The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

307 lines
11 KiB

#!/usr/bin/env python
# Copyright 2015 gRPC authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Detect new flakes and create issues for them"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import datetime
import json
import logging
import os
import pprint
import sys
import urllib
import urllib2
from collections import namedtuple
gcp_utils_dir = os.path.abspath(
os.path.join(os.path.dirname(__file__), '../gcp/utils'))
sys.path.append(gcp_utils_dir)
import big_query_utils
GH_ISSUE_CREATION_URL = 'https://api.github.com/repos/grpc/grpc/issues'
GH_ISSUE_SEARCH_URL = 'https://api.github.com/search/issues'
KOKORO_BASE_URL = 'https://kokoro2.corp.google.com/job/'
def gh(url, data=None):
request = urllib2.Request(url, data=data)
assert TOKEN
request.add_header('Authorization', 'token {}'.format(TOKEN))
if data:
request.add_header('Content-type', 'application/json')
response = urllib2.urlopen(request)
if 200 <= response.getcode() < 300:
return json.loads(response.read())
else:
raise ValueError('Error ({}) accessing {}'.format(response.getcode(),
response.geturl()))
def search_gh_issues(search_term, status='open'):
params = ' '.join((search_term, 'is:issue', 'is:open', 'repo:grpc/grpc'))
qargs = urllib.urlencode({'q': params})
url = '?'.join((GH_ISSUE_SEARCH_URL, qargs))
response = gh(url)
return response
def create_gh_issue(title, body, labels, assignees=[]):
params = {'title': title, 'body': body, 'labels': labels}
if assignees:
params['assignees'] = assignees
data = json.dumps(params)
response = gh(GH_ISSUE_CREATION_URL, data)
issue_url = response['html_url']
print('Created issue {} for {}'.format(issue_url, title))
def build_kokoro_url(job_name, build_id):
job_path = '{}/{}'.format('/job/'.join(job_name.split('/')), build_id)
return KOKORO_BASE_URL + job_path
def create_issues(new_flakes, always_create):
for test_name, results_row in new_flakes.items():
poll_strategy, job_name, build_id, timestamp = results_row
# TODO(dgq): the Kokoro URL has a limited lifetime. The permanent and ideal
# URL would be the sponge one, but there's currently no easy way to retrieve
# it.
url = build_kokoro_url(job_name, build_id)
title = 'New Failure: ' + test_name
body = '- Test: {}\n- Poll Strategy: {}\n- URL: {}'.format(
test_name, poll_strategy, url)
labels = ['infra/New Failure']
if always_create:
proceed = True
else:
preexisting_issues = search_gh_issues(test_name)
if preexisting_issues['total_count'] > 0:
print('\nFound {} issues for "{}":'.format(preexisting_issues[
'total_count'], test_name))
for issue in preexisting_issues['items']:
print('\t"{}" ; URL: {}'.format(issue['title'], issue[
'html_url']))
else:
print(
'\nNo preexisting issues found for "{}"'.format(test_name))
proceed = raw_input(
'Create issue for:\nTitle: {}\nBody: {}\n[Y/n] '.format(
title, body)) in ('y', 'Y', '')
if proceed:
assignees_str = raw_input(
'Asignees? (comma-separated, leave blank for unassigned): ')
assignees = [
assignee.strip() for assignee in assignees_str.split(',')
]
create_gh_issue(title, body, labels, assignees)
def print_table(table, format):
first_time = True
for test_name, results_row in table.items():
poll_strategy, job_name, build_id, timestamp = results_row
full_kokoro_url = build_kokoro_url(job_name, build_id)
if format == 'human':
print("\t- Test: {}, Polling: {}, Timestamp: {}, url: {}".format(
test_name, poll_strategy, timestamp, full_kokoro_url))
else:
assert (format == 'csv')
if first_time:
print('test,timestamp,url')
first_time = False
print("{},{},{}".format(test_name, timestamp, full_kokoro_url))
Row = namedtuple('Row', ['poll_strategy', 'job_name', 'build_id', 'timestamp'])
def get_new_failures(dates):
bq = big_query_utils.create_big_query()
this_script_path = os.path.join(os.path.dirname(__file__))
sql_script = os.path.join(this_script_path, 'sql/new_failures_24h.sql')
with open(sql_script) as query_file:
query = query_file.read().format(
calibration_begin=dates['calibration']['begin'],
calibration_end=dates['calibration']['end'],
reporting_begin=dates['reporting']['begin'],
reporting_end=dates['reporting']['end'])
logging.debug("Query:\n%s", query)
query_job = big_query_utils.sync_query_job(bq, 'grpc-testing', query)
page = bq.jobs().getQueryResults(
pageToken=None, **query_job['jobReference']).execute(num_retries=3)
rows = page.get('rows')
if rows:
return {
row['f'][0]['v']: Row(poll_strategy=row['f'][1]['v'],
job_name=row['f'][2]['v'],
build_id=row['f'][3]['v'],
timestamp=row['f'][4]['v'])
for row in rows
}
else:
return {}
def parse_isodate(date_str):
return datetime.datetime.strptime(date_str, "%Y-%m-%d").date()
def get_new_flakes(args):
"""The from_date_str argument marks the beginning of the "calibration", used
to establish the set of pre-existing flakes, which extends over
"calibration_days". After the calibration period, "reporting_days" is the
length of time during which new flakes will be reported.
from
date
|--------------------|---------------|
^____________________^_______________^
calibration reporting
days days
"""
dates = process_date_args(args)
new_failures = get_new_failures(dates)
logging.info('|new failures| = %d', len(new_failures))
return new_failures
def build_args_parser():
import argparse, datetime
parser = argparse.ArgumentParser()
today = datetime.date.today()
a_week_ago = today - datetime.timedelta(days=7)
parser.add_argument(
'--calibration_days',
type=int,
default=7,
help='How many days to consider for pre-existing flakes.')
parser.add_argument(
'--reporting_days',
type=int,
default=1,
help='How many days to consider for the detection of new flakes.')
parser.add_argument(
'--count_only',
dest='count_only',
action='store_true',
help='Display only number of new flakes.')
parser.set_defaults(count_only=False)
parser.add_argument(
'--create_issues',
dest='create_issues',
action='store_true',
help='Create issues for all new flakes.')
parser.set_defaults(create_issues=False)
parser.add_argument(
'--always_create_issues',
dest='always_create_issues',
action='store_true',
help='Always create issues for all new flakes. Otherwise,'
' interactively prompt for every issue.')
parser.set_defaults(always_create_issues=False)
parser.add_argument(
'--token',
type=str,
default='',
help='GitHub token to use its API with a higher rate limit')
parser.add_argument(
'--format',
type=str,
choices=['human', 'csv'],
default='human',
help='Output format: are you a human or a machine?')
parser.add_argument(
'--loglevel',
type=str,
choices=['INFO', 'DEBUG', 'WARNING', 'ERROR', 'CRITICAL'],
default='WARNING',
help='Logging level.')
return parser
def process_date_args(args):
calibration_begin = (
datetime.date.today() - datetime.timedelta(days=args.calibration_days) -
datetime.timedelta(days=args.reporting_days))
calibration_end = calibration_begin + datetime.timedelta(
days=args.calibration_days)
reporting_begin = calibration_end
reporting_end = reporting_begin + datetime.timedelta(
days=args.reporting_days)
return {
'calibration': {
'begin': calibration_begin,
'end': calibration_end
},
'reporting': {
'begin': reporting_begin,
'end': reporting_end
}
}
def main():
global TOKEN
args_parser = build_args_parser()
args = args_parser.parse_args()
if args.create_issues and not args.token:
raise ValueError(
'Missing --token argument, needed to create GitHub issues')
TOKEN = args.token
logging_level = getattr(logging, args.loglevel)
logging.basicConfig(format='%(asctime)s %(message)s', level=logging_level)
new_flakes = get_new_flakes(args)
dates = process_date_args(args)
dates_info_string = 'from {} until {} (calibrated from {} until {})'.format(
dates['reporting']['begin'].isoformat(),
dates['reporting']['end'].isoformat(),
dates['calibration']['begin'].isoformat(),
dates['calibration']['end'].isoformat())
if args.format == 'human':
if args.count_only:
print(len(new_flakes), dates_info_string)
elif new_flakes:
found_msg = 'Found {} new flakes {}'.format(
len(new_flakes), dates_info_string)
print(found_msg)
print('*' * len(found_msg))
print_table(new_flakes, 'human')
if args.create_issues:
create_issues(new_flakes, args.always_create_issues)
else:
print('No new flakes found '.format(len(new_flakes)),
dates_info_string)
elif args.format == 'csv':
if args.count_only:
print('from_date,to_date,count')
print('{},{},{}'.format(dates['reporting']['begin'].isoformat(
), dates['reporting']['end'].isoformat(), len(new_flakes)))
else:
print_table(new_flakes, 'csv')
else:
raise ValueError(
'Invalid argument for --format: {}'.format(args.format))
if __name__ == '__main__':
main()