mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
13 KiB
394 lines
13 KiB
#!/usr/bin/env python3 |
|
# Copyright 2016 gRPC authors. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Uploads performance benchmark result file to bigquery. |
|
|
|
import argparse |
|
import calendar |
|
import json |
|
import os |
|
import sys |
|
import time |
|
import uuid |
|
|
|
gcp_utils_dir = os.path.abspath( |
|
os.path.join(os.path.dirname(__file__), "../../gcp/utils") |
|
) |
|
sys.path.append(gcp_utils_dir) |
|
import big_query_utils |
|
|
|
_PROJECT_ID = "grpc-testing" |
|
|
|
|
|
def _upload_netperf_latency_csv_to_bigquery(dataset_id, table_id, result_file): |
|
with open(result_file, "r") as f: |
|
(col1, col2, col3) = f.read().split(",") |
|
latency50 = float(col1.strip()) * 1000 |
|
latency90 = float(col2.strip()) * 1000 |
|
latency99 = float(col3.strip()) * 1000 |
|
|
|
scenario_result = { |
|
"scenario": {"name": "netperf_tcp_rr"}, |
|
"summary": { |
|
"latency50": latency50, |
|
"latency90": latency90, |
|
"latency99": latency99, |
|
}, |
|
} |
|
|
|
bq = big_query_utils.create_big_query() |
|
_create_results_table(bq, dataset_id, table_id) |
|
|
|
if not _insert_result( |
|
bq, dataset_id, table_id, scenario_result, flatten=False |
|
): |
|
print("Error uploading result to bigquery.") |
|
sys.exit(1) |
|
|
|
|
|
def _upload_scenario_result_to_bigquery( |
|
dataset_id, |
|
table_id, |
|
result_file, |
|
metadata_file, |
|
node_info_file, |
|
prometheus_query_results_file, |
|
): |
|
with open(result_file, "r") as f: |
|
scenario_result = json.loads(f.read()) |
|
|
|
bq = big_query_utils.create_big_query() |
|
_create_results_table(bq, dataset_id, table_id) |
|
|
|
if not _insert_scenario_result( |
|
bq, |
|
dataset_id, |
|
table_id, |
|
scenario_result, |
|
metadata_file, |
|
node_info_file, |
|
prometheus_query_results_file, |
|
): |
|
print("Error uploading result to bigquery.") |
|
sys.exit(1) |
|
|
|
|
|
def _insert_result(bq, dataset_id, table_id, scenario_result, flatten=True): |
|
if flatten: |
|
_flatten_result_inplace(scenario_result) |
|
_populate_metadata_inplace(scenario_result) |
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result) |
|
return big_query_utils.insert_rows( |
|
bq, _PROJECT_ID, dataset_id, table_id, [row] |
|
) |
|
|
|
|
|
def _insert_scenario_result( |
|
bq, |
|
dataset_id, |
|
table_id, |
|
scenario_result, |
|
test_metadata_file, |
|
node_info_file, |
|
prometheus_query_results_file, |
|
flatten=True, |
|
): |
|
if flatten: |
|
_flatten_result_inplace(scenario_result) |
|
_populate_metadata_from_file(scenario_result, test_metadata_file) |
|
_populate_node_metadata_from_file(scenario_result, node_info_file) |
|
_populate_prometheus_query_results_from_file( |
|
scenario_result, prometheus_query_results_file |
|
) |
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result) |
|
return big_query_utils.insert_rows( |
|
bq, _PROJECT_ID, dataset_id, table_id, [row] |
|
) |
|
|
|
|
|
def _create_results_table(bq, dataset_id, table_id): |
|
with open( |
|
os.path.dirname(__file__) + "/scenario_result_schema.json", "r" |
|
) as f: |
|
table_schema = json.loads(f.read()) |
|
desc = "Results of performance benchmarks." |
|
return big_query_utils.create_table2( |
|
bq, _PROJECT_ID, dataset_id, table_id, table_schema, desc |
|
) |
|
|
|
|
|
def _flatten_result_inplace(scenario_result): |
|
"""Bigquery is not really great for handling deeply nested data |
|
and repeated fields. To maintain values of some fields while keeping |
|
the schema relatively simple, we artificially leave some of the fields |
|
as JSON strings. |
|
""" |
|
scenario_result["scenario"]["clientConfig"] = json.dumps( |
|
scenario_result["scenario"]["clientConfig"] |
|
) |
|
scenario_result["scenario"]["serverConfig"] = json.dumps( |
|
scenario_result["scenario"]["serverConfig"] |
|
) |
|
scenario_result["latencies"] = json.dumps(scenario_result["latencies"]) |
|
scenario_result["serverCpuStats"] = [] |
|
for stats in scenario_result["serverStats"]: |
|
scenario_result["serverCpuStats"].append(dict()) |
|
scenario_result["serverCpuStats"][-1]["totalCpuTime"] = stats.pop( |
|
"totalCpuTime", None |
|
) |
|
scenario_result["serverCpuStats"][-1]["idleCpuTime"] = stats.pop( |
|
"idleCpuTime", None |
|
) |
|
for stats in scenario_result["clientStats"]: |
|
stats["latencies"] = json.dumps(stats["latencies"]) |
|
stats.pop("requestResults", None) |
|
scenario_result["serverCores"] = json.dumps(scenario_result["serverCores"]) |
|
scenario_result["clientSuccess"] = json.dumps( |
|
scenario_result["clientSuccess"] |
|
) |
|
scenario_result["serverSuccess"] = json.dumps( |
|
scenario_result["serverSuccess"] |
|
) |
|
scenario_result["requestResults"] = json.dumps( |
|
scenario_result.get("requestResults", []) |
|
) |
|
scenario_result["serverCpuUsage"] = scenario_result["summary"].pop( |
|
"serverCpuUsage", None |
|
) |
|
scenario_result["summary"].pop("successfulRequestsPerSecond", None) |
|
scenario_result["summary"].pop("failedRequestsPerSecond", None) |
|
|
|
|
|
def _populate_metadata_inplace(scenario_result): |
|
"""Populates metadata based on environment variables set by Jenkins.""" |
|
# NOTE: Grabbing the Kokoro environment variables will only work if the |
|
# driver is running locally on the same machine where Kokoro has started |
|
# the job. For our setup, this is currently the case, so just assume that. |
|
build_number = os.getenv("KOKORO_BUILD_NUMBER") |
|
build_url = ( |
|
"https://source.cloud.google.com/results/invocations/%s" |
|
% os.getenv("KOKORO_BUILD_ID") |
|
) |
|
job_name = os.getenv("KOKORO_JOB_NAME") |
|
git_commit = os.getenv("KOKORO_GIT_COMMIT") |
|
# actual commit is the actual head of PR that is getting tested |
|
# TODO(jtattermusch): unclear how to obtain on Kokoro |
|
git_actual_commit = os.getenv("ghprbActualCommit") |
|
|
|
utc_timestamp = str(calendar.timegm(time.gmtime())) |
|
metadata = {"created": utc_timestamp} |
|
|
|
if build_number: |
|
metadata["buildNumber"] = build_number |
|
if build_url: |
|
metadata["buildUrl"] = build_url |
|
if job_name: |
|
metadata["jobName"] = job_name |
|
if git_commit: |
|
metadata["gitCommit"] = git_commit |
|
if git_actual_commit: |
|
metadata["gitActualCommit"] = git_actual_commit |
|
|
|
scenario_result["metadata"] = metadata |
|
|
|
|
|
def _populate_metadata_from_file(scenario_result, test_metadata_file): |
|
utc_timestamp = str(calendar.timegm(time.gmtime())) |
|
metadata = {"created": utc_timestamp} |
|
|
|
_annotation_to_bq_metadata_key_map = { |
|
"ci_" + key: key |
|
for key in ( |
|
"buildNumber", |
|
"buildUrl", |
|
"jobName", |
|
"gitCommit", |
|
"gitActualCommit", |
|
) |
|
} |
|
|
|
if os.access(test_metadata_file, os.R_OK): |
|
with open(test_metadata_file, "r") as f: |
|
test_metadata = json.loads(f.read()) |
|
|
|
# eliminate managedFields from metadata set |
|
if "managedFields" in test_metadata: |
|
del test_metadata["managedFields"] |
|
|
|
annotations = test_metadata.get("annotations", {}) |
|
|
|
# if use kubectl apply ..., kubectl will append current configuration to |
|
# annotation, the field is deleted since it includes a lot of irrelevant |
|
# information |
|
if "kubectl.kubernetes.io/last-applied-configuration" in annotations: |
|
del annotations["kubectl.kubernetes.io/last-applied-configuration"] |
|
|
|
# dump all metadata as JSON to testMetadata field |
|
scenario_result["testMetadata"] = json.dumps(test_metadata) |
|
for key, value in _annotation_to_bq_metadata_key_map.items(): |
|
if key in annotations: |
|
metadata[value] = annotations[key] |
|
|
|
scenario_result["metadata"] = metadata |
|
|
|
|
|
def _populate_node_metadata_from_file(scenario_result, node_info_file): |
|
node_metadata = {"driver": {}, "servers": [], "clients": []} |
|
_node_info_to_bq_node_metadata_key_map = { |
|
"Name": "name", |
|
"PodIP": "podIP", |
|
"NodeName": "nodeName", |
|
} |
|
|
|
if os.access(node_info_file, os.R_OK): |
|
with open(node_info_file, "r") as f: |
|
file_metadata = json.loads(f.read()) |
|
for key, value in _node_info_to_bq_node_metadata_key_map.items(): |
|
node_metadata["driver"][value] = file_metadata["Driver"][key] |
|
for clientNodeInfo in file_metadata["Clients"]: |
|
node_metadata["clients"].append( |
|
{ |
|
value: clientNodeInfo[key] |
|
for key, value in _node_info_to_bq_node_metadata_key_map.items() |
|
} |
|
) |
|
for serverNodeInfo in file_metadata["Servers"]: |
|
node_metadata["servers"].append( |
|
{ |
|
value: serverNodeInfo[key] |
|
for key, value in _node_info_to_bq_node_metadata_key_map.items() |
|
} |
|
) |
|
|
|
scenario_result["nodeMetadata"] = node_metadata |
|
|
|
|
|
def _populate_prometheus_query_results_from_file( |
|
scenario_result, prometheus_query_result_file |
|
): |
|
"""Populate the results from Prometheus query to Bigquery table""" |
|
if os.access(prometheus_query_result_file, os.R_OK): |
|
with open(prometheus_query_result_file, "r", encoding="utf8") as f: |
|
file_query_results = json.loads(f.read()) |
|
|
|
scenario_result["testDurationSeconds"] = file_query_results[ |
|
"testDurationSeconds" |
|
] |
|
clientsPrometheusData = [] |
|
if "clients" in file_query_results: |
|
for client_name, client_data in file_query_results[ |
|
"clients" |
|
].items(): |
|
clientPrometheusData = {"name": client_name} |
|
containersPrometheusData = [] |
|
for container_name, container_data in client_data.items(): |
|
containerPrometheusData = { |
|
"name": container_name, |
|
"cpuSeconds": container_data["cpuSeconds"], |
|
"memoryMean": container_data["memoryMean"], |
|
} |
|
containersPrometheusData.append(containerPrometheusData) |
|
clientPrometheusData[ |
|
"containers" |
|
] = containersPrometheusData |
|
clientsPrometheusData.append(clientPrometheusData) |
|
scenario_result["clientsPrometheusData"] = clientsPrometheusData |
|
|
|
serversPrometheusData = [] |
|
if "servers" in file_query_results: |
|
for server_name, server_data in file_query_results[ |
|
"servers" |
|
].items(): |
|
serverPrometheusData = {"name": server_name} |
|
containersPrometheusData = [] |
|
for container_name, container_data in server_data.items(): |
|
containerPrometheusData = { |
|
"name": container_name, |
|
"cpuSeconds": container_data["cpuSeconds"], |
|
"memoryMean": container_data["memoryMean"], |
|
} |
|
containersPrometheusData.append(containerPrometheusData) |
|
serverPrometheusData[ |
|
"containers" |
|
] = containersPrometheusData |
|
serversPrometheusData.append(serverPrometheusData) |
|
scenario_result["serversPrometheusData"] = serversPrometheusData |
|
|
|
|
|
argp = argparse.ArgumentParser(description="Upload result to big query.") |
|
argp.add_argument( |
|
"--bq_result_table", |
|
required=True, |
|
default=None, |
|
type=str, |
|
help='Bigquery "dataset.table" to upload results to.', |
|
) |
|
argp.add_argument( |
|
"--file_to_upload", |
|
default="scenario_result.json", |
|
type=str, |
|
help="Report file to upload.", |
|
) |
|
argp.add_argument( |
|
"--metadata_file_to_upload", |
|
default="metadata.json", |
|
type=str, |
|
help="Metadata file to upload.", |
|
) |
|
argp.add_argument( |
|
"--node_info_file_to_upload", |
|
default="node_info.json", |
|
type=str, |
|
help="Node information file to upload.", |
|
) |
|
argp.add_argument( |
|
"--prometheus_query_results_to_upload", |
|
default="prometheus_query_result.json", |
|
type=str, |
|
help="Prometheus query result file to upload.", |
|
) |
|
argp.add_argument( |
|
"--file_format", |
|
choices=["scenario_result", "netperf_latency_csv"], |
|
default="scenario_result", |
|
help="Format of the file to upload.", |
|
) |
|
|
|
args = argp.parse_args() |
|
|
|
dataset_id, table_id = args.bq_result_table.split(".", 2) |
|
|
|
if args.file_format == "netperf_latency_csv": |
|
_upload_netperf_latency_csv_to_bigquery( |
|
dataset_id, table_id, args.file_to_upload |
|
) |
|
else: |
|
_upload_scenario_result_to_bigquery( |
|
dataset_id, |
|
table_id, |
|
args.file_to_upload, |
|
args.metadata_file_to_upload, |
|
args.node_info_file_to_upload, |
|
args.prometheus_query_results_to_upload, |
|
) |
|
print( |
|
"Successfully uploaded %s, %s, %s and %s to BigQuery.\n" |
|
% ( |
|
args.file_to_upload, |
|
args.metadata_file_to_upload, |
|
args.node_info_file_to_upload, |
|
args.prometheus_query_results_to_upload, |
|
) |
|
)
|
|
|