The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Tim Emiola a4cfb63b06 Merge pull request #3184 from murgatroid99/node_examples_update 10 years ago
..
README.md Merge pull request #3184 from murgatroid99/node_examples_update 10 years ago
route_guide.proto Fixed routeguide namespace, updated README to match other changes 10 years ago
route_guide_client.js Fixed routeguide namespace, updated README to match other changes 10 years ago
route_guide_db.json move examples to correct locations 10 years ago
route_guide_server.js Fixed routeguide namespace, updated README to match other changes 10 years ago

README.md

#gRPC Basics: Node.js

This tutorial provides a basic Node.js programmer's introduction to working with gRPC. By walking through this example you'll learn how to:

  • Define a service in a .proto file.
  • Use the Node.js gRPC API to write a simple client and server for your service.

It assumes that you have read the Getting started guide and are familiar with [protocol buffers] (https://developers.google.com/protocol-buffers/docs/overview). Note that the example in this tutorial uses the proto3 version of the protocol buffers language, which is currently in alpha release:you can find out more in the proto3 language guide and see the release notes for the new version in the protocol buffers Github repository.

This isn't a comprehensive guide to using gRPC in Node.js: more reference documentation is coming soon.

Why use gRPC?

Our example is a simple route mapping application that lets clients get information about features on their route, create a summary of their route, and exchange route information such as traffic updates with the server and other clients.

With gRPC we can define our service once in a .proto file and implement clients and servers in any of gRPC's supported languages, which in turn can be run in environments ranging from servers inside Google to your own tablet - all the complexity of communication between different languages and environments is handled for you by gRPC. We also get all the advantages of working with protocol buffers, including efficient serialization, a simple IDL, and easy interface updating.

Example code and setup

The example code for our tutorial is in examples/node/route_guide. To download the example, clone this repository by running the following command:

$ git clone https://github.com/grpc/grpc.git

Then change your current directory to examples/node/route_guide:

$ cd examples/node/route_guide

You also should have the relevant tools installed to generate the server and client interface code - if you don't already, follow the setup instructions in the Node.js quick start guide.

Defining the service

Our first step (as you'll know from Getting started) is to define the gRPC service and the method request and response types using [protocol buffers] (https://developers.google.com/protocol-buffers/docs/overview). You can see the complete .proto file in examples/protos/route_guide.proto.

To define a service, you specify a named service in your .proto file:

service RouteGuide {
   ...
}

Then you define rpc methods inside your service definition, specifying their request and response types. gRPC lets you define four kinds of service method, all of which are used in the RouteGuide service:

  • A simple RPC where the client sends a request to the server using the stub and waits for a response to come back, just like a normal function call.
   // Obtains the feature at a given position.
   rpc GetFeature(Point) returns (Feature) {}
  • A server-side streaming RPC where the client sends a request to the server and gets a stream to read a sequence of messages back. The client reads from the returned stream until there are no more messages. As you can see in our example, you specify a server-side streaming method by placing the stream keyword before the response type.
  // Obtains the Features available within the given Rectangle.  Results are
  // streamed rather than returned at once (e.g. in a response message with a
  // repeated field), as the rectangle may cover a large area and contain a
  // huge number of features.
  rpc ListFeatures(Rectangle) returns (stream Feature) {}
  • A client-side streaming RPC where the client writes a sequence of messages and sends them to the server, again using a provided stream. Once the client has finished writing the messages, it waits for the server to read them all and return its response. You specify a server-side streaming method by placing the stream keyword before the request type.
  // Accepts a stream of Points on a route being traversed, returning a
  // RouteSummary when traversal is completed.
  rpc RecordRoute(stream Point) returns (RouteSummary) {}
  • A bidirectional streaming RPC where both sides send a sequence of messages using a read-write stream. The two streams operate independently, so clients and servers can read and write in whatever order they like: for example, the server could wait to receive all the client messages before writing its responses, or it could alternately read a message then write a message, or some other combination of reads and writes. The order of messages in each stream is preserved. You specify this type of method by placing the stream keyword before both the request and the response.
  // Accepts a stream of RouteNotes sent while a route is being traversed,
  // while receiving other RouteNotes (e.g. from other users).
  rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}

Our .proto file also contains protocol buffer message type definitions for all the request and response types used in our service methods - for example, here's the Point message type:

// Points are represented as latitude-longitude pairs in the E7 representation
// (degrees multiplied by 10**7 and rounded to the nearest integer).
// Latitudes should be in the range +/- 90 degrees and longitude should be in
// the range +/- 180 degrees (inclusive).
message Point {
  int32 latitude = 1;
  int32 longitude = 2;
}

Loading service descriptors from proto files

The Node.js library dynamically generates service descriptors and client stub definitions from .proto files loaded at runtime.

To load a .proto file, simply require the gRPC library, then use its load() method:

var grpc = require('grpc');
var protoDescriptor = grpc.load(__dirname + '/route_guide.proto');
// The protoDescriptor object has the full package hierarchy
var example = protoDescriptor.routeguide;

Once you've done this, the stub constructor is in the routeguide namespace (protoDescriptor.routeguide.RouteGuide) and the service descriptor (which is used to create a server) is a property of the stub (protoDescriptor.routeguide.RouteGuide.service);

Creating the server

First let's look at how we create a RouteGuide server. If you're only interested in creating gRPC clients, you can skip this section and go straight to Creating the client (though you might find it interesting anyway!).

There are two parts to making our RouteGuide service do its job:

  • Implementing the service interface generated from our service definition: doing the actual "work" of our service.
  • Running a gRPC server to listen for requests from clients and return the service responses.

You can find our example RouteGuide server in route_guide_server.js. Let's take a closer look at how it works.

Implementing RouteGuide

As you can see, our server has a Server constructor generated from the RouteGuide.service descriptor object

var Server = grpc.buildServer([routeguide.RouteGuide.service]);

In this case we're implementing the asynchronous version of RouteGuide, which provides our default gRPC server behaviour.

The functions in route_guide_server.js implement all our service methods. Let's look at the simplest type first, getFeature, which just gets a Point from the client and returns the corresponding feature information from its database in a Feature.

function checkFeature(point) {
  var feature;
  // Check if there is already a feature object for the given point
  for (var i = 0; i < feature_list.length; i++) {
    feature = feature_list[i];
    if (feature.location.latitude === point.latitude &&
        feature.location.longitude === point.longitude) {
      return feature;
    }
  }
  var name = '';
  feature = {
    name: name,
    location: point
  };
  return feature;
}
function getFeature(call, callback) {
  callback(null, checkFeature(call.request));
}

The method is passed a call object for the RPC, which has the Point parameter as a property, and a callback to which we can pass our returned Feature. In the method body we populate a Feature corresponding to the given point and pass it to the callback, with a null first parameter to indicate that there is no error.

Now let's look at something a bit more complicated - a streaming RPC. listFeatures is a server-side streaming RPC, so we need to send back multiple Features to our client.

function listFeatures(call) {
  var lo = call.request.lo;
  var hi = call.request.hi;
  var left = _.min([lo.longitude, hi.longitude]);
  var right = _.max([lo.longitude, hi.longitude]);
  var top = _.max([lo.latitude, hi.latitude]);
  var bottom = _.min([lo.latitude, hi.latitude]);
  // For each feature, check if it is in the given bounding box
  _.each(feature_list, function(feature) {
    if (feature.name === '') {
      return;
    }
    if (feature.location.longitude >= left &&
        feature.location.longitude <= right &&
        feature.location.latitude >= bottom &&
        feature.location.latitude <= top) {
      call.write(feature);
    }
  });
  call.end();
}

As you can see, instead of getting the call object and callback in our method parameters, this time we get a call object that implements the Writable interface. In the method, we create as many Feature objects as we need to return, writing them to the call using its write() method. Finally, we call call.end() to indicate that we have sent all messages.

If you look at the client-side streaming method RecordRoute you'll see it's quite similar to the unary call, except this time the call parameter implements the Reader interface. The call's 'data' event fires every time there is new data, and the 'end' event fires when all data has been read. Like the unary case, we respond by calling the callback

call.on('data', function(point) {
  // Process user data
});
call.on('end', function() {
  callback(null, result);
});

Finally, let's look at our bidirectional streaming RPC RouteChat().

function routeChat(call) {
  call.on('data', function(note) {
    var key = pointKey(note.location);
    /* For each note sent, respond with all previous notes that correspond to
     * the same point */
    if (route_notes.hasOwnProperty(key)) {
      _.each(route_notes[key], function(note) {
        call.write(note);
      });
    } else {
      route_notes[key] = [];
    }
    // Then add the new note to the list
    route_notes[key].push(JSON.parse(JSON.stringify(note)));
  });
  call.on('end', function() {
    call.end();
  });
}

This time we get a call implementing Duplex that can be used to read and write messages. The syntax for reading and writing here is exactly the same as for our client-streaming and server-streaming methods. Although each side will always get the other's messages in the order they were written, both the client and server can read and write in any order — the streams operate completely independently.

Starting the server

Once we've implemented all our methods, we also need to start up a gRPC server so that clients can actually use our service. The following snippet shows how we do this for our RouteGuide service:

function getServer() {
  var server = new grpc.Server();
  server.addProtoService(routeguide.RouteGuide.service, {
    getFeature: getFeature,
    listFeatures: listFeatures,
    recordRoute: recordRoute,
    routeChat: routeChat
  });
  return server;
}
var routeServer = getServer();
routeServer.bind('0.0.0.0:50051', grpc.ServerCredentials.createInsecure());
routeServer.start();

As you can see, we build and start our server with the following steps:

  1. Create a Server constructor from the RouteGuide service descriptor.
  2. Implement the service methods.
  3. Create an instance of the server by calling the Server constructor with the method implementations.
  4. Specify the address and port we want to use to listen for client requests using the instance's bind() method.
  5. Call listen() on the instance to start the RPC server.

Creating the client

In this section, we'll look at creating a Node.js client for our RouteGuide service. You can see our complete example client code in route_guide_client.js.

Creating a stub

To call service methods, we first need to create a stub. To do this, we just need to call the RouteGuide stub constructor, specifying the server address and port.

var client = new routeguide.RouteGuide('localhost:50051',
                                       grpc.Credentials.createInsecure());

Calling service methods

Now let's look at how we call our service methods. Note that all of these methods are asynchronous: they use either events or callbacks to retrieve results.

Simple RPC

Calling the simple RPC GetFeature is nearly as straightforward as calling a local asynchronous method.

var point = {latitude: 409146138, longitude: -746188906};
stub.getFeature(point, function(err, feature) {
  if (err) {
    // process error
  } else {
    // process feature
  }
});

As you can see, we create and populate a request object. Finally, we call the method on the stub, passing it the request and callback. If there is no error, then we can read the response information from the server from our response object.

      console.log('Found feature called "' + feature.name + '" at ' +
          feature.location.latitude/COORD_FACTOR + ', ' +
          feature.location.longitude/COORD_FACTOR);

Streaming RPCs

Now let's look at our streaming methods. If you've already read Creating the server some of this may look very familiar - streaming RPCs are implemented in a similar way on both sides. Here's where we call the server-side streaming method ListFeatures, which returns a stream of geographical Features:

var call = client.listFeatures(rectangle);
  call.on('data', function(feature) {
      console.log('Found feature called "' + feature.name + '" at ' +
          feature.location.latitude/COORD_FACTOR + ', ' +
          feature.location.longitude/COORD_FACTOR);
  });
  call.on('end', function() {
    // The server has finished sending
  });
  call.on('status', function(status) {
    // process status
  });

Instead of passing the method a request and callback, we pass it a request and get a Readable stream object back. The client can use the Readable's 'data' event to read the server's responses. This event fires with each Feature message object until there are no more messages: the 'end' event indicates that the call is done. Finally, the status event fires when the server sends the status.

The client-side streaming method RecordRoute is similar, except there we pass the method a callback and get back a Writable.

    var call = client.recordRoute(function(error, stats) {
      if (error) {
        callback(error);
      }
      console.log('Finished trip with', stats.point_count, 'points');
      console.log('Passed', stats.feature_count, 'features');
      console.log('Travelled', stats.distance, 'meters');
      console.log('It took', stats.elapsed_time, 'seconds');
    });
    function pointSender(lat, lng) {
      return function(callback) {
        console.log('Visiting point ' + lat/COORD_FACTOR + ', ' +
            lng/COORD_FACTOR);
        call.write({
          latitude: lat,
          longitude: lng
        });
        _.delay(callback, _.random(500, 1500));
      };
    }
    var point_senders = [];
    for (var i = 0; i < num_points; i++) {
      var rand_point = feature_list[_.random(0, feature_list.length - 1)];
      point_senders[i] = pointSender(rand_point.location.latitude,
                                     rand_point.location.longitude);
    }
    async.series(point_senders, function() {
      call.end();
    });

Once we've finished writing our client's requests to the stream using write(), we need to call end() on the stream to let gRPC know that we've finished writing. If the status is OK, the stats object will be populated with the server's response.

Finally, let's look at our bidirectional streaming RPC routeChat(). In this case, we just pass a context to the method and get back a Duplex stream object, which we can use to both write and read messages.

var call = client.routeChat();

The syntax for reading and writing here is exactly the same as for our client-streaming and server-streaming methods. Although each side will always get the other's messages in the order they were written, both the client and server can read and write in any order — the streams operate completely independently.

Try it out!

Build client and server:

$ npm install

Run the server, which will listen on port 50051:

$ node ./route_guide_server.js --db_path=route_guide_db.json

Run the client (in a different terminal):

$ node ./route_guide_client.js --db_path=route_guide_db.json