mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1334 lines
52 KiB
1334 lines
52 KiB
#!/usr/bin/env python3 |
|
# Copyright 2020 The gRPC Authors |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Script to extract build metadata from bazel BUILD. |
|
# To avoid having two sources of truth for the build metadata (build |
|
# targets, source files, header files etc.), this script analyzes the contents |
|
# of bazel BUILD files and generates a YAML file (currently called |
|
# build_autogenerated.yaml). The format and semantics of the generated YAML files |
|
# is chosen to match the format of a "build.yaml" file, which used |
|
# to be build the source of truth for gRPC build before bazel became |
|
# the primary build system. |
|
# A good basic overview of the "build.yaml" format is available here: |
|
# https://github.com/grpc/grpc/blob/master/templates/README.md. Note that |
|
# while useful as an overview, the doc does not act as formal spec |
|
# (formal spec does not exist in fact) and the doc can be incomplete, |
|
# inaccurate or slightly out of date. |
|
# TODO(jtattermusch): In the future we want to get rid of the legacy build.yaml |
|
# format entirely or simplify it to a point where it becomes self-explanatory |
|
# and doesn't need any detailed documentation. |
|
|
|
import collections |
|
import os |
|
import subprocess |
|
from typing import Any, Dict, Iterable, List, Optional |
|
import xml.etree.ElementTree as ET |
|
|
|
import build_cleaner |
|
|
|
BuildMetadata = Dict[str, Any] |
|
BuildDict = Dict[str, BuildMetadata] |
|
BuildYaml = Dict[str, Any] |
|
|
|
BuildMetadata = Dict[str, Any] |
|
BuildDict = Dict[str, BuildMetadata] |
|
BuildYaml = Dict[str, Any] |
|
|
|
|
|
class ExternalProtoLibrary: |
|
"""ExternalProtoLibrary is the struct about an external proto library. |
|
|
|
Fields: |
|
- destination(int): The relative path of this proto library should be. |
|
Preferably, it should match the submodule path. |
|
- proto_prefix(str): The prefix to remove in order to insure the proto import |
|
is correct. For more info, see description of |
|
https://github.com/grpc/grpc/pull/25272. |
|
- urls(List[str]): Following 3 fields should be filled by build metadata from |
|
Bazel. |
|
- hash(str): The hash of the downloaded archive |
|
- strip_prefix(str): The path to be stripped from the extracted directory, see |
|
http_archive in Bazel. |
|
""" |
|
|
|
def __init__( |
|
self, destination, proto_prefix, urls=None, hash="", strip_prefix="" |
|
): |
|
self.destination = destination |
|
self.proto_prefix = proto_prefix |
|
if urls is None: |
|
self.urls = [] |
|
else: |
|
self.urls = urls |
|
self.hash = hash |
|
self.strip_prefix = strip_prefix |
|
|
|
|
|
EXTERNAL_PROTO_LIBRARIES = { |
|
"envoy_api": ExternalProtoLibrary( |
|
destination="third_party/envoy-api", |
|
proto_prefix="third_party/envoy-api/", |
|
), |
|
"com_google_googleapis": ExternalProtoLibrary( |
|
destination="third_party/googleapis", |
|
proto_prefix="third_party/googleapis/", |
|
), |
|
"com_github_cncf_udpa": ExternalProtoLibrary( |
|
destination="third_party/xds", proto_prefix="third_party/xds/" |
|
), |
|
"opencensus_proto": ExternalProtoLibrary( |
|
destination="third_party/opencensus-proto/src", |
|
proto_prefix="third_party/opencensus-proto/src/", |
|
), |
|
} |
|
|
|
|
|
def _maybe_get_internal_path(name: str) -> Optional[str]: |
|
for key in EXTERNAL_PROTO_LIBRARIES: |
|
if name.startswith("@" + key): |
|
return key |
|
return None |
|
|
|
|
|
def _bazel_query_xml_tree(query: str) -> ET.Element: |
|
"""Get xml output of bazel query invocation, parsed as XML tree""" |
|
output = subprocess.check_output( |
|
["tools/bazel", "query", "--noimplicit_deps", "--output", "xml", query] |
|
) |
|
return ET.fromstring(output) |
|
|
|
|
|
def _rule_dict_from_xml_node(rule_xml_node): |
|
"""Converts XML node representing a rule (obtained from "bazel query --output xml") to a dictionary that contains all the metadata we will need.""" |
|
result = { |
|
"class": rule_xml_node.attrib.get("class"), |
|
"name": rule_xml_node.attrib.get("name"), |
|
"srcs": [], |
|
"hdrs": [], |
|
"deps": [], |
|
"data": [], |
|
"tags": [], |
|
"args": [], |
|
"generator_function": None, |
|
"size": None, |
|
"flaky": False, |
|
"actual": None, # the real target name for aliases |
|
} |
|
for child in rule_xml_node: |
|
# all the metadata we want is stored under "list" tags |
|
if child.tag == "list": |
|
list_name = child.attrib["name"] |
|
if list_name in ["srcs", "hdrs", "deps", "data", "tags", "args"]: |
|
result[list_name] += [item.attrib["value"] for item in child] |
|
if child.tag == "string": |
|
string_name = child.attrib["name"] |
|
if string_name in ["generator_function", "size"]: |
|
result[string_name] = child.attrib["value"] |
|
if child.tag == "boolean": |
|
bool_name = child.attrib["name"] |
|
if bool_name in ["flaky"]: |
|
result[bool_name] = child.attrib["value"] == "true" |
|
if child.tag == "label": |
|
# extract actual name for alias rules |
|
label_name = child.attrib["name"] |
|
if label_name in ["actual"]: |
|
actual_name = child.attrib.get("value", None) |
|
if actual_name: |
|
result["actual"] = actual_name |
|
# HACK: since we do a lot of transitive dependency scanning, |
|
# make it seem that the actual name is a dependency of the alias rule |
|
# (aliases don't have dependencies themselves) |
|
result["deps"].append(actual_name) |
|
return result |
|
|
|
|
|
def _extract_rules_from_bazel_xml(xml_tree): |
|
"""Extract bazel rules from an XML tree node obtained from "bazel query --output xml" command.""" |
|
result = {} |
|
for child in xml_tree: |
|
if child.tag == "rule": |
|
rule_dict = _rule_dict_from_xml_node(child) |
|
rule_clazz = rule_dict["class"] |
|
rule_name = rule_dict["name"] |
|
if rule_clazz in [ |
|
"cc_library", |
|
"cc_binary", |
|
"cc_test", |
|
"cc_proto_library", |
|
"cc_proto_gen_validate", |
|
"proto_library", |
|
"upb_proto_library", |
|
"upb_proto_reflection_library", |
|
"alias", |
|
]: |
|
if rule_name in result: |
|
raise Exception("Rule %s already present" % rule_name) |
|
result[rule_name] = rule_dict |
|
return result |
|
|
|
|
|
def _get_bazel_label(target_name: str) -> str: |
|
if target_name.startswith("@"): |
|
return target_name |
|
if ":" in target_name: |
|
return "//%s" % target_name |
|
else: |
|
return "//:%s" % target_name |
|
|
|
|
|
def _extract_source_file_path(label: str) -> str: |
|
"""Gets relative path to source file from bazel deps listing""" |
|
if label.startswith("//"): |
|
label = label[len("//") :] |
|
# labels in form //:src/core/lib/surface/call_test_only.h |
|
if label.startswith(":"): |
|
label = label[len(":") :] |
|
# labels in form //test/core/util:port.cc |
|
label = label.replace(":", "/") |
|
return label |
|
|
|
|
|
def _extract_public_headers(bazel_rule: BuildMetadata) -> List[str]: |
|
"""Gets list of public headers from a bazel rule""" |
|
result = [] |
|
for dep in bazel_rule["hdrs"]: |
|
if dep.startswith("//:include/") and dep.endswith(".h"): |
|
result.append(_extract_source_file_path(dep)) |
|
return list(sorted(result)) |
|
|
|
|
|
def _extract_nonpublic_headers(bazel_rule: BuildMetadata) -> List[str]: |
|
"""Gets list of non-public headers from a bazel rule""" |
|
result = [] |
|
for dep in bazel_rule["hdrs"]: |
|
if ( |
|
dep.startswith("//") |
|
and not dep.startswith("//:include/") |
|
and dep.endswith(".h") |
|
): |
|
result.append(_extract_source_file_path(dep)) |
|
return list(sorted(result)) |
|
|
|
|
|
def _extract_sources(bazel_rule: BuildMetadata) -> List[str]: |
|
"""Gets list of source files from a bazel rule""" |
|
result = [] |
|
for src in bazel_rule["srcs"]: |
|
if src.endswith(".cc") or src.endswith(".c") or src.endswith(".proto"): |
|
if src.startswith("//"): |
|
# This source file is local to gRPC |
|
result.append(_extract_source_file_path(src)) |
|
else: |
|
# This source file is external, and we need to translate the |
|
# @REPO_NAME to a valid path prefix. At this stage, we need |
|
# to check repo name, since the label/path mapping is not |
|
# available in BUILD files. |
|
external_proto_library_name = _maybe_get_internal_path(src) |
|
if external_proto_library_name is not None: |
|
result.append( |
|
src.replace( |
|
"@%s//" % external_proto_library_name, |
|
EXTERNAL_PROTO_LIBRARIES[ |
|
external_proto_library_name |
|
].proto_prefix, |
|
).replace(":", "/") |
|
) |
|
return list(sorted(result)) |
|
|
|
|
|
def _extract_deps( |
|
bazel_rule: BuildMetadata, bazel_rules: BuildDict |
|
) -> List[str]: |
|
"""Gets list of deps from from a bazel rule""" |
|
deps = set(bazel_rule["deps"]) |
|
for src in bazel_rule["srcs"]: |
|
if ( |
|
not src.endswith(".cc") |
|
and not src.endswith(".c") |
|
and not src.endswith(".proto") |
|
): |
|
if src in bazel_rules: |
|
# This label doesn't point to a source file, but another Bazel |
|
# target. This is required for :pkg_cc_proto_validate targets, |
|
# and it's generally allowed by Bazel. |
|
deps.add(src) |
|
return list(sorted(list(deps))) |
|
|
|
|
|
def _create_target_from_bazel_rule( |
|
target_name: str, bazel_rules: BuildDict |
|
) -> BuildMetadata: |
|
"""Create build.yaml-like target definition from bazel metadata""" |
|
bazel_rule = bazel_rules[_get_bazel_label(target_name)] |
|
|
|
# Create a template for our target from the bazel rule. Initially we only |
|
# populate some "private" fields with the original info we got from bazel |
|
# and only later we will populate the public fields (once we do some extra |
|
# postprocessing). |
|
result = { |
|
"name": target_name, |
|
"_PUBLIC_HEADERS_BAZEL": _extract_public_headers(bazel_rule), |
|
"_HEADERS_BAZEL": _extract_nonpublic_headers(bazel_rule), |
|
"_SRC_BAZEL": _extract_sources(bazel_rule), |
|
"_DEPS_BAZEL": _extract_deps(bazel_rule, bazel_rules), |
|
"public_headers": bazel_rule["_COLLAPSED_PUBLIC_HEADERS"], |
|
"headers": bazel_rule["_COLLAPSED_HEADERS"], |
|
"src": bazel_rule["_COLLAPSED_SRCS"], |
|
"deps": bazel_rule["_COLLAPSED_DEPS"], |
|
} |
|
return result |
|
|
|
|
|
def _external_dep_name_from_bazel_dependency(bazel_dep: str) -> Optional[str]: |
|
"""Returns name of dependency if external bazel dependency is provided or None""" |
|
if bazel_dep.startswith("@com_google_absl//"): |
|
# special case for add dependency on one of the absl libraries (there is not just one absl library) |
|
prefixlen = len("@com_google_absl//") |
|
return bazel_dep[prefixlen:] |
|
elif bazel_dep == "//external:upb_lib": |
|
return "upb" |
|
elif bazel_dep == "//external:benchmark": |
|
return "benchmark" |
|
elif bazel_dep == "//external:libssl": |
|
return "libssl" |
|
else: |
|
# all the other external deps such as protobuf, cares, zlib |
|
# don't need to be listed explicitly, they are handled automatically |
|
# by the build system (make, cmake) |
|
return None |
|
|
|
|
|
def _compute_transitive_metadata( |
|
rule_name: str, bazel_rules: Any, bazel_label_to_dep_name: Dict[str, str] |
|
) -> None: |
|
"""Computes the final build metadata for Bazel target with rule_name. |
|
|
|
The dependencies that will appear on the deps list are: |
|
|
|
* Public build targets including binaries and tests; |
|
* External targets, like absl, re2. |
|
|
|
All other intermediate dependencies will be merged, which means their |
|
source file, headers, etc. will be collected into one build target. This |
|
step of processing will greatly reduce the complexity of the generated |
|
build specifications for other build systems, like CMake, Make, setuptools. |
|
|
|
The final build metadata are: |
|
* _TRANSITIVE_DEPS: all the transitive dependencies including intermediate |
|
targets; |
|
* _COLLAPSED_DEPS: dependencies that fits our requirement above, and it |
|
will remove duplicated items and produce the shortest |
|
possible dependency list in alphabetical order; |
|
* _COLLAPSED_SRCS: the merged source files; |
|
* _COLLAPSED_PUBLIC_HEADERS: the merged public headers; |
|
* _COLLAPSED_HEADERS: the merged non-public headers; |
|
* _EXCLUDE_DEPS: intermediate targets to exclude when performing collapsing |
|
of sources and dependencies. |
|
|
|
For the collapsed_deps, the algorithm improved cases like: |
|
|
|
The result in the past: |
|
end2end_tests -> [grpc_test_util, grpc, gpr, address_sorting, upb] |
|
grpc_test_util -> [grpc, gpr, address_sorting, upb, ...] |
|
grpc -> [gpr, address_sorting, upb, ...] |
|
|
|
The result of the algorithm: |
|
end2end_tests -> [grpc_test_util] |
|
grpc_test_util -> [grpc] |
|
grpc -> [gpr, address_sorting, upb, ...] |
|
""" |
|
bazel_rule = bazel_rules[rule_name] |
|
direct_deps = _extract_deps(bazel_rule, bazel_rules) |
|
transitive_deps = set() |
|
collapsed_deps = set() |
|
exclude_deps = set() |
|
collapsed_srcs = set(_extract_sources(bazel_rule)) |
|
collapsed_public_headers = set(_extract_public_headers(bazel_rule)) |
|
collapsed_headers = set(_extract_nonpublic_headers(bazel_rule)) |
|
|
|
for dep in direct_deps: |
|
external_dep_name_maybe = _external_dep_name_from_bazel_dependency(dep) |
|
|
|
if dep in bazel_rules: |
|
# Descend recursively, but no need to do that for external deps |
|
if external_dep_name_maybe is None: |
|
if "_PROCESSING_DONE" not in bazel_rules[dep]: |
|
# This item is not processed before, compute now |
|
_compute_transitive_metadata( |
|
dep, bazel_rules, bazel_label_to_dep_name |
|
) |
|
transitive_deps.update( |
|
bazel_rules[dep].get("_TRANSITIVE_DEPS", []) |
|
) |
|
collapsed_deps.update( |
|
collapsed_deps, bazel_rules[dep].get("_COLLAPSED_DEPS", []) |
|
) |
|
exclude_deps.update(bazel_rules[dep].get("_EXCLUDE_DEPS", [])) |
|
|
|
# This dep is a public target, add it as a dependency |
|
if dep in bazel_label_to_dep_name: |
|
transitive_deps.update([bazel_label_to_dep_name[dep]]) |
|
collapsed_deps.update( |
|
collapsed_deps, [bazel_label_to_dep_name[dep]] |
|
) |
|
# Add all the transitive deps of our every public dep to exclude |
|
# list since we want to avoid building sources that are already |
|
# built by our dependencies |
|
exclude_deps.update(bazel_rules[dep]["_TRANSITIVE_DEPS"]) |
|
continue |
|
|
|
# This dep is an external target, add it as a dependency |
|
if external_dep_name_maybe is not None: |
|
transitive_deps.update([external_dep_name_maybe]) |
|
collapsed_deps.update(collapsed_deps, [external_dep_name_maybe]) |
|
continue |
|
|
|
# Direct dependencies are part of transitive dependencies |
|
transitive_deps.update(direct_deps) |
|
|
|
# Calculate transitive public deps (needed for collapsing sources) |
|
transitive_public_deps = set( |
|
[x for x in transitive_deps if x in bazel_label_to_dep_name] |
|
) |
|
|
|
# Remove intermediate targets that our public dependencies already depend |
|
# on. This is the step that further shorten the deps list. |
|
collapsed_deps = set([x for x in collapsed_deps if x not in exclude_deps]) |
|
|
|
# Compute the final source files and headers for this build target whose |
|
# name is `rule_name` (input argument of this function). |
|
# |
|
# Imaging a public target PX has transitive deps [IA, IB, PY, IC, PZ]. PX, |
|
# PY and PZ are public build targets. And IA, IB, IC are intermediate |
|
# targets. In addition, PY depends on IC. |
|
# |
|
# Translate the condition into dependency graph: |
|
# PX -> [IA, IB, PY, IC, PZ] |
|
# PY -> [IC] |
|
# Public targets: [PX, PY, PZ] |
|
# |
|
# The collapsed dependencies of PX: [PY, PZ]. |
|
# The excluded dependencies of X: [PY, IC, PZ]. |
|
# (IC is excluded as a dependency of PX. It is already included in PY, hence |
|
# it would be redundant to include it again.) |
|
# |
|
# Target PX should include source files and headers of [PX, IA, IB] as final |
|
# build metadata. |
|
for dep in transitive_deps: |
|
if dep not in exclude_deps and dep not in transitive_public_deps: |
|
if dep in bazel_rules: |
|
collapsed_srcs.update(_extract_sources(bazel_rules[dep])) |
|
collapsed_public_headers.update( |
|
_extract_public_headers(bazel_rules[dep]) |
|
) |
|
collapsed_headers.update( |
|
_extract_nonpublic_headers(bazel_rules[dep]) |
|
) |
|
# This item is a "visited" flag |
|
bazel_rule["_PROCESSING_DONE"] = True |
|
# Following items are described in the docstinrg. |
|
bazel_rule["_TRANSITIVE_DEPS"] = list(sorted(transitive_deps)) |
|
bazel_rule["_COLLAPSED_DEPS"] = list(sorted(collapsed_deps)) |
|
bazel_rule["_COLLAPSED_SRCS"] = list(sorted(collapsed_srcs)) |
|
bazel_rule["_COLLAPSED_PUBLIC_HEADERS"] = list( |
|
sorted(collapsed_public_headers) |
|
) |
|
bazel_rule["_COLLAPSED_HEADERS"] = list(sorted(collapsed_headers)) |
|
bazel_rule["_EXCLUDE_DEPS"] = list(sorted(exclude_deps)) |
|
|
|
|
|
# TODO(jtattermusch): deduplicate with transitive_dependencies.py (which has a |
|
# slightly different logic) |
|
# TODO(jtattermusch): This is done to avoid introducing too many intermediate |
|
# libraries into the build.yaml-based builds (which might in cause issues |
|
# building language-specific artifacts) and also because the libraries in |
|
# build.yaml-based build are generally considered units of distributions (= |
|
# public libraries that are visible to the user and are installable), while in |
|
# bazel builds it is customary to define larger number of smaller |
|
# "sublibraries". The need for elision (and expansion) of intermediate libraries |
|
# can be re-evaluated in the future. |
|
def _populate_transitive_metadata( |
|
bazel_rules: Any, public_dep_names: Iterable[str] |
|
) -> None: |
|
"""Add 'transitive_deps' field for each of the rules""" |
|
# Create the map between Bazel label and public dependency name |
|
bazel_label_to_dep_name = {} |
|
for dep_name in public_dep_names: |
|
bazel_label_to_dep_name[_get_bazel_label(dep_name)] = dep_name |
|
|
|
# Make sure we reached all the Bazel rules |
|
# TODO(lidiz) potentially we could only update a subset of rules |
|
for rule_name in bazel_rules: |
|
if "_PROCESSING_DONE" not in bazel_rules[rule_name]: |
|
_compute_transitive_metadata( |
|
rule_name, bazel_rules, bazel_label_to_dep_name |
|
) |
|
|
|
|
|
def update_test_metadata_with_transitive_metadata( |
|
all_extra_metadata: BuildDict, bazel_rules: BuildDict |
|
) -> None: |
|
"""Patches test build metadata with transitive metadata.""" |
|
for lib_name, lib_dict in list(all_extra_metadata.items()): |
|
# Skip if it isn't not an test |
|
if lib_dict.get("build") != "test" or lib_dict.get("_TYPE") != "target": |
|
continue |
|
|
|
bazel_rule = bazel_rules[_get_bazel_label(lib_name)] |
|
|
|
if "//external:benchmark" in bazel_rule["_TRANSITIVE_DEPS"]: |
|
lib_dict["benchmark"] = True |
|
lib_dict["defaults"] = "benchmark" |
|
|
|
if "//external:gtest" in bazel_rule["_TRANSITIVE_DEPS"]: |
|
lib_dict["gtest"] = True |
|
lib_dict["language"] = "c++" |
|
|
|
|
|
def _get_transitive_protos(bazel_rules, t): |
|
que = [ |
|
t, |
|
] |
|
visited = set() |
|
ret = [] |
|
while que: |
|
name = que.pop(0) |
|
rule = bazel_rules.get(name, None) |
|
if rule: |
|
for dep in rule["deps"]: |
|
if dep not in visited: |
|
visited.add(dep) |
|
que.append(dep) |
|
for src in rule["srcs"]: |
|
if src.endswith(".proto"): |
|
ret.append(src) |
|
return list(set(ret)) |
|
|
|
|
|
def _expand_upb_proto_library_rules(bazel_rules): |
|
# Expand the .proto files from UPB proto library rules into the pre-generated |
|
# upb.h and upb.c files. |
|
GEN_UPB_ROOT = "//:src/core/ext/upb-generated/" |
|
GEN_UPBDEFS_ROOT = "//:src/core/ext/upbdefs-generated/" |
|
EXTERNAL_LINKS = [ |
|
("@com_google_protobuf//", "src/"), |
|
("@com_google_googleapis//", ""), |
|
("@com_github_cncf_udpa//", ""), |
|
("@com_envoyproxy_protoc_gen_validate//", ""), |
|
("@envoy_api//", ""), |
|
("@opencensus_proto//", ""), |
|
] |
|
for name, bazel_rule in bazel_rules.items(): |
|
gen_func = bazel_rule.get("generator_function", None) |
|
if gen_func in ( |
|
"grpc_upb_proto_library", |
|
"grpc_upb_proto_reflection_library", |
|
): |
|
# get proto dependency |
|
deps = bazel_rule["deps"] |
|
if len(deps) != 1: |
|
raise Exception( |
|
'upb rule "{0}" should have 1 proto dependency but has' |
|
' "{1}"'.format(name, deps) |
|
) |
|
# deps is not properly fetched from bazel query for upb_proto_library target |
|
# so add the upb dependency manually |
|
bazel_rule["deps"] = [ |
|
"//external:upb_lib", |
|
"//external:upb_lib_descriptor", |
|
"//external:upb_generated_code_support__only_for_generated_code_do_not_use__i_give_permission_to_break_me", |
|
] |
|
# populate the upb_proto_library rule with pre-generated upb headers |
|
# and sources using proto_rule |
|
protos = _get_transitive_protos(bazel_rules, deps[0]) |
|
if len(protos) == 0: |
|
raise Exception( |
|
'upb rule "{0}" should have at least one proto file.'.format( |
|
name |
|
) |
|
) |
|
srcs = [] |
|
hdrs = [] |
|
for proto_src in protos: |
|
for external_link in EXTERNAL_LINKS: |
|
if proto_src.startswith(external_link[0]): |
|
prefix_to_strip = external_link[0] + external_link[1] |
|
if not proto_src.startswith(prefix_to_strip): |
|
raise Exception( |
|
'Source file "{0}" in upb rule {1} does not' |
|
' have the expected prefix "{2}"'.format( |
|
proto_src, name, prefix_to_strip |
|
) |
|
) |
|
proto_src = proto_src[len(prefix_to_strip) :] |
|
break |
|
if proto_src.startswith("@"): |
|
raise Exception('"{0}" is unknown workspace.'.format(name)) |
|
proto_src = _extract_source_file_path(proto_src) |
|
ext = ( |
|
".upb" |
|
if gen_func == "grpc_upb_proto_library" |
|
else ".upbdefs" |
|
) |
|
root = ( |
|
GEN_UPB_ROOT |
|
if gen_func == "grpc_upb_proto_library" |
|
else GEN_UPBDEFS_ROOT |
|
) |
|
srcs.append(root + proto_src.replace(".proto", ext + ".c")) |
|
hdrs.append(root + proto_src.replace(".proto", ext + ".h")) |
|
bazel_rule["srcs"] = srcs |
|
bazel_rule["hdrs"] = hdrs |
|
|
|
|
|
def _generate_build_metadata( |
|
build_extra_metadata: BuildDict, bazel_rules: BuildDict |
|
) -> BuildDict: |
|
"""Generate build metadata in build.yaml-like format bazel build metadata and build.yaml-specific "extra metadata".""" |
|
lib_names = list(build_extra_metadata.keys()) |
|
result = {} |
|
|
|
for lib_name in lib_names: |
|
lib_dict = _create_target_from_bazel_rule(lib_name, bazel_rules) |
|
|
|
# populate extra properties from the build.yaml-specific "extra metadata" |
|
lib_dict.update(build_extra_metadata.get(lib_name, {})) |
|
|
|
# store to results |
|
result[lib_name] = lib_dict |
|
|
|
# Rename targets marked with "_RENAME" extra metadata. |
|
# This is mostly a cosmetic change to ensure that we end up with build.yaml target |
|
# names we're used to from the past (and also to avoid too long target names). |
|
# The rename step needs to be made after we're done with most of processing logic |
|
# otherwise the already-renamed libraries will have different names than expected |
|
for lib_name in lib_names: |
|
to_name = build_extra_metadata.get(lib_name, {}).get("_RENAME", None) |
|
if to_name: |
|
# store lib under the new name and also change its 'name' property |
|
if to_name in result: |
|
raise Exception( |
|
"Cannot rename target " |
|
+ str(lib_name) |
|
+ ", " |
|
+ str(to_name) |
|
+ " already exists." |
|
) |
|
lib_dict = result.pop(lib_name) |
|
lib_dict["name"] = to_name |
|
result[to_name] = lib_dict |
|
|
|
# dep names need to be updated as well |
|
for lib_dict_to_update in list(result.values()): |
|
lib_dict_to_update["deps"] = list( |
|
[ |
|
to_name if dep == lib_name else dep |
|
for dep in lib_dict_to_update["deps"] |
|
] |
|
) |
|
|
|
return result |
|
|
|
|
|
def _convert_to_build_yaml_like(lib_dict: BuildMetadata) -> BuildYaml: |
|
lib_names = [ |
|
lib_name |
|
for lib_name in list(lib_dict.keys()) |
|
if lib_dict[lib_name].get("_TYPE", "library") == "library" |
|
] |
|
target_names = [ |
|
lib_name |
|
for lib_name in list(lib_dict.keys()) |
|
if lib_dict[lib_name].get("_TYPE", "library") == "target" |
|
] |
|
test_names = [ |
|
lib_name |
|
for lib_name in list(lib_dict.keys()) |
|
if lib_dict[lib_name].get("_TYPE", "library") == "test" |
|
] |
|
|
|
# list libraries and targets in predefined order |
|
lib_list = [lib_dict[lib_name] for lib_name in lib_names] |
|
target_list = [lib_dict[lib_name] for lib_name in target_names] |
|
test_list = [lib_dict[lib_name] for lib_name in test_names] |
|
|
|
# get rid of temporary private fields prefixed with "_" and some other useless fields |
|
for lib in lib_list: |
|
for field_to_remove in [ |
|
k for k in list(lib.keys()) if k.startswith("_") |
|
]: |
|
lib.pop(field_to_remove, None) |
|
for target in target_list: |
|
for field_to_remove in [ |
|
k for k in list(target.keys()) if k.startswith("_") |
|
]: |
|
target.pop(field_to_remove, None) |
|
target.pop( |
|
"public_headers", None |
|
) # public headers make no sense for targets |
|
for test in test_list: |
|
for field_to_remove in [ |
|
k for k in list(test.keys()) if k.startswith("_") |
|
]: |
|
test.pop(field_to_remove, None) |
|
test.pop( |
|
"public_headers", None |
|
) # public headers make no sense for tests |
|
|
|
build_yaml_like = { |
|
"libs": lib_list, |
|
"filegroups": [], |
|
"targets": target_list, |
|
"tests": test_list, |
|
} |
|
return build_yaml_like |
|
|
|
|
|
def _extract_cc_tests(bazel_rules: BuildDict) -> List[str]: |
|
"""Gets list of cc_test tests from bazel rules""" |
|
result = [] |
|
for bazel_rule in list(bazel_rules.values()): |
|
if bazel_rule["class"] == "cc_test": |
|
test_name = bazel_rule["name"] |
|
if test_name.startswith("//"): |
|
prefixlen = len("//") |
|
result.append(test_name[prefixlen:]) |
|
return list(sorted(result)) |
|
|
|
|
|
def _exclude_unwanted_cc_tests(tests: List[str]) -> List[str]: |
|
"""Filters out bazel tests that we don't want to run with other build systems or we cannot build them reasonably""" |
|
|
|
# most qps tests are autogenerated, we are fine without them |
|
tests = [test for test in tests if not test.startswith("test/cpp/qps:")] |
|
# microbenchmarks aren't needed for checking correctness |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/cpp/microbenchmarks:") |
|
] |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/core/promise/benchmark:") |
|
] |
|
|
|
# we have trouble with census dependency outside of bazel |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/cpp/ext/filters/census:") |
|
and not test.startswith("test/core/xds:xds_channel_stack_modifier_test") |
|
and not test.startswith("test/cpp/ext/gcp:") |
|
and not test.startswith("test/cpp/ext/filters/logging:") |
|
and not test.startswith("test/cpp/interop:observability_interop") |
|
] |
|
|
|
# we have not added otel dependency outside of bazel |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/cpp/ext/filters/otel:") |
|
] |
|
|
|
# missing opencensus/stats/stats.h |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith( |
|
"test/cpp/end2end:server_load_reporting_end2end_test" |
|
) |
|
] |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith( |
|
"test/cpp/server/load_reporter:lb_load_reporter_test" |
|
) |
|
] |
|
|
|
# The test uses --running_under_bazel cmdline argument |
|
# To avoid the trouble needing to adjust it, we just skip the test |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith( |
|
"test/cpp/naming:resolver_component_tests_runner_invoker" |
|
) |
|
] |
|
|
|
# the test requires 'client_crash_test_server' to be built |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/cpp/end2end:time_change_test") |
|
] |
|
|
|
# the test requires 'client_crash_test_server' to be built |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/cpp/end2end:client_crash_test") |
|
] |
|
|
|
# the test requires 'server_crash_test_client' to be built |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/cpp/end2end:server_crash_test") |
|
] |
|
|
|
# test never existed under build.yaml and it fails -> skip it |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/core/tsi:ssl_session_cache_test") |
|
] |
|
|
|
# the binary of this test does not get built with cmake |
|
tests = [ |
|
test |
|
for test in tests |
|
if not test.startswith("test/cpp/util:channelz_sampler_test") |
|
] |
|
|
|
# we don't need to generate fuzzers outside of bazel |
|
tests = [test for test in tests if not test.endswith("_fuzzer")] |
|
|
|
return tests |
|
|
|
|
|
def _generate_build_extra_metadata_for_tests( |
|
tests: List[str], bazel_rules: BuildDict |
|
) -> BuildDict: |
|
"""For given tests, generate the "extra metadata" that we need for our "build.yaml"-like output. The extra metadata is generated from the bazel rule metadata by using a bunch of heuristics.""" |
|
test_metadata = {} |
|
for test in tests: |
|
test_dict = {"build": "test", "_TYPE": "target"} |
|
|
|
bazel_rule = bazel_rules[_get_bazel_label(test)] |
|
|
|
bazel_tags = bazel_rule["tags"] |
|
if "manual" in bazel_tags: |
|
# don't run the tests marked as "manual" |
|
test_dict["run"] = False |
|
|
|
if bazel_rule["flaky"]: |
|
# don't run tests that are marked as "flaky" under bazel |
|
# because that would only add noise for the run_tests.py tests |
|
# and seeing more failures for tests that we already know are flaky |
|
# doesn't really help anything |
|
test_dict["run"] = False |
|
|
|
if "no_uses_polling" in bazel_tags: |
|
test_dict["uses_polling"] = False |
|
|
|
if "grpc_fuzzer" == bazel_rule["generator_function"]: |
|
# currently we hand-list fuzzers instead of generating them automatically |
|
# because there's no way to obtain maxlen property from bazel BUILD file. |
|
print(("skipping fuzzer " + test)) |
|
continue |
|
|
|
if "bazel_only" in bazel_tags: |
|
continue |
|
|
|
# if any tags that restrict platform compatibility are present, |
|
# generate the "platforms" field accordingly |
|
# TODO(jtattermusch): there is also a "no_linux" tag, but we cannot take |
|
# it into account as it is applied by grpc_cc_test when poller expansion |
|
# is made (for tests where uses_polling=True). So for now, we just |
|
# assume all tests are compatible with linux and ignore the "no_linux" tag |
|
# completely. |
|
known_platform_tags = set(["no_windows", "no_mac"]) |
|
if set(bazel_tags).intersection(known_platform_tags): |
|
platforms = [] |
|
# assume all tests are compatible with linux and posix |
|
platforms.append("linux") |
|
platforms.append( |
|
"posix" |
|
) # there is no posix-specific tag in bazel BUILD |
|
if "no_mac" not in bazel_tags: |
|
platforms.append("mac") |
|
if "no_windows" not in bazel_tags: |
|
platforms.append("windows") |
|
test_dict["platforms"] = platforms |
|
|
|
cmdline_args = bazel_rule["args"] |
|
if cmdline_args: |
|
test_dict["args"] = list(cmdline_args) |
|
|
|
if test.startswith("test/cpp"): |
|
test_dict["language"] = "c++" |
|
|
|
elif test.startswith("test/core"): |
|
test_dict["language"] = "c" |
|
else: |
|
raise Exception("wrong test" + test) |
|
|
|
# short test name without the path. |
|
# There can be name collisions, but we will resolve them later |
|
simple_test_name = os.path.basename(_extract_source_file_path(test)) |
|
test_dict["_RENAME"] = simple_test_name |
|
|
|
test_metadata[test] = test_dict |
|
|
|
# detect duplicate test names |
|
tests_by_simple_name = {} |
|
for test_name, test_dict in list(test_metadata.items()): |
|
simple_test_name = test_dict["_RENAME"] |
|
if simple_test_name not in tests_by_simple_name: |
|
tests_by_simple_name[simple_test_name] = [] |
|
tests_by_simple_name[simple_test_name].append(test_name) |
|
|
|
# choose alternative names for tests with a name collision |
|
for collision_list in list(tests_by_simple_name.values()): |
|
if len(collision_list) > 1: |
|
for test_name in collision_list: |
|
long_name = test_name.replace("/", "_").replace(":", "_") |
|
print( |
|
'short name of "%s" collides with another test, renaming' |
|
" to %s" % (test_name, long_name) |
|
) |
|
test_metadata[test_name]["_RENAME"] = long_name |
|
|
|
return test_metadata |
|
|
|
|
|
def _parse_http_archives(xml_tree: ET.Element) -> "List[ExternalProtoLibrary]": |
|
"""Parse Bazel http_archive rule into ExternalProtoLibrary objects.""" |
|
result = [] |
|
for xml_http_archive in xml_tree: |
|
if ( |
|
xml_http_archive.tag != "rule" |
|
or xml_http_archive.attrib["class"] != "http_archive" |
|
): |
|
continue |
|
# A distilled Python representation of Bazel http_archive |
|
http_archive = dict() |
|
for xml_node in xml_http_archive: |
|
if xml_node.attrib["name"] == "name": |
|
http_archive["name"] = xml_node.attrib["value"] |
|
if xml_node.attrib["name"] == "urls": |
|
http_archive["urls"] = [] |
|
for url_node in xml_node: |
|
http_archive["urls"].append(url_node.attrib["value"]) |
|
if xml_node.attrib["name"] == "url": |
|
http_archive["urls"] = [xml_node.attrib["value"]] |
|
if xml_node.attrib["name"] == "sha256": |
|
http_archive["hash"] = xml_node.attrib["value"] |
|
if xml_node.attrib["name"] == "strip_prefix": |
|
http_archive["strip_prefix"] = xml_node.attrib["value"] |
|
if http_archive["name"] not in EXTERNAL_PROTO_LIBRARIES: |
|
# If this http archive is not one of the external proto libraries, |
|
# we don't want to include it as a CMake target |
|
continue |
|
lib = EXTERNAL_PROTO_LIBRARIES[http_archive["name"]] |
|
lib.urls = http_archive["urls"] |
|
lib.hash = http_archive["hash"] |
|
lib.strip_prefix = http_archive["strip_prefix"] |
|
result.append(lib) |
|
return result |
|
|
|
|
|
def _generate_external_proto_libraries() -> List[Dict[str, Any]]: |
|
"""Generates the build metadata for external proto libraries""" |
|
xml_tree = _bazel_query_xml_tree("kind(http_archive, //external:*)") |
|
libraries = _parse_http_archives(xml_tree) |
|
libraries.sort(key=lambda x: x.destination) |
|
return list(map(lambda x: x.__dict__, libraries)) |
|
|
|
|
|
def _detect_and_print_issues(build_yaml_like: BuildYaml) -> None: |
|
"""Try detecting some unusual situations and warn about them.""" |
|
for tgt in build_yaml_like["targets"]: |
|
if tgt["build"] == "test": |
|
for src in tgt["src"]: |
|
if src.startswith("src/") and not src.endswith(".proto"): |
|
print( |
|
( |
|
'source file from under "src/" tree used in test ' |
|
+ tgt["name"] |
|
+ ": " |
|
+ src |
|
) |
|
) |
|
|
|
|
|
# extra metadata that will be used to construct build.yaml |
|
# there are mostly extra properties that we weren't able to obtain from the bazel build |
|
# _TYPE: whether this is library, target or test |
|
# _RENAME: whether this target should be renamed to a different name (to match expectations of make and cmake builds) |
|
_BUILD_EXTRA_METADATA = { |
|
"third_party/address_sorting:address_sorting": { |
|
"language": "c", |
|
"build": "all", |
|
"_RENAME": "address_sorting", |
|
}, |
|
"gpr": { |
|
"language": "c", |
|
"build": "all", |
|
}, |
|
"grpc": { |
|
"language": "c", |
|
"build": "all", |
|
"baselib": True, |
|
"generate_plugin_registry": True, |
|
}, |
|
"grpc++": { |
|
"language": "c++", |
|
"build": "all", |
|
"baselib": True, |
|
}, |
|
"grpc++_alts": {"language": "c++", "build": "all", "baselib": True}, |
|
"grpc++_error_details": {"language": "c++", "build": "all"}, |
|
"grpc++_reflection": {"language": "c++", "build": "all"}, |
|
"grpc_authorization_provider": {"language": "c++", "build": "all"}, |
|
"grpc++_unsecure": { |
|
"language": "c++", |
|
"build": "all", |
|
"baselib": True, |
|
}, |
|
"grpc_unsecure": { |
|
"language": "c", |
|
"build": "all", |
|
"baselib": True, |
|
"generate_plugin_registry": True, |
|
}, |
|
"grpcpp_channelz": {"language": "c++", "build": "all"}, |
|
"grpc++_test": { |
|
"language": "c++", |
|
"build": "private", |
|
}, |
|
"src/compiler:grpc_plugin_support": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_RENAME": "grpc_plugin_support", |
|
}, |
|
"src/compiler:grpc_cpp_plugin": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_cpp_plugin", |
|
}, |
|
"src/compiler:grpc_csharp_plugin": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_csharp_plugin", |
|
}, |
|
"src/compiler:grpc_node_plugin": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_node_plugin", |
|
}, |
|
"src/compiler:grpc_objective_c_plugin": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_objective_c_plugin", |
|
}, |
|
"src/compiler:grpc_php_plugin": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_php_plugin", |
|
}, |
|
"src/compiler:grpc_python_plugin": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_python_plugin", |
|
}, |
|
"src/compiler:grpc_ruby_plugin": { |
|
"language": "c++", |
|
"build": "protoc", |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_ruby_plugin", |
|
}, |
|
# TODO(jtattermusch): consider adding grpc++_core_stats |
|
# test support libraries |
|
"test/core/util:grpc_test_util": { |
|
"language": "c", |
|
"build": "private", |
|
"_RENAME": "grpc_test_util", |
|
}, |
|
"test/core/util:grpc_test_util_unsecure": { |
|
"language": "c", |
|
"build": "private", |
|
"_RENAME": "grpc_test_util_unsecure", |
|
}, |
|
# TODO(jtattermusch): consider adding grpc++_test_util_unsecure - it doesn't seem to be used by bazel build (don't forget to set secure: False) |
|
"test/cpp/util:test_config": { |
|
"language": "c++", |
|
"build": "private", |
|
"_RENAME": "grpc++_test_config", |
|
}, |
|
"test/cpp/util:test_util": { |
|
"language": "c++", |
|
"build": "private", |
|
"_RENAME": "grpc++_test_util", |
|
}, |
|
# benchmark support libraries |
|
"test/cpp/microbenchmarks:helpers": { |
|
"language": "c++", |
|
"build": "test", |
|
"defaults": "benchmark", |
|
"_RENAME": "benchmark_helpers", |
|
}, |
|
"test/cpp/interop:interop_client": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "interop_client", |
|
}, |
|
"test/cpp/interop:interop_server": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "interop_server", |
|
}, |
|
"test/cpp/interop:xds_interop_client": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "xds_interop_client", |
|
}, |
|
"test/cpp/interop:xds_interop_server": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "xds_interop_server", |
|
}, |
|
"test/cpp/interop:http2_client": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "http2_client", |
|
}, |
|
"test/cpp/qps:qps_json_driver": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "qps_json_driver", |
|
}, |
|
"test/cpp/qps:qps_worker": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "qps_worker", |
|
}, |
|
"test/cpp/util:grpc_cli": { |
|
"language": "c++", |
|
"build": "test", |
|
"run": False, |
|
"_TYPE": "target", |
|
"_RENAME": "grpc_cli", |
|
}, |
|
# TODO(jtattermusch): create_jwt and verify_jwt breaks distribtests because it depends on grpc_test_utils and thus requires tests to be built |
|
# For now it's ok to disable them as these binaries aren't very useful anyway. |
|
# 'test/core/security:create_jwt': { 'language': 'c', 'build': 'tool', '_TYPE': 'target', '_RENAME': 'grpc_create_jwt' }, |
|
# 'test/core/security:verify_jwt': { 'language': 'c', 'build': 'tool', '_TYPE': 'target', '_RENAME': 'grpc_verify_jwt' }, |
|
# TODO(jtattermusch): add remaining tools such as grpc_print_google_default_creds_token (they are not used by bazel build) |
|
# TODO(jtattermusch): these fuzzers had no build.yaml equivalent |
|
# test/core/compression:message_compress_fuzzer |
|
# test/core/compression:message_decompress_fuzzer |
|
# test/core/compression:stream_compression_fuzzer |
|
# test/core/compression:stream_decompression_fuzzer |
|
# test/core/slice:b64_decode_fuzzer |
|
# test/core/slice:b64_encode_fuzzer |
|
} |
|
|
|
# We need a complete picture of all the targets and dependencies we're interested in |
|
# so we run multiple bazel queries and merge the results. |
|
_BAZEL_DEPS_QUERIES = [ |
|
'deps("//test/...")', |
|
'deps("//:all")', |
|
'deps("//src/compiler/...")', |
|
# The ^ is needed to differentiate proto_library from go_proto_library |
|
'deps(kind("^proto_library", @envoy_api//envoy/...))', |
|
] |
|
|
|
# Step 1: run a bunch of "bazel query --output xml" queries to collect |
|
# the raw build metadata from the bazel build. |
|
# At the end of this step we will have a dictionary of bazel rules |
|
# that are interesting to us (libraries, binaries, etc.) along |
|
# with their most important metadata (sources, headers, dependencies) |
|
# |
|
# Example of a single bazel rule after being populated: |
|
# '//:grpc' : { 'class': 'cc_library', |
|
# 'hdrs': ['//:include/grpc/byte_buffer.h', ... ], |
|
# 'srcs': ['//:src/core/lib/surface/init.cc', ... ], |
|
# 'deps': ['//:grpc_common', ...], |
|
# ... } |
|
bazel_rules = {} |
|
for query in _BAZEL_DEPS_QUERIES: |
|
bazel_rules.update( |
|
_extract_rules_from_bazel_xml(_bazel_query_xml_tree(query)) |
|
) |
|
|
|
# Step 1.5: The sources for UPB protos are pre-generated, so we want |
|
# to expand the UPB proto library bazel rules into the generated |
|
# .upb.h and .upb.c files. |
|
_expand_upb_proto_library_rules(bazel_rules) |
|
|
|
# Step 2: Extract the known bazel cc_test tests. While most tests |
|
# will be buildable with other build systems just fine, some of these tests |
|
# would be too difficult to build and run with other build systems, |
|
# so we simply exclude the ones we don't want. |
|
# Note that while making tests buildable with other build systems |
|
# than just bazel is extra effort, we still need to do that for these |
|
# reasons: |
|
# - If our cmake build doesn't have any tests at all, it's hard to make |
|
# sure that what it built actually works (we need at least some "smoke tests"). |
|
# This is quite important because the build flags between bazel / non-bazel flag might differ |
|
# (sometimes it's for interesting reasons that are not easy to overcome) |
|
# which makes it even more important to have at least some tests for cmake/make |
|
# - Our portability suite actually runs cmake tests and migration of portability |
|
# suite fully towards bazel might be intricate (e.g. it's unclear whether it's |
|
# possible to get a good enough coverage of different compilers / distros etc. |
|
# with bazel) |
|
# - some things that are considered "tests" in build.yaml-based builds are actually binaries |
|
# we'd want to be able to build anyway (qps_json_worker, interop_client, interop_server, grpc_cli) |
|
# so it's unclear how much make/cmake simplification we would gain by removing just some (but not all) test |
|
# TODO(jtattermusch): Investigate feasibility of running portability suite with bazel. |
|
tests = _exclude_unwanted_cc_tests(_extract_cc_tests(bazel_rules)) |
|
|
|
# Step 3: Generate the "extra metadata" for all our build targets. |
|
# While the bazel rules give us most of the information we need, |
|
# the legacy "build.yaml" format requires some additional fields that |
|
# we cannot get just from bazel alone (we call that "extra metadata"). |
|
# In this step, we basically analyze the build metadata we have from bazel |
|
# and use heuristics to determine (and sometimes guess) the right |
|
# extra metadata to use for each target. |
|
# |
|
# - For some targets (such as the public libraries, helper libraries |
|
# and executables) determining the right extra metadata is hard to do |
|
# automatically. For these targets, the extra metadata is supplied "manually" |
|
# in form of the _BUILD_EXTRA_METADATA dictionary. That allows us to match |
|
# the semantics of the legacy "build.yaml" as closely as possible. |
|
# |
|
# - For test binaries, it is possible to generate the "extra metadata" mostly |
|
# automatically using a rule-based heuristic approach because most tests |
|
# look and behave alike from the build's perspective. |
|
# |
|
# TODO(jtattermusch): Of course neither "_BUILD_EXTRA_METADATA" or |
|
# the heuristic approach used for tests are ideal and they cannot be made |
|
# to cover all possible situations (and are tailored to work with the way |
|
# the grpc build currently works), but the idea was to start with something |
|
# reasonably simple that matches the "build.yaml"-like semantics as closely |
|
# as possible (to avoid changing too many things at once) and gradually get |
|
# rid of the legacy "build.yaml"-specific fields one by one. Once that is done, |
|
# only very little "extra metadata" would be needed and/or it would be trivial |
|
# to generate it automatically. |
|
all_extra_metadata = {} |
|
all_extra_metadata.update(_BUILD_EXTRA_METADATA) |
|
all_extra_metadata.update( |
|
_generate_build_extra_metadata_for_tests(tests, bazel_rules) |
|
) |
|
|
|
# Step 4: Compute the build metadata that will be used in the final build.yaml. |
|
# The final build metadata includes transitive dependencies, and sources/headers |
|
# expanded without intermediate dependencies. |
|
# Example: |
|
# '//:grpc' : { ..., |
|
# '_TRANSITIVE_DEPS': ['//:gpr_base', ...], |
|
# '_COLLAPSED_DEPS': ['gpr', ...], |
|
# '_COLLAPSED_SRCS': [...], |
|
# '_COLLAPSED_PUBLIC_HEADERS': [...], |
|
# '_COLLAPSED_HEADERS': [...] |
|
# } |
|
_populate_transitive_metadata(bazel_rules, list(all_extra_metadata.keys())) |
|
|
|
# Step 4a: Update the existing test metadata with the updated build metadata. |
|
# Certain build metadata of certain test targets depend on the transitive |
|
# metadata that wasn't available earlier. |
|
update_test_metadata_with_transitive_metadata(all_extra_metadata, bazel_rules) |
|
|
|
# Step 5: Generate the final metadata for all the targets. |
|
# This is done by combining the bazel build metadata and the "extra metadata" |
|
# we obtained in the previous step. |
|
# In this step, we also perform some interesting massaging of the target metadata |
|
# to end up with a result that is as similar to the legacy build.yaml data |
|
# as possible. |
|
# - Some targets get renamed (to match the legacy build.yaml target names) |
|
# - Some intermediate libraries get elided ("expanded") to better match the set |
|
# of targets provided by the legacy build.yaml build |
|
# |
|
# Originally the target renaming was introduced to address these concerns: |
|
# - avoid changing too many things at the same time and avoid people getting |
|
# confused by some well know targets suddenly being missing |
|
# - Makefile/cmake and also language-specific generators rely on some build |
|
# targets being called exactly the way they they are. Some of our testing |
|
# scrips also invoke executables (e.g. "qps_json_driver") by their name. |
|
# - The autogenerated test name from bazel includes the package path |
|
# (e.g. "test_cpp_TEST_NAME"). Without renaming, the target names would |
|
# end up pretty ugly (e.g. test_cpp_qps_qps_json_driver). |
|
# TODO(jtattermusch): reevaluate the need for target renaming in the future. |
|
# |
|
# Example of a single generated target: |
|
# 'grpc' : { 'language': 'c', |
|
# 'public_headers': ['include/grpc/byte_buffer.h', ... ], |
|
# 'headers': ['src/core/ext/filters/client_channel/client_channel.h', ... ], |
|
# 'src': ['src/core/lib/surface/init.cc', ... ], |
|
# 'deps': ['gpr', 'address_sorting', ...], |
|
# ... } |
|
all_targets_dict = _generate_build_metadata(all_extra_metadata, bazel_rules) |
|
|
|
# Step 6: convert the dictionary with all the targets to a dict that has |
|
# the desired "build.yaml"-like layout. |
|
# TODO(jtattermusch): We use the custom "build.yaml"-like layout because |
|
# currently all other build systems use that format as their source of truth. |
|
# In the future, we can get rid of this custom & legacy format entirely, |
|
# but we would need to update the generators for other build systems |
|
# at the same time. |
|
# |
|
# Layout of the result: |
|
# { 'libs': { TARGET_DICT_FOR_LIB_XYZ, ... }, |
|
# 'targets': { TARGET_DICT_FOR_BIN_XYZ, ... }, |
|
# 'tests': { TARGET_DICT_FOR_TEST_XYZ, ...} } |
|
build_yaml_like = _convert_to_build_yaml_like(all_targets_dict) |
|
|
|
# Step 7: generates build metadata for external ProtoBuf libraries. |
|
# We only want the ProtoBuf sources from these ProtoBuf dependencies, which may |
|
# not be present in our release source tar balls. These rules will be used in CMake |
|
# to download these libraries if not existed. Even if the download failed, it |
|
# will be a soft error that doesn't block existing target from successfully |
|
# built. |
|
build_yaml_like[ |
|
"external_proto_libraries" |
|
] = _generate_external_proto_libraries() |
|
|
|
# detect and report some suspicious situations we've seen before |
|
_detect_and_print_issues(build_yaml_like) |
|
|
|
# Step 7: Store the build_autogenerated.yaml in a deterministic (=sorted) |
|
# and cleaned-up form. |
|
# A basic overview of the resulting "build.yaml"-like format is here: |
|
# https://github.com/grpc/grpc/blob/master/templates/README.md |
|
# TODO(jtattermusch): The "cleanup" function is taken from the legacy |
|
# build system (which used build.yaml) and can be eventually removed. |
|
build_yaml_string = build_cleaner.cleaned_build_yaml_dict_as_string( |
|
build_yaml_like |
|
) |
|
with open("build_autogenerated.yaml", "w") as file: |
|
file.write(build_yaml_string)
|
|
|