The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

167 lines
5.7 KiB

/*
*
* Copyright 2015 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <memory>
#include <iostream>
#include <string>
#include <thread>
#include <grpc++/grpc++.h>
#include <grpc/support/log.h>
#include "helloworld.grpc.pb.h"
using grpc::Server;
using grpc::ServerAsyncResponseWriter;
using grpc::ServerBuilder;
using grpc::ServerContext;
using grpc::ServerCompletionQueue;
using grpc::Status;
using helloworld::HelloRequest;
using helloworld::HelloReply;
using helloworld::Greeter;
class ServerImpl final {
public:
~ServerImpl() {
server_->Shutdown();
// Always shutdown the completion queue after the server.
cq_->Shutdown();
}
// There is no shutdown handling in this code.
void Run() {
std::string server_address("0.0.0.0:50051");
ServerBuilder builder;
// Listen on the given address without any authentication mechanism.
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
// Register "service_" as the instance through which we'll communicate with
// clients. In this case it corresponds to an *asynchronous* service.
builder.RegisterService(&service_);
// Get hold of the completion queue used for the asynchronous communication
// with the gRPC runtime.
cq_ = builder.AddCompletionQueue();
// Finally assemble the server.
server_ = builder.BuildAndStart();
std::cout << "Server listening on " << server_address << std::endl;
// Proceed to the server's main loop.
HandleRpcs();
}
private:
// Class encompasing the state and logic needed to serve a request.
class CallData {
public:
// Take in the "service" instance (in this case representing an asynchronous
// server) and the completion queue "cq" used for asynchronous communication
// with the gRPC runtime.
CallData(Greeter::AsyncService* service, ServerCompletionQueue* cq)
: service_(service), cq_(cq), responder_(&ctx_), status_(CREATE) {
// Invoke the serving logic right away.
Proceed();
}
void Proceed() {
if (status_ == CREATE) {
// Make this instance progress to the PROCESS state.
status_ = PROCESS;
// As part of the initial CREATE state, we *request* that the system
// start processing SayHello requests. In this request, "this" acts are
// the tag uniquely identifying the request (so that different CallData
// instances can serve different requests concurrently), in this case
// the memory address of this CallData instance.
service_->RequestSayHello(&ctx_, &request_, &responder_, cq_, cq_,
this);
} else if (status_ == PROCESS) {
// Spawn a new CallData instance to serve new clients while we process
// the one for this CallData. The instance will deallocate itself as
// part of its FINISH state.
new CallData(service_, cq_);
// The actual processing.
std::string prefix("Hello ");
reply_.set_message(prefix + request_.name());
// And we are done! Let the gRPC runtime know we've finished, using the
// memory address of this instance as the uniquely identifying tag for
// the event.
status_ = FINISH;
responder_.Finish(reply_, Status::OK, this);
} else {
GPR_ASSERT(status_ == FINISH);
// Once in the FINISH state, deallocate ourselves (CallData).
delete this;
}
}
private:
// The means of communication with the gRPC runtime for an asynchronous
// server.
Greeter::AsyncService* service_;
// The producer-consumer queue where for asynchronous server notifications.
ServerCompletionQueue* cq_;
// Context for the rpc, allowing to tweak aspects of it such as the use
// of compression, authentication, as well as to send metadata back to the
// client.
ServerContext ctx_;
// What we get from the client.
HelloRequest request_;
// What we send back to the client.
HelloReply reply_;
// The means to get back to the client.
ServerAsyncResponseWriter<HelloReply> responder_;
// Let's implement a tiny state machine with the following states.
enum CallStatus { CREATE, PROCESS, FINISH };
CallStatus status_; // The current serving state.
};
// This can be run in multiple threads if needed.
void HandleRpcs() {
// Spawn a new CallData instance to serve new clients.
new CallData(&service_, cq_.get());
void* tag; // uniquely identifies a request.
bool ok;
while (true) {
// Block waiting to read the next event from the completion queue. The
// event is uniquely identified by its tag, which in this case is the
// memory address of a CallData instance.
// The return value of Next should always be checked. This return value
// tells us whether there is any kind of event or cq_ is shutting down.
GPR_ASSERT(cq_->Next(&tag, &ok));
GPR_ASSERT(ok);
static_cast<CallData*>(tag)->Proceed();
}
}
std::unique_ptr<ServerCompletionQueue> cq_;
Greeter::AsyncService service_;
std::unique_ptr<Server> server_;
};
int main(int argc, char** argv) {
ServerImpl server;
server.Run();
return 0;
}