|
|
|
static void hexRaw(const void* buffer, size_t size) |
|
{ |
|
const unsigned char* p = (const unsigned char*)buffer; |
|
for (size_t i=0; i<size; i++) { |
|
printf("%02X", p[i]); |
|
} |
|
} |
|
|
|
void printHash(const void* table, size_t n, Htype_e htype) |
|
{ |
|
if ((htype == ht64) || (htype == ht32)){ |
|
uint64_t const h64 = ((const uint64_t*)table)[n]; |
|
hexRaw(&h64, sizeof(h64)); |
|
} else { |
|
assert(htype == ht128); |
|
XXH128_hash_t const h128 = ((const XXH128_hash_t*)table)[n]; |
|
hexRaw(&h128, sizeof(h128)); |
|
} |
|
} |
|
|
|
/* === Generate Random unique Samples to hash === */ |
|
|
|
/* |
|
* These functions will generate and update a sample to hash. |
|
* initSample() will fill a buffer with random bytes, |
|
* updateSample() will modify one slab in the input buffer. |
|
* updateSample() guarantees it will produce unique samples, |
|
* but it needs to know the total number of samples. |
|
*/ |
|
|
|
|
|
static const uint64_t prime64_1 = 11400714785074694791ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
|
static const uint64_t prime64_2 = 14029467366897019727ULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
|
static const uint64_t prime64_3 = 1609587929392839161ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
|
|
|
static uint64_t avalanche64(uint64_t h64) |
|
{ |
|
h64 ^= h64 >> 33; |
|
h64 *= prime64_2; |
|
h64 ^= h64 >> 29; |
|
h64 *= prime64_3; |
|
h64 ^= h64 >> 32; |
|
return h64; |
|
} |
|
|
|
static unsigned char randomByte(size_t n) |
|
{ |
|
uint64_t n64 = avalanche64(n+1); |
|
n64 *= prime64_1; |
|
return (unsigned char)(n64 >> 56); |
|
} |
|
|
|
typedef enum { sf_slab5, sf_sparse } sf_genMode; |
|
|
|
|
|
#ifdef SLAB5 |
|
|
|
/* |
|
* Slab5 sample generation. |
|
* This algorithm generates unique inputs flipping on average 16 bits per candidate. |
|
* It is generally much more friendly for most hash algorithms, especially |
|
* weaker ones, as it shuffles more the input. |
|
* The algorithm also avoids overfitting the per4 or per8 ingestion patterns. |
|
*/ |
|
|
|
#define SLAB_SIZE 5 |
|
|
|
typedef struct { |
|
void* buffer; |
|
size_t size; |
|
sf_genMode mode; |
|
size_t prngSeed; |
|
uint64_t hnb; |
|
} sampleFactory; |
|
|
|
static void init_sampleFactory(sampleFactory* sf, uint64_t htotal) |
|
{ |
|
uint64_t const minNbSlabs = ((htotal-1) >> 32) + 1; |
|
uint64_t const minSize = minNbSlabs * SLAB_SIZE; |
|
if (sf->size < minSize) |
|
EXIT("sample size must be >= %i bytes for this amount of hashes", |
|
(int)minSize); |
|
|
|
unsigned char* const p = (unsigned char*)sf->buffer; |
|
for (size_t n=0; n < sf->size; n++) |
|
p[n] = randomByte(n); |
|
sf->hnb = 0; |
|
} |
|
|
|
static sampleFactory* |
|
create_sampleFactory(size_t size, uint64_t htotal, uint64_t seed) |
|
{ |
|
sampleFactory* const sf = malloc(sizeof(sampleFactory)); |
|
if (!sf) EXIT("not enough memory"); |
|
void* const buffer = malloc(size); |
|
if (!buffer) EXIT("not enough memory"); |
|
sf->buffer = buffer; |
|
sf->size = size; |
|
sf->mode = sf_slab5; |
|
sf->prngSeed = seed; |
|
init_sampleFactory(sf, htotal); |
|
return sf; |
|
} |
|
|
|
static void free_sampleFactory(sampleFactory* sf) |
|
{ |
|
if (!sf) return; |
|
free(sf->buffer); |
|
free(sf); |
|
} |
|
|
|
static inline void update_sampleFactory(sampleFactory* sf) |
|
{ |
|
size_t const nbSlabs = sf->size / SLAB_SIZE; |
|
size_t const SlabNb = sf->hnb % nbSlabs; |
|
sf->hnb++; |
|
|
|
char* const ptr = (char*)sf->buffer; |
|
size_t const start = (SlabNb * SLAB_SIZE) + 1; |
|
uint32_t val32; |
|
memcpy(&val32, ptr+start, sizeof(val32)); |
|
static const uint32_t prime32_5 = 374761393U; |
|
val32 += prime32_5; |
|
memcpy(ptr+start, &val32, sizeof(val32)); |
|
} |
|
|
|
#else |
|
|
|
/* |
|
* Sparse sample generation. |
|
* This is the default pattern generator. |
|
* It only flips one bit at a time (mostly). |
|
* Low hamming distance scenario is more difficult for weak hash algorithms. |
|
* Note that CRC is immune to this scenario, since they are specifically |
|
* designed to detect low hamming distances. |
|
* Prefer the Slab5 pattern generator for collisions on CRC algorithms. |
|
*/ |
|
|
|
#define SPARSE_LEVEL_MAX 15 |
|
|
|
/* Nb of combinations of m bits in a register of n bits */ |
|
static double Cnm(int n, int m) |
|
{ |
|
assert(n > 0); |
|
assert(m > 0); |
|
assert(m <= m); |
|
double acc = 1; |
|
for (int i=0; i<m; i++) { |
|
acc *= n - i; |
|
acc /= 1 + i; |
|
} |
|
return acc; |
|
} |
|
|
|
static int enoughCombos(size_t size, uint64_t htotal) |
|
{ |
|
if (size < 2) return 0; /* ensure no multiplication by negative */ |
|
uint64_t acc = 0; |
|
uint64_t const srcBits = size * 8; assert(srcBits < INT_MAX); |
|
int nbBitsSet = 0; |
|
while (acc < htotal) { |
|
nbBitsSet++; |
|
if (nbBitsSet >= SPARSE_LEVEL_MAX) return 0; |
|
acc += (uint64_t)Cnm((int)srcBits, nbBitsSet); |
|
} |
|
return 1; |
|
} |
|
|
|
typedef struct { |
|
void* buffer; |
|
size_t size; |
|
sf_genMode mode; |
|
/* sparse */ |
|
size_t bitIdx[SPARSE_LEVEL_MAX]; |
|
int level; |
|
size_t maxBitIdx; |
|
/* slab5 */ |
|
size_t nbSlabs; |
|
size_t current; |
|
size_t prngSeed; |
|
} sampleFactory; |
|
|
|
static void init_sampleFactory(sampleFactory* sf, uint64_t htotal) |
|
{ |
|
if (!enoughCombos(sf->size, htotal)) { |
|
EXIT("sample size must be larger for this amount of hashes"); |
|
} |
|
|
|
memset(sf->bitIdx, 0, sizeof(sf->bitIdx)); |
|
sf->level = 0; |
|
|
|
unsigned char* const p = (unsigned char*)sf->buffer; |
|
for (size_t n=0; n<sf->size; n++) |
|
p[n] = randomByte(sf->prngSeed + n); |
|
} |
|
|
|
static sampleFactory* |
|
create_sampleFactory(size_t size, uint64_t htotal, uint64_t seed) |
|
{ |
|
sampleFactory* const sf = malloc(sizeof(sampleFactory)); |
|
if (!sf) EXIT("not enough memory"); |
|
void* const buffer = malloc(size); |
|
if (!buffer) EXIT("not enough memory"); |
|
sf->buffer = buffer; |
|
sf->size = size; |
|
sf->mode = sf_sparse; |
|
sf->maxBitIdx = size * 8; |
|
sf->prngSeed = seed; |
|
init_sampleFactory(sf, htotal); |
|
return sf; |
|
} |
|
|
|
static void free_sampleFactory(sampleFactory* sf) |
|
{ |
|
if (!sf) return; |
|
free(sf->buffer); |
|
free(sf); |
|
} |
|
|
|
static void flipbit(void* buffer, uint64_t bitID) |
|
{ |
|
size_t const pos = bitID >> 3; |
|
unsigned char const mask = (unsigned char)(1 << (bitID & 7)); |
|
unsigned char* const p = (unsigned char*)buffer; |
|
p[pos] ^= mask; |
|
} |
|
|
|
static int updateBit(void* buffer, size_t* bitIdx, int level, size_t max) |
|
{ |
|
if (level==0) return 0; /* can't progress further */ |
|
|
|
flipbit(buffer, bitIdx[level]); /* erase previous bits */ |
|
|
|
if (bitIdx[level] < max-1) { /* simple case: go to next bit */ |
|
bitIdx[level]++; |
|
flipbit(buffer, bitIdx[level]); /* set new bit */ |
|
return 1; |
|
} |
|
|
|
/* reached last bit: need to update a bit from lower level */ |
|
if (!updateBit(buffer, bitIdx, level-1, max-1)) return 0; |
|
bitIdx[level] = bitIdx[level-1] + 1; |
|
flipbit(buffer, bitIdx[level]); /* set new bit */ |
|
return 1; |
|
} |
|
|
|
static inline void update_sampleFactory(sampleFactory* sf) |
|
{ |
|
if (!updateBit(sf->buffer, sf->bitIdx, sf->level, sf->maxBitIdx)) { |
|
/* no more room => move to next level */ |
|
sf->level++; |
|
assert(sf->level < SPARSE_LEVEL_MAX); |
|
|
|
/* set new bits */ |
|
for (int i=1; i <= sf->level; i++) { |
|
sf->bitIdx[i] = (size_t)(i-1); |
|
flipbit(sf->buffer, sf->bitIdx[i]); |
|
} |
|
} |
|
} |
|
|
|
#endif /* pattern generator selection */ |
|
|
|
|
|
/* === Candidate Filter === */ |
|
|
|
typedef unsigned char Filter; |
|
|
|
Filter* create_Filter(int bflog) |
|
{ |
|
assert(bflog < 64 && bflog > 1); |
|
size_t bfsize = (size_t)1 << bflog; |
|
Filter* bf = malloc(bfsize); |
|
assert(((void)"Filter creation failed", bf)); |
|
memset(bf, 0, bfsize); |
|
return bf; |
|
} |
|
|
|
void free_Filter(Filter* bf) |
|
{ |
|
free(bf); |
|
} |
|
|
|
#ifdef FILTER_1_PROBE |
|
|
|
/* |
|
* Attach hash to a slot |
|
* return: Nb of potential collision candidates detected |
|
* 0: position not yet occupied |
|
* 2: position previously occupied by a single candidate |
|
* 1: position already occupied by multiple candidates |
|
*/ |
|
inline int Filter_insert(Filter* bf, int bflog, uint64_t hash) |
|
{ |
|
int const slotNb = hash & 3; |
|
int const shift = slotNb * 2 ; |
|
|
|
size_t const bfmask = ((size_t)1 << bflog) - 1; |
|
size_t const pos = (hash >> 2) & bfmask; |
|
|
|
int const existingCandidates = ((((unsigned char*)bf)[pos]) >> shift) & 3; |
|
|
|
static const int addCandidates[4] = { 0, 2, 1, 1 }; |
|
static const int nextValue[4] = { 1, 2, 3, 3 }; |
|
|
|
((unsigned char*)bf)[pos] |= (unsigned char)(nextValue[existingCandidates] << shift); |
|
return addCandidates[existingCandidates]; |
|
} |
|
|
|
/* |
|
* Check if provided 64-bit hash is a collision candidate |
|
* Requires the slot to be occupied by at least 2 candidates. |
|
* return >0 if hash is a collision candidate |
|
* 0 otherwise (slot unoccupied, or only one candidate) |
|
* note: unoccupied slots should not happen in this algorithm, |
|
* since all hashes are supposed to have been inserted at least once. |
|
*/ |
|
inline int Filter_check(const Filter* bf, int bflog, uint64_t hash) |
|
{ |
|
int const slotNb = hash & 3; |
|
int const shift = slotNb * 2; |
|
|
|
size_t const bfmask = ((size_t)1 << bflog) - 1; |
|
size_t const pos = (hash >> 2) & bfmask; |
|
|
|
return (((const unsigned char*)bf)[pos]) >> (shift+1) & 1; |
|
} |
|
|
|
#else |
|
|
|
/* |
|
* 2-probes strategy, |
|
* more efficient at filtering candidates, |
|
* requires filter size to be > nb of hashes |
|
*/ |
|
|
|
#define MIN(a,b) ((a) < (b) ? (a) : (b)) |
|
#define MAX(a,b) ((a) > (b) ? (a) : (b)) |
|
|
|
/* |
|
* Attach hash to 2 slots |
|
* return: Nb of potential candidates detected |
|
* 0: position not yet occupied |
|
* 2: position previously occupied by a single candidate (at most) |
|
* 1: position already occupied by multiple candidates |
|
*/ |
|
static inline int Filter_insert(Filter* bf, int bflog, uint64_t hash) |
|
{ |
|
hash = avalanche64(hash); |
|
unsigned const slot1 = hash & 255; |
|
hash >>= 8; |
|
unsigned const slot2 = hash & 255; |
|
hash >>= 8; |
|
|
|
size_t const fclmask = ((size_t)1 << (bflog-6)) - 1; |
|
size_t const cacheLineNb = hash & fclmask; |
|
|
|
size_t const pos1 = (cacheLineNb << 6) + (slot1 >> 2); |
|
unsigned const shift1 = (slot1 & 3) * 2; |
|
unsigned const ex1 = (bf[pos1] >> shift1) & 3; |
|
|
|
size_t const pos2 = (cacheLineNb << 6) + (slot2 >> 2); |
|
unsigned const shift2 = (slot2 & 3) * 2; |
|
unsigned const ex2 = (bf[pos2] >> shift2) & 3; |
|
|
|
unsigned const existing = MIN(ex1, ex2); |
|
|
|
static const int addCandidates[4] = { 0, 2, 1, 1 }; |
|
static const unsigned nextValue[4] = { 1, 2, 3, 3 }; |
|
|
|
bf[pos1] &= (Filter)(~(3 << shift1)); /* erase previous value */ |
|
bf[pos1] |= (Filter)(MAX(ex1, nextValue[existing]) << shift1); |
|
bf[pos2] |= (Filter)(MAX(ex2, nextValue[existing]) << shift2); |
|
|
|
return addCandidates[existing]; |
|
} |
|
|
|
|
|
/* |
|
* Check if provided 64-bit hash is a collision candidate |
|
* Requires the slot to be occupied by at least 2 candidates. |
|
* return >0 if hash is a collision candidate |
|
* 0 otherwise (slot unoccupied, or only one candidate) |
|
* note: unoccupied slots should not happen in this algorithm, |
|
* since all hashes are supposed to have been inserted at least once. |
|
*/ |
|
static inline int Filter_check(const Filter* bf, int bflog, uint64_t hash) |
|
{ |
|
hash = avalanche64(hash); |
|
unsigned const slot1 = hash & 255; |
|
hash >>= 8; |
|
unsigned const slot2 = hash & 255; |
|
hash >>= 8; |
|
|
|
size_t const fclmask = ((size_t)1 << (bflog-6)) - 1; |
|
size_t const cacheLineNb = hash & fclmask; |
|
|
|
size_t const pos1 = (cacheLineNb << 6) + (slot1 >> 2); |
|
unsigned const shift1 = (slot1 & 3) * 2; |
|
unsigned const ex1 = (bf[pos1] >> shift1) & 3; |
|
|
|
size_t const pos2 = (cacheLineNb << 6) + (slot2 >> 2); |
|
unsigned const shift2 = (slot2 & 3) * 2; |
|
unsigned const ex2 = (bf[pos2] >> shift2) & 3; |
|
|
|
return (ex1 >= 2) && (ex2 >= 2); |
|
} |
|
|
|
#endif // FILTER_1_PROBE |
|
|
|
|
|
/* === Display === */ |
|
|
|
#include <time.h> /* clock_t, clock, time_t, time, difftime */ |
|
|
|
void update_indicator(uint64_t v, uint64_t total) |
|
{ |
|
static clock_t start = 0; |
|
if (start==0) start = clock(); |
|
clock_t const updateRate = CLOCKS_PER_SEC / 2; |
|
|
|
clock_t const clockSpan = (clock_t)(clock() - start); |
|
if (clockSpan > updateRate) { |
|
start = clock(); |
|
assert(v <= total); |
|
assert(total > 0); |
|
double share = ((double)v / (double)total) * 100; |
|
printf("%6.2f%% (%llu) \r", share, (unsigned long long)v); |
|
fflush(NULL); |
|
} |
|
} |
|
|
|
/* note: not thread safe */ |
|
const char* displayDelay(double delay_s) |
|
{ |
|
static char delayString[50]; |
|
memset(delayString, 0, sizeof(delayString)); |
|
|
|
int const mn = ((int)delay_s / 60) % 60; |
|
int const h = (int)delay_s / 3600; |
|
int const sec = (int)delay_s % 60; |
|
|
|
char* p = delayString; |
|
if (h) sprintf(p, "%i h ", h); |
|
if (mn || h) { |
|
p = delayString + strlen(delayString); |
|
sprintf(p, "%i mn ", mn); |
|
} |
|
p = delayString + strlen(delayString); |
|
sprintf(p, "%is ", sec); |
|
|
|
return delayString; |
|
} |
|
|
|
|
|
/* === Math === */ |
|
|
|
static double power(uint64_t base, int p) |
|
{ |
|
double value = 1; |
|
assert(p>=0); |
|
for (int i=0; i<p; i++) { |
|
value *= (double)base; |
|
} |
|
return value; |
|
} |
|
|
|
static double estimateNbCollisions(uint64_t nbH, int nbBits) |
|
{ |
|
return ((double)nbH * (double)(nbH-1)) / power(2, nbBits+1); |
|
} |
|
|
|
static int highestBitSet(uint64_t v) |
|
{ |
|
assert(v!=0); |
|
int bitId = 0; |
|
while (v >>= 1) bitId++; |
|
return bitId; |
|
} |
|
|
|
|
|
/* === Filter and search collisions === */ |
|
|
|
#undef NDEBUG /* ensure assert is not disabled */ |
|
#include <assert.h> |
|
|
|
/* will recommend 24 billion samples for 64-bit hashes, |
|
* expecting 18 collisions for a good 64-bit hash */ |
|
#define NB_BITS_MAX 64 /* can't store nor analyze hash wider than 64-bits for the time being */ |
|
uint64_t select_nbh(int nbBits) |
|
{ |
|
assert(nbBits > 0); |
|
if (nbBits > NB_BITS_MAX) nbBits = NB_BITS_MAX; |
|
double targetColls = (double)((128 + 17) - (nbBits * 2)); |
|
uint64_t nbH = 24; |
|
while (estimateNbCollisions(nbH, nbBits) < targetColls) nbH *= 2; |
|
return nbH; |
|
} |
|
|
|
|
|
typedef struct { |
|
uint64_t nbCollisions; |
|
} searchCollisions_results; |
|
|
|
typedef struct { |
|
uint64_t nbH; |
|
uint64_t mask; |
|
uint64_t maskSelector; |
|
size_t sampleSize; |
|
uint64_t prngSeed; |
|
int filterLog; /* <0 = disable filter; 0 = auto-size; */ |
|
int hashID; |
|
int display; |
|
int nbThreads; |
|
searchCollisions_results* resultPtr; |
|
} searchCollisions_parameters; |
|
|
|
#define DISPLAY(...) { if (display) printf(__VA_ARGS__); } |
|
|
|
static int isEqual(void* hTablePtr, size_t index1, size_t index2, Htype_e htype) |
|
{ |
|
if ((htype == ht64) || (htype == ht32)) { |
|
uint64_t const h1 = ((const uint64_t*)hTablePtr)[index1]; |
|
uint64_t const h2 = ((const uint64_t*)hTablePtr)[index2]; |
|
return (h1 == h2); |
|
} else { |
|
assert(htype == ht128); |
|
XXH128_hash_t const h1 = ((const XXH128_hash_t*)hTablePtr)[index1]; |
|
XXH128_hash_t const h2 = ((const XXH128_hash_t*)hTablePtr)[index2]; |
|
return XXH128_isEqual(h1, h2); |
|
} |
|
} |
|
|
|
static int isHighEqual(void* hTablePtr, size_t index1, size_t index2, Htype_e htype, int rShift) |
|
{ |
|
uint64_t h1, h2; |
|
if ((htype == ht64) || (htype == ht32)) { |
|
h1 = ((const uint64_t*)hTablePtr)[index1]; |
|
h2 = ((const uint64_t*)hTablePtr)[index2]; |
|
} else { |
|
assert(htype == ht128); |
|
h1 = ((const XXH128_hash_t*)hTablePtr)[index1].high64; |
|
h2 = ((const XXH128_hash_t*)hTablePtr)[index2].high64; |
|
assert(rShift >= 64); |
|
rShift -= 64; |
|
} |
|
assert(0 <= rShift && rShift < 64); |
|
return (h1 >> rShift) == (h2 >> rShift); |
|
} |
|
|
|
/* assumption: (htype*)hTablePtr[index] is valid */ |
|
static void addHashCandidate(void* hTablePtr, UniHash h, Htype_e htype, size_t index) |
|
{ |
|
if ((htype == ht64) || (htype == ht32)) { |
|
((uint64_t*)hTablePtr)[index] = h.h64; |
|
} else { |
|
assert(htype == ht128); |
|
((XXH128_hash_t*)hTablePtr)[index] = h.h128; |
|
} |
|
} |
|
|
|
static int getNbBits_fromHtype(Htype_e htype) { |
|
switch(htype) { |
|
case ht32: return 32; |
|
case ht64: return 64; |
|
case ht128:return 128; |
|
default: EXIT("hash size not supported"); |
|
} |
|
} |
|
|
|
static Htype_e getHtype_fromHbits(int nbBits) { |
|
switch(nbBits) { |
|
case 32 : return ht32; |
|
case 64 : return ht64; |
|
case 128: return ht128; |
|
default: EXIT("hash size not supported"); |
|
} |
|
} |
|
|
|
static size_t search_collisions( |
|
searchCollisions_parameters param) |
|
{ |
|
uint64_t totalH = param.nbH; |
|
const uint64_t hMask = param.mask; |
|
const uint64_t hSelector = param.maskSelector; |
|
int bflog = param.filterLog; |
|
const int filter = (param.filterLog >= 0); |
|
const size_t sampleSize = param.sampleSize; |
|
const int hashID = param.hashID; |
|
const Htype_e htype = getHtype_fromHbits(hashfnTable[hashID].bits); |
|
const int display = param.display; |
|
/* init */ |
|
sampleFactory* const sf = create_sampleFactory(sampleSize, totalH, param.prngSeed); |
|
if (!sf) EXIT("not enough memory"); |
|
|
|
//const char* const hname = hashfnTable[hashID].name; |
|
hashfn const hfunction = hashfnTable[hashID].fn; |
|
int const hwidth = hashfnTable[hashID].bits; |
|
if (totalH == 0) totalH = select_nbh(hwidth); |
|
if (bflog == 0) bflog = highestBitSet(totalH) + 1; /* auto-size filter */ |
|
uint64_t const bfsize = (1ULL << bflog); |
|
|
|
|
|
/* === filter hashes (optional) === */ |
|
|
|
Filter* bf = NULL; |
|
uint64_t nbPresents = totalH; |
|
|
|
if (filter) { |
|
time_t const filterTBegin = time(NULL); |
|
DISPLAY(" Creating filter (%i GB) \n", (int)(bfsize >> 30)); |
|
bf = create_Filter(bflog); |
|
if (!bf) EXIT("not enough memory for filter"); |
|
|
|
|
|
DISPLAY(" Generate %llu hashes from samples of %u bytes \n", |
|
(unsigned long long)totalH, (unsigned)sampleSize); |
|
nbPresents = 0; |
|
|
|
for (uint64_t n=0; n < totalH; n++) { |
|
if (display && ((n&0xFFFFF) == 1) ) |
|
update_indicator(n, totalH); |
|
update_sampleFactory(sf); |
|
|
|
UniHash const h = hfunction(sf->buffer, sampleSize); |
|
if ((h.h64 & hMask) != hSelector) continue; |
|
|
|
nbPresents += (uint64_t)Filter_insert(bf, bflog, h.h64); |
|
} |
|
|
|
if (nbPresents==0) { |
|
DISPLAY(" Analysis completed: No collision detected \n"); |
|
if (param.resultPtr) param.resultPtr->nbCollisions = 0; |
|
free_Filter(bf); |
|
free_sampleFactory(sf); |
|
return 0; |
|
} |
|
|
|
{ double const filterDelay = difftime(time(NULL), filterTBegin); |
|
DISPLAY(" Generation and filter completed in %s, detected up to %llu candidates \n", |
|
displayDelay(filterDelay), (unsigned long long) nbPresents); |
|
} } |
|
|
|
|
|
/* === store hash candidates: duplicates will be present here === */ |
|
|
|
time_t const storeTBegin = time(NULL); |
|
size_t const hashByteSize = (htype == ht128) ? 16 : 8; |
|
size_t const tableSize = (nbPresents+1) * hashByteSize; |
|
assert(tableSize > nbPresents); /* check tableSize calculation overflow */ |
|
DISPLAY(" Storing hash candidates (%i MB) \n", (int)(tableSize >> 20)); |
|
|
|
/* Generate and store hashes */ |
|
void* const hashCandidates = malloc(tableSize); |
|
if (!hashCandidates) EXIT("not enough memory to store candidates"); |
|
init_sampleFactory(sf, totalH); |
|
size_t nbCandidates = 0; |
|
for (uint64_t n=0; n < totalH; n++) { |
|
if (display && ((n&0xFFFFF) == 1) ) update_indicator(n, totalH); |
|
update_sampleFactory(sf); |
|
|
|
UniHash const h = hfunction(sf->buffer, sampleSize); |
|
if ((h.h64 & hMask) != hSelector) continue; |
|
|
|
if (filter) { |
|
if (Filter_check(bf, bflog, h.h64)) { |
|
assert(nbCandidates < nbPresents); |
|
addHashCandidate(hashCandidates, h, htype, nbCandidates++); |
|
} |
|
} else { |
|
assert(nbCandidates < nbPresents); |
|
addHashCandidate(hashCandidates, h, htype, nbCandidates++); |
|
} |
|
} |
|
if (nbCandidates < nbPresents) { |
|
/* Try to mitigate gnuc_quicksort behavior, by reducing allocated memory, |
|
* since gnuc_quicksort uses a lot of additional memory for mergesort */ |
|
void* const checkPtr = realloc(hashCandidates, nbCandidates * hashByteSize); |
|
assert(checkPtr != NULL); |
|
assert(checkPtr == hashCandidates); /* simplification: since we are reducing the size, |
|
* we hope to keep the same ptr position. |
|
* Otherwise, hashCandidates must be mutable. */ |
|
DISPLAY(" List of hashes reduced to %u MB from %u MB (saved %u MB) \n", |
|
(unsigned)((nbCandidates * hashByteSize) >> 20), |
|
(unsigned)(tableSize >> 20), |
|
(unsigned)((tableSize - (nbCandidates * hashByteSize)) >> 20) ); |
|
} |
|
double const storeTDelay = difftime(time(NULL), storeTBegin); |
|
DISPLAY(" Stored %llu hash candidates in %s \n", |
|
(unsigned long long) nbCandidates, displayDelay(storeTDelay)); |
|
free_Filter(bf); |
|
free_sampleFactory(sf); |
|
|
|
|
|
/* === step 3: look for duplicates === */ |
|
time_t const sortTBegin = time(NULL); |
|
DISPLAY(" Sorting candidates... "); |
|
fflush(NULL); |
|
if ((htype == ht64) || (htype == ht32)) { |
|
/* |
|
* Use C++'s std::sort, as it's faster than C stdlib's qsort, and |
|
* doesn't suffer from gnuc_libsort's memory expansion |
|
*/ |
|
sort64(hashCandidates, nbCandidates); |
|
} else { |
|
assert(htype == ht128); |
|
sort128(hashCandidates, nbCandidates); /* sort with custom comparator */ |
|
} |
|
double const sortTDelay = difftime(time(NULL), sortTBegin); |
|
DISPLAY(" Completed in %s \n", displayDelay(sortTDelay)); |
|
|
|
/* scan and count duplicates */ |
|
time_t const countBegin = time(NULL); |
|
DISPLAY(" Looking for duplicates: "); |
|
fflush(NULL); |
|
size_t collisions = 0; |
|
for (size_t n=1; n<nbCandidates; n++) { |
|
if (isEqual(hashCandidates, n, n-1, htype)) { |
|
#if defined(COL_DISPLAY_DUPLICATES) |
|
printf("collision: "); |
|
printHash(hashCandidates, n, htype); |
|
printf(" / "); |
|
printHash(hashCandidates, n-1, htype); |
|
printf(" \n"); |
|
#endif |
|
collisions++; |
|
} } |
|
|
|
if (!filter /* all candidates */ && display /*single thead*/ ) { |
|
/* check partial bitfields (high bits) */ |
|
DISPLAY(" \n"); |
|
int const hashBits = getNbBits_fromHtype(htype); |
|
double worstRatio = 0.; |
|
int worstNbHBits = 0; |
|
for (int nbHBits = 1; nbHBits < hashBits; nbHBits++) { |
|
uint64_t const nbSlots = (uint64_t)1 << nbHBits; |
|
double const expectedCollisions = estimateNbCollisions(nbCandidates, nbHBits); |
|
if ( (nbSlots > nbCandidates * 100) /* within range for meaningfull collision analysis results */ |
|
&& (expectedCollisions > 18.0) ) { |
|
int const rShift = hashBits - nbHBits; |
|
size_t HBits_collisions = 0; |
|
for (size_t n=1; n<nbCandidates; n++) { |
|
if (isHighEqual(hashCandidates, n, n-1, htype, rShift)) { |
|
HBits_collisions++; |
|
} } |
|
double const collisionRatio = (double)HBits_collisions / expectedCollisions; |
|
if (collisionRatio > 2.0) DISPLAY("WARNING !!! ===> "); |
|
DISPLAY(" high %i bits: %zu collision (%.1f expected): x%.2f \n", |
|
nbHBits, HBits_collisions, expectedCollisions, collisionRatio); |
|
if (collisionRatio > worstRatio) { |
|
worstNbHBits = nbHBits; |
|
worstRatio = collisionRatio; |
|
} } } |
|
DISPLAY("Worst collision ratio at %i high bits: x%.2f \n", |
|
worstNbHBits, worstRatio); |
|
} |
|
double const countDelay = difftime(time(NULL), countBegin); |
|
DISPLAY(" Completed in %s \n", displayDelay(countDelay)); |
|
|
|
/* clean and exit */ |
|
free (hashCandidates); |
|
|
|
#if 0 /* debug */ |
|
for (size_t n=0; n<nbCandidates; n++) |
|
printf("0x%016llx \n", (unsigned long long)hashCandidates[n]); |
|
#endif |
|
|
|
if (param.resultPtr) param.resultPtr->nbCollisions = collisions; |
|
return collisions; |
|
} |
|
|
|
|
|
|
|
#if defined(__MACH__) || defined(__linux__) |
|
#include <sys/resource.h> |
|
static size_t getProcessMemUsage(int children) |
|
{ |
|
struct rusage stats; |
|
if (getrusage(children ? RUSAGE_CHILDREN : RUSAGE_SELF, &stats) == 0) |
|
return (size_t)stats.ru_maxrss; |
|
return 0; |
|
} |
|
#else |
|
static size_t getProcessMemUsage(int ignore) { return 0; } |
|
#endif |
|
|
|
void time_collisions(searchCollisions_parameters param) |
|
{ |
|
uint64_t totalH = param.nbH; |
|
int hashID = param.hashID; |
|
int display = param.display; |
|
|
|
/* init */ |
|
assert(0 <= hashID && hashID < HASH_FN_TOTAL); |
|
//const char* const hname = hashfnTable[hashID].name; |
|
int const hwidth = hashfnTable[hashID].bits; |
|
if (totalH == 0) totalH = select_nbh(hwidth); |
|
double const targetColls = estimateNbCollisions(totalH, hwidth); |
|
|
|
/* Start the timer to measure start/end of hashing + collision detection. */ |
|
time_t const programTBegin = time(NULL); |
|
|
|
/* Generate hashes, and count collisions */ |
|
size_t const collisions = search_collisions(param); |
|
|
|
/* display results */ |
|
double const programTDelay = difftime(time(NULL), programTBegin); |
|
size_t const programBytesSelf = getProcessMemUsage(0); |
|
size_t const programBytesChildren = getProcessMemUsage(1); |
|
DISPLAY("\n\n"); |
|
DISPLAY("===> Found %llu collisions (x%.2f, %.1f expected) in %s\n", |
|
(unsigned long long)collisions, |
|
(double)collisions / targetColls, |
|
targetColls, |
|
displayDelay(programTDelay)); |
|
if (programBytesSelf) |
|
DISPLAY("===> MaxRSS(self) %zuMB, MaxRSS(children) %zuMB\n", |
|
programBytesSelf>>20, |
|
programBytesChildren>>20); |
|
DISPLAY("------------------------------------------ \n"); |
|
} |
|
|
|
// wrapper for pthread interface |
|
void MT_searchCollisions(void* payload) |
|
{ |
|
search_collisions(*(searchCollisions_parameters*)payload); |
|
} |
|
|
|
/* === Command Line === */ |
|
|
|
/*! |
|
* readU64FromChar(): |
|
* Allows and interprets K, KB, KiB, M, MB and MiB suffix. |
|
* Will also modify `*stringPtr`, advancing it to the position where it stopped reading. |
|
*/ |
|
static uint64_t readU64FromChar(const char** stringPtr) |
|
{ |
|
static uint64_t const max = (((uint64_t)(-1)) / 10) - 1; |
|
uint64_t result = 0; |
|
while ((**stringPtr >='0') && (**stringPtr <='9')) { |
|
assert(result < max); |
|
result *= 10; |
|
result += (unsigned)(**stringPtr - '0'); |
|
(*stringPtr)++ ; |
|
} |
|
if ((**stringPtr=='K') || (**stringPtr=='M') || (**stringPtr=='G')) { |
|
uint64_t const maxK = ((uint64_t)(-1)) >> 10; |
|
assert(result < maxK); |
|
result <<= 10; |
|
if ((**stringPtr=='M') || (**stringPtr=='G')) { |
|
assert(result < maxK); |
|
result <<= 10; |
|
if (**stringPtr=='G') { |
|
assert(result < maxK); |
|
result <<= 10; |
|
} |
|
} |
|
(*stringPtr)++; /* skip `K` or `M` */ |
|
if (**stringPtr=='i') (*stringPtr)++; |
|
if (**stringPtr=='B') (*stringPtr)++; |
|
} |
|
return result; |
|
} |
|
|
|
|
|
/** |
|
* longCommandWArg(): |
|
* Checks if *stringPtr is the same as longCommand. |
|
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand. |
|
* @return 0 and doesn't modify *stringPtr otherwise. |
|
*/ |
|
static int longCommandWArg(const char** stringPtr, const char* longCommand) |
|
{ |
|
assert(longCommand); assert(stringPtr); assert(*stringPtr); |
|
size_t const comSize = strlen(longCommand); |
|
int const result = !strncmp(*stringPtr, longCommand, comSize); |
|
if (result) *stringPtr += comSize; |
|
return result; |
|
} |
|
|
|
|
|
#include "pool.h" |
|
|
|
/* |
|
* As some hashes use different algorithms depending on input size, |
|
* it can be necessary to test multiple input sizes |
|
* to paint an accurate picture of collision performance |
|
*/ |
|
#define SAMPLE_SIZE_DEFAULT 256 |
|
#define HASHFN_ID_DEFAULT 0 |
|
|
|
void help(const char* exeName) |
|
{ |
|
printf("usage: %s [hashName] [opt] \n\n", exeName); |
|
printf("list of hashNames:"); |
|
printf("%s ", hashfnTable[0].name); |
|
for (int i=1; i < HASH_FN_TOTAL; i++) { |
|
printf(", %s ", hashfnTable[i].name); |
|
} |
|
printf(" \n"); |
|
printf("Default hashName is %s\n", hashfnTable[HASHFN_ID_DEFAULT].name); |
|
|
|
printf(" \n"); |
|
printf("Optional parameters: \n"); |
|
printf(" --nbh=NB Select nb of hashes to generate (%llu by default) \n", (unsigned long long)select_nbh(64)); |
|
printf(" --filter Activates the filter. Slower, but reduces memory usage for the same nb of hashes.\n"); |
|
printf(" --threadlog=NB Use 2^NB threads.\n"); |
|
printf(" --len=MB Set length of the input (%i bytes by default) \n", SAMPLE_SIZE_DEFAULT); |
|
} |
|
|
|
int bad_argument(const char* exeName) |
|
{ |
|
printf("incorrect command: \n"); |
|
help(exeName); |
|
return 1; |
|
} |
|
|
|
|
|
int main(int argc, const char** argv) |
|
{ |
|
if (sizeof(size_t) < 8) return 1; // cannot work on systems without ability to allocate objects >= 4 GB |
|
|
|
assert(argc > 0); |
|
const char* const exeName = argv[0]; |
|
uint64_t totalH = 0; /* auto, based on nbBits */ |
|
int bflog = 0; /* auto */ |
|
int filter = 0; /* disabled */ |
|
size_t sampleSize = SAMPLE_SIZE_DEFAULT; |
|
int hashID = HASHFN_ID_DEFAULT; |
|
int threadlog = 0; |
|
uint64_t prngSeed = 0; |
|
|
|
int arg_nb; |
|
for (arg_nb = 1; arg_nb < argc; arg_nb++) { |
|
const char** arg = argv + arg_nb; |
|
|
|
if (!strcmp(*arg, "-h")) { help(exeName); return 0; } |
|
if (longCommandWArg(arg, "-T")) { threadlog = (int)readU64FromChar(arg); continue; } |
|
|
|
if (!strcmp(*arg, "--filter")) { filter=1; continue; } |
|
if (!strcmp(*arg, "--no-filter")) { filter=0; continue; } |
|
|
|
if (longCommandWArg(arg, "--seed")) { prngSeed = readU64FromChar(arg); continue; } |
|
if (longCommandWArg(arg, "--nbh=")) { totalH = readU64FromChar(arg); continue; } |
|
if (longCommandWArg(arg, "--filter=")) { filter=1; bflog = (int)readU64FromChar(arg); assert(bflog < 64); continue; } |
|
if (longCommandWArg(arg, "--filterlog=")) { filter=1; bflog = (int)readU64FromChar(arg); assert(bflog < 64); continue; } |
|
if (longCommandWArg(arg, "--size=")) { sampleSize = (size_t)readU64FromChar(arg); continue; } |
|
if (longCommandWArg(arg, "--len=")) { sampleSize = (size_t)readU64FromChar(arg); continue; } |
|
if (longCommandWArg(arg, "--threadlog=")) { threadlog = (int)readU64FromChar(arg); continue; } |
|
|
|
/* argument understood as hash name (must be correct) */ |
|
int hnb; |
|
for (hnb=0; hnb < HASH_FN_TOTAL; hnb++) { |
|
if (!strcmp(*arg, hashfnTable[hnb].name)) { hashID = hnb; break; } |
|
} |
|
if (hnb == HASH_FN_TOTAL) return bad_argument(exeName); |
|
} |
|
|
|
/* init */ |
|
const char* const hname = hashfnTable[hashID].name; |
|
int const hwidth = hashfnTable[hashID].bits; |
|
if (totalH == 0) totalH = select_nbh(hwidth); |
|
double const targetColls = estimateNbCollisions(totalH, hwidth); |
|
if (bflog == 0) bflog = highestBitSet(totalH) + 1; /* auto-size filter */ |
|
if (!filter) bflog = -1; // disable filter |
|
|
|
if (sizeof(size_t) < 8) |
|
EXIT("This program has not been validated on architectures other than " |
|
"64bit \n"); |
|
|
|
printf(" *** Collision tester for 64+ bit hashes *** \n\n"); |
|
printf("Testing %s algorithm (%i-bit) \n", hname, hwidth); |
|
printf("This program will allocate a lot of memory,\n"); |
|
printf("generate %llu %i-bit hashes from samples of %u bytes, \n", |
|
(unsigned long long)totalH, hwidth, (unsigned)sampleSize); |
|
printf("and attempt to produce %.0f collisions. \n\n", targetColls); |
|
|
|
int const nbThreads = 1 << threadlog; |
|
if (nbThreads <= 0) EXIT("Invalid --threadlog value."); |
|
|
|
if (nbThreads == 1) { |
|
|
|
searchCollisions_parameters params; |
|
params.nbH = totalH; |
|
params.mask = 0; |
|
params.maskSelector = 0; |
|
params.sampleSize = sampleSize; |
|
params.filterLog = bflog; |
|
params.hashID = hashID; |
|
params.display = 1; |
|
params.resultPtr = NULL; |
|
params.prngSeed = prngSeed; |
|
params.nbThreads = 1; |
|
time_collisions(params); |
|
|
|
} else { /* nbThreads > 1 */ |
|
|
|
/* use multithreading */ |
|
if (threadlog >= 30) EXIT("too many threads requested"); |
|
if ((uint64_t)nbThreads > (totalH >> 16)) |
|
EXIT("too many threads requested"); |
|
if (bflog > 0 && threadlog > (bflog-10)) |
|
EXIT("too many threads requested"); |
|
printf("using %i threads ... \n", nbThreads); |
|
|
|
/* allocation */ |
|
time_t const programTBegin = time(NULL); |
|
POOL_ctx* const pt = POOL_create((size_t)nbThreads, 1); |
|
if (!pt) EXIT("not enough memory for threads"); |
|
searchCollisions_results* const MTresults = calloc (sizeof(searchCollisions_results), (size_t)nbThreads); |
|
if (!MTresults) EXIT("not enough memory"); |
|
searchCollisions_parameters* const MTparams = calloc (sizeof(searchCollisions_parameters), (size_t)nbThreads); |
|
if (!MTparams) EXIT("not enough memory"); |
|
|
|
/* distribute jobs */ |
|
for (int tnb=0; tnb<nbThreads; tnb++) { |
|
MTparams[tnb].nbH = totalH; |
|
MTparams[tnb].mask = (uint64_t)nbThreads - 1; |
|
MTparams[tnb].sampleSize = sampleSize; |
|
MTparams[tnb].filterLog = bflog ? bflog - threadlog : 0; |
|
MTparams[tnb].hashID = hashID; |
|
MTparams[tnb].display = 0; |
|
MTparams[tnb].resultPtr = MTresults+tnb; |
|
MTparams[tnb].prngSeed = prngSeed; |
|
MTparams[tnb].maskSelector = (uint64_t)tnb; |
|
POOL_add(pt, MT_searchCollisions, MTparams + tnb); |
|
} |
|
POOL_free(pt); /* actually joins and free */ |
|
|
|
/* Gather results */ |
|
uint64_t nbCollisions=0; |
|
for (int tnb=0; tnb<nbThreads; tnb++) { |
|
nbCollisions += MTresults[tnb].nbCollisions; |
|
} |
|
|
|
double const programTDelay = difftime(time(NULL), programTBegin); |
|
size_t const programBytesSelf = getProcessMemUsage(0); |
|
size_t const programBytesChildren = getProcessMemUsage(1); |
|
printf("\n\n"); |
|
printf("===> Found %llu collisions (x%.2f, %.1f expected) in %s\n", |
|
(unsigned long long)nbCollisions, |
|
(double)nbCollisions / targetColls, |
|
targetColls, |
|
displayDelay(programTDelay)); |
|
if (programBytesSelf) |
|
printf("===> MaxRSS(self) %zuMB, MaxRSS(children) %zuMB\n", |
|
programBytesSelf>>20, |
|
programBytesChildren>>20); |
|
printf("------------------------------------------ \n"); |
|
|
|
/* Clean up */ |
|
free(MTparams); |
|
free(MTresults); |
|
} |
|
|
|
return 0; |
|
}
|
|
|