The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1607 lines
71 KiB

// Copyright 2017 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <numeric>
#include <string>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "src/core/ext/filters/client_channel/backup_poller.h"
#include "test/cpp/end2end/xds/xds_end2end_test_lib.h"
namespace grpc {
namespace testing {
namespace {
using ::envoy::config::cluster::v3::CircuitBreakers;
using ::envoy::config::cluster::v3::RoutingPriority;
using ::envoy::config::endpoint::v3::HealthStatus;
using ::envoy::type::v3::FractionalPercent;
using ClientStats = LrsServiceImpl::ClientStats;
constexpr char kLbDropType[] = "lb";
constexpr char kThrottleDropType[] = "throttle";
//
// CDS tests
//
using CdsTest = XdsEnd2endTest;
INSTANTIATE_TEST_SUITE_P(XdsTest, CdsTest, ::testing::Values(XdsTestType()),
&XdsTestType::Name);
// Tests that CDS client should send an ACK upon correct CDS response.
TEST_P(CdsTest, Vanilla) {
(void)SendRpc();
auto response_state = balancer_->ads_service()->cds_response_state();
ASSERT_TRUE(response_state.has_value());
EXPECT_EQ(response_state->state, AdsServiceImpl::ResponseState::ACKED);
}
// Tests that CDS client should send a NACK if the cluster type in CDS
// response is unsupported.
TEST_P(CdsTest, UnsupportedClusterType) {
auto cluster = default_cluster_;
cluster.set_type(Cluster::STATIC);
balancer_->ads_service()->SetCdsResource(cluster);
const auto response_state = WaitForCdsNack(DEBUG_LOCATION);
ASSERT_TRUE(response_state.has_value()) << "timed out waiting for NACK";
EXPECT_THAT(response_state->error_message,
::testing::HasSubstr("DiscoveryType is not valid."));
}
// Tests that we don't trigger does-not-exist callbacks for a resource
// that was previously valid but is updated to be invalid.
TEST_P(CdsTest, InvalidClusterStillExistsIfPreviouslyCached) {
CreateAndStartBackends(1);
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Check that everything works.
CheckRpcSendOk(DEBUG_LOCATION);
// Now send an update changing the Cluster to be invalid.
auto cluster = default_cluster_;
cluster.set_type(Cluster::STATIC);
balancer_->ads_service()->SetCdsResource(cluster);
const auto response_state = WaitForCdsNack(DEBUG_LOCATION, StatusCode::OK);
ASSERT_TRUE(response_state.has_value()) << "timed out waiting for NACK";
EXPECT_THAT(response_state->error_message,
::testing::ContainsRegex(absl::StrCat(
kDefaultClusterName,
": validation error.*DiscoveryType is not valid")));
CheckRpcSendOk(DEBUG_LOCATION);
}
// Tests that CDS client should send a NACK if the eds_config in CDS response
// is other than ADS or SELF.
TEST_P(CdsTest, EdsConfigSourceDoesNotSpecifyAdsOrSelf) {
auto cluster = default_cluster_;
cluster.mutable_eds_cluster_config()->mutable_eds_config()->set_path(
"/foo/bar");
balancer_->ads_service()->SetCdsResource(cluster);
const auto response_state = WaitForCdsNack(DEBUG_LOCATION);
ASSERT_TRUE(response_state.has_value()) << "timed out waiting for NACK";
EXPECT_THAT(response_state->error_message,
::testing::HasSubstr("EDS ConfigSource is not ADS or SELF."));
}
// Tests that CDS client accepts an eds_config of type ADS.
TEST_P(CdsTest, AcceptsEdsConfigSourceOfTypeAds) {
CreateAndStartBackends(1);
auto cluster = default_cluster_;
cluster.mutable_eds_cluster_config()->mutable_eds_config()->mutable_ads();
balancer_->ads_service()->SetCdsResource(cluster);
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForAllBackends(DEBUG_LOCATION);
auto response_state = balancer_->ads_service()->cds_response_state();
ASSERT_TRUE(response_state.has_value());
EXPECT_EQ(response_state->state, AdsServiceImpl::ResponseState::ACKED);
}
// Tests that CDS client should send a NACK if the lb_policy in CDS response
// is other than ROUND_ROBIN.
TEST_P(CdsTest, WrongLbPolicy) {
auto cluster = default_cluster_;
cluster.set_lb_policy(Cluster::LEAST_REQUEST);
balancer_->ads_service()->SetCdsResource(cluster);
const auto response_state = WaitForCdsNack(DEBUG_LOCATION);
ASSERT_TRUE(response_state.has_value()) << "timed out waiting for NACK";
EXPECT_THAT(response_state->error_message,
::testing::HasSubstr("LB policy is not supported."));
}
// Tests that CDS client should send a NACK if the lrs_server in CDS response
// is other than SELF.
TEST_P(CdsTest, WrongLrsServer) {
auto cluster = default_cluster_;
cluster.mutable_lrs_server()->mutable_ads();
balancer_->ads_service()->SetCdsResource(cluster);
const auto response_state = WaitForCdsNack(DEBUG_LOCATION);
ASSERT_TRUE(response_state.has_value()) << "timed out waiting for NACK";
EXPECT_THAT(response_state->error_message,
::testing::HasSubstr("LRS ConfigSource is not self."));
}
// Tests round robin is not implacted by the endpoint weight, and that the
// localities in a locality map are picked according to their weights.
TEST_P(CdsTest, EndpointWeightDoesNotImpactWeightedRoundRobin) {
CreateAndStartBackends(2);
const int kLocalityWeight0 = 2;
const int kLocalityWeight1 = 8;
const int kTotalLocalityWeight = kLocalityWeight0 + kLocalityWeight1;
const double kLocalityWeightRate0 =
static_cast<double>(kLocalityWeight0) / kTotalLocalityWeight;
const double kLocalityWeightRate1 =
static_cast<double>(kLocalityWeight1) / kTotalLocalityWeight;
const double kErrorTolerance = 0.05;
const size_t kNumRpcs =
ComputeIdealNumRpcs(kLocalityWeightRate0, kErrorTolerance);
// ADS response contains 2 localities, each of which contains 1 backend.
EdsResourceArgs args({
{"locality0",
{CreateEndpoint(0, HealthStatus::UNKNOWN, 8)},
kLocalityWeight0},
{"locality1",
{CreateEndpoint(1, HealthStatus::UNKNOWN, 2)},
kLocalityWeight1},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for both backends to be ready.
WaitForAllBackends(DEBUG_LOCATION, 0, 2);
// Send kNumRpcs RPCs.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcs);
// The locality picking rates should be roughly equal to the expectation.
const double locality_picked_rate_0 =
static_cast<double>(backends_[0]->backend_service()->request_count()) /
kNumRpcs;
const double locality_picked_rate_1 =
static_cast<double>(backends_[1]->backend_service()->request_count()) /
kNumRpcs;
EXPECT_THAT(locality_picked_rate_0,
::testing::DoubleNear(kLocalityWeightRate0, kErrorTolerance));
EXPECT_THAT(locality_picked_rate_1,
::testing::DoubleNear(kLocalityWeightRate1, kErrorTolerance));
}
// In most of our tests, we use different names for different resource
// types, to make sure that there are no cut-and-paste errors in the code
// that cause us to look at data for the wrong resource type. So we add
// this test to make sure that the EDS resource name defaults to the
// cluster name if not specified in the CDS resource.
TEST_P(CdsTest, EdsServiceNameDefaultsToClusterName) {
CreateAndStartBackends(1);
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(
BuildEdsResource(args, kDefaultClusterName));
Cluster cluster = default_cluster_;
cluster.mutable_eds_cluster_config()->clear_service_name();
balancer_->ads_service()->SetCdsResource(cluster);
CheckRpcSendOk(DEBUG_LOCATION);
}
// Tests switching over from one cluster to another.
TEST_P(CdsTest, ChangeClusters) {
CreateAndStartBackends(2);
const char* kNewClusterName = "new_cluster_name";
const char* kNewEdsServiceName = "new_eds_service_name";
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends(0, 1)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// We need to wait for all backends to come online.
WaitForAllBackends(DEBUG_LOCATION, 0, 1);
// Populate new EDS resource.
args = EdsResourceArgs({{"locality0", CreateEndpointsForBackends(1, 2)}});
balancer_->ads_service()->SetEdsResource(
BuildEdsResource(args, kNewEdsServiceName));
// Populate new CDS resource.
Cluster new_cluster = default_cluster_;
new_cluster.set_name(kNewClusterName);
new_cluster.mutable_eds_cluster_config()->set_service_name(
kNewEdsServiceName);
balancer_->ads_service()->SetCdsResource(new_cluster);
// Change RDS resource to point to new cluster.
RouteConfiguration new_route_config = default_route_config_;
new_route_config.mutable_virtual_hosts(0)
->mutable_routes(0)
->mutable_route()
->set_cluster(kNewClusterName);
SetListenerAndRouteConfiguration(balancer_.get(), default_listener_,
new_route_config);
// Wait for all new backends to be used.
WaitForAllBackends(DEBUG_LOCATION, 1, 2);
}
// Tests that we go into TRANSIENT_FAILURE if the Cluster disappears.
TEST_P(CdsTest, ClusterRemoved) {
CreateAndStartBackends(1);
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// We need to wait for all backends to come online.
WaitForAllBackends(DEBUG_LOCATION);
// Unset CDS resource.
balancer_->ads_service()->UnsetResource(kCdsTypeUrl, kDefaultClusterName);
// Wait for RPCs to start failing.
do {
} while (SendRpc(RpcOptions(), nullptr).ok());
// Make sure RPCs are still failing.
CheckRpcSendFailure(DEBUG_LOCATION,
CheckRpcSendFailureOptions().set_times(1000));
// Make sure we ACK'ed the update.
auto response_state = balancer_->ads_service()->cds_response_state();
ASSERT_TRUE(response_state.has_value());
EXPECT_EQ(response_state->state, AdsServiceImpl::ResponseState::ACKED);
}
TEST_P(CdsTest, CircuitBreaking) {
CreateAndStartBackends(1);
constexpr size_t kMaxConcurrentRequests = 10;
// Populate new EDS resources.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Update CDS resource to set max concurrent request.
CircuitBreakers circuit_breaks;
Cluster cluster = default_cluster_;
auto* threshold = cluster.mutable_circuit_breakers()->add_thresholds();
threshold->set_priority(RoutingPriority::DEFAULT);
threshold->mutable_max_requests()->set_value(kMaxConcurrentRequests);
balancer_->ads_service()->SetCdsResource(cluster);
// Send exactly max_concurrent_requests long RPCs.
LongRunningRpc rpcs[kMaxConcurrentRequests];
for (size_t i = 0; i < kMaxConcurrentRequests; ++i) {
rpcs[i].StartRpc(stub_.get());
}
// Wait for all RPCs to be in flight.
while (backends_[0]->backend_service()->RpcsWaitingForClientCancel() <
kMaxConcurrentRequests) {
gpr_sleep_until(gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_micros(1 * 1000, GPR_TIMESPAN)));
}
// Sending a RPC now should fail, the error message should tell us
// we hit the max concurrent requests limit and got dropped.
Status status = SendRpc();
EXPECT_FALSE(status.ok());
EXPECT_EQ(status.error_message(), "circuit breaker drop");
// Cancel one RPC to allow another one through
rpcs[0].CancelRpc();
status = SendRpc();
EXPECT_TRUE(status.ok());
for (size_t i = 1; i < kMaxConcurrentRequests; ++i) {
rpcs[i].CancelRpc();
}
}
TEST_P(CdsTest, CircuitBreakingMultipleChannelsShareCallCounter) {
CreateAndStartBackends(1);
constexpr size_t kMaxConcurrentRequests = 10;
// Populate new EDS resources.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Update CDS resource to set max concurrent request.
CircuitBreakers circuit_breaks;
Cluster cluster = default_cluster_;
auto* threshold = cluster.mutable_circuit_breakers()->add_thresholds();
threshold->set_priority(RoutingPriority::DEFAULT);
threshold->mutable_max_requests()->set_value(kMaxConcurrentRequests);
balancer_->ads_service()->SetCdsResource(cluster);
auto channel2 = CreateChannel();
auto stub2 = grpc::testing::EchoTestService::NewStub(channel2);
// Send exactly max_concurrent_requests long RPCs, alternating between
// the two channels.
LongRunningRpc rpcs[kMaxConcurrentRequests];
for (size_t i = 0; i < kMaxConcurrentRequests; ++i) {
rpcs[i].StartRpc(i % 2 == 0 ? stub_.get() : stub2.get());
}
// Wait for all RPCs to be in flight.
while (backends_[0]->backend_service()->RpcsWaitingForClientCancel() <
kMaxConcurrentRequests) {
gpr_sleep_until(gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_micros(1 * 1000, GPR_TIMESPAN)));
}
// Sending a RPC now should fail, the error message should tell us
// we hit the max concurrent requests limit and got dropped.
Status status = SendRpc();
EXPECT_FALSE(status.ok());
EXPECT_EQ(status.error_message(), "circuit breaker drop");
// Cancel one RPC to allow another one through
rpcs[0].CancelRpc();
status = SendRpc();
EXPECT_TRUE(status.ok());
for (size_t i = 1; i < kMaxConcurrentRequests; ++i) {
rpcs[i].CancelRpc();
}
}
TEST_P(CdsTest, ClusterChangeAfterAdsCallFails) {
CreateAndStartBackends(2);
const char* kNewEdsResourceName = "new_eds_resource_name";
// Populate EDS resources.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends(0, 1)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Check that the channel is working.
CheckRpcSendOk(DEBUG_LOCATION);
// Stop and restart the balancer.
balancer_->Shutdown();
balancer_->Start();
// Create new EDS resource.
args = EdsResourceArgs({{"locality0", CreateEndpointsForBackends(1, 2)}});
balancer_->ads_service()->SetEdsResource(
BuildEdsResource(args, kNewEdsResourceName));
// Change CDS resource to point to new EDS resource.
auto cluster = default_cluster_;
cluster.mutable_eds_cluster_config()->set_service_name(kNewEdsResourceName);
balancer_->ads_service()->SetCdsResource(cluster);
// Make sure client sees the change.
// TODO(roth): This should not be allowing errors. The errors are
// being caused by a bug that triggers in the following situation:
//
// 1. xDS call fails.
// 2. When xDS call is restarted, the server sends the updated CDS
// resource that points to the new EDS resource name.
// 3. When the client receives the CDS update, it does two things:
// - Sends the update to the CDS LB policy, which creates a new
// xds_cluster_resolver policy using the new EDS service name.
// - Notices that the CDS update no longer refers to the old EDS
// service name, so removes that resource, notifying the old
// xds_cluster_resolver policy that the resource no longer exists.
//
// Need to figure out a way to fix this bug, and then change this to
// not allow failures.
WaitForBackend(DEBUG_LOCATION, 1,
WaitForBackendOptions().set_allow_failures(true));
}
//
// EDS tests
//
using EdsTest = XdsEnd2endTest;
INSTANTIATE_TEST_SUITE_P(
XdsTest, EdsTest,
::testing::Values(XdsTestType(), XdsTestType().set_enable_load_reporting()),
&XdsTestType::Name);
// Tests that the balancer sends the correct response to the client, and the
// client sends RPCs to the backends using the default child policy.
TEST_P(EdsTest, Vanilla) {
CreateAndStartBackends(3);
const size_t kNumRpcsPerAddress = 100;
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends()},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// We need to wait for all backends to come online.
WaitForAllBackends(DEBUG_LOCATION);
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcsPerAddress * backends_.size());
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress,
backends_[i]->backend_service()->request_count());
}
// Check LB policy name for the channel.
EXPECT_EQ("xds_cluster_manager_experimental",
channel_->GetLoadBalancingPolicyName());
}
TEST_P(EdsTest, IgnoresUnhealthyEndpoints) {
CreateAndStartBackends(2);
const size_t kNumRpcsPerAddress = 100;
auto endpoints = CreateEndpointsForBackends();
endpoints.push_back(MakeNonExistantEndpoint());
endpoints.back().health_status = HealthStatus::DRAINING;
EdsResourceArgs args({
{"locality0", std::move(endpoints), kDefaultLocalityWeight,
kDefaultLocalityPriority},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// We need to wait for all backends to come online.
WaitForAllBackends(DEBUG_LOCATION);
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcsPerAddress * backends_.size());
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress,
backends_[i]->backend_service()->request_count());
}
}
// Tests that subchannel sharing works when the same backend is listed
// multiple times.
TEST_P(EdsTest, SameBackendListedMultipleTimes) {
CreateAndStartBackends(1);
// Same backend listed twice.
auto endpoints = CreateEndpointsForBackends();
endpoints.push_back(endpoints.front());
EdsResourceArgs args({{"locality0", endpoints}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// We need to wait for the backend to come online.
WaitForAllBackends(DEBUG_LOCATION);
// Send kNumRpcsPerAddress RPCs per server.
const size_t kNumRpcsPerAddress = 10;
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcsPerAddress * endpoints.size());
// Backend should have gotten 20 requests.
EXPECT_EQ(kNumRpcsPerAddress * endpoints.size(),
backends_[0]->backend_service()->request_count());
}
// Tests that RPCs will be blocked until a non-empty serverlist is received.
TEST_P(EdsTest, InitiallyEmptyServerlist) {
CreateAndStartBackends(1);
// First response is an empty serverlist.
EdsResourceArgs::Locality empty_locality("locality0", {});
EdsResourceArgs args({std::move(empty_locality)});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// RPCs should fail.
CheckRpcSendFailure(DEBUG_LOCATION);
// Send non-empty serverlist.
args = EdsResourceArgs({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// RPCs should eventually succeed.
WaitForAllBackends(DEBUG_LOCATION, 0, 1,
WaitForBackendOptions().set_allow_failures(true));
}
// Tests that RPCs will fail with UNAVAILABLE instead of DEADLINE_EXCEEDED if
// all the servers are unreachable.
TEST_P(EdsTest, AllServersUnreachableFailFast) {
// Set Rpc timeout to 5 seconds to ensure there is enough time
// for communication with the xDS server to take place upon test start up.
const uint32_t kRpcTimeoutMs = 5000;
const size_t kNumUnreachableServers = 5;
std::vector<EdsResourceArgs::Endpoint> endpoints;
for (size_t i = 0; i < kNumUnreachableServers; ++i) {
endpoints.emplace_back(MakeNonExistantEndpoint());
}
EdsResourceArgs args({{"locality0", std::move(endpoints)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
const Status status = SendRpc(RpcOptions().set_timeout_ms(kRpcTimeoutMs));
// The error shouldn't be DEADLINE_EXCEEDED because timeout is set to 5
// seconds, and we should disocver in that time that the target backend is
// down.
EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code());
}
// Tests that RPCs fail when the backends are down, and will succeed again
// after the backends are restarted.
TEST_P(EdsTest, BackendsRestart) {
CreateAndStartBackends(3);
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForAllBackends(DEBUG_LOCATION);
// Stop backends. RPCs should fail.
ShutdownAllBackends();
// Sending multiple failed requests instead of just one to ensure that the
// client notices that all backends are down before we restart them. If we
// didn't do this, then a single RPC could fail here due to the race
// condition between the LB pick and the GOAWAY from the chosen backend
// being shut down, which would not actually prove that the client noticed
// that all of the backends are down. Then, when we send another request
// below (which we expect to succeed), if the callbacks happen in the wrong
// order, the same race condition could happen again due to the client not
// yet having noticed that the backends were all down.
CheckRpcSendFailure(DEBUG_LOCATION,
CheckRpcSendFailureOptions().set_times(backends_.size()));
// Restart all backends. RPCs should start succeeding again.
StartAllBackends();
CheckRpcSendOk(DEBUG_LOCATION, 1,
RpcOptions().set_timeout_ms(2000).set_wait_for_ready(true));
}
TEST_P(EdsTest, IgnoresDuplicateUpdates) {
CreateAndStartBackends(1);
const size_t kNumRpcsPerAddress = 100;
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends()},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for all backends to come online.
WaitForAllBackends(DEBUG_LOCATION);
// Send kNumRpcsPerAddress RPCs per server, but send an EDS update in
// between. If the update is not ignored, this will cause the
// round_robin policy to see an update, which will randomly reset its
// position in the address list.
for (size_t i = 0; i < kNumRpcsPerAddress; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, 2);
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
CheckRpcSendOk(DEBUG_LOCATION, 2);
}
// Each backend should have gotten the right number of requests.
for (size_t i = 1; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress,
backends_[i]->backend_service()->request_count());
}
}
// Tests that EDS client should send a NACK if the EDS update contains
// sparse priorities.
TEST_P(EdsTest, NacksSparsePriorityList) {
EdsResourceArgs args({
{"locality0", {MakeNonExistantEndpoint()}, kDefaultLocalityWeight, 1},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
const auto response_state = WaitForEdsNack(DEBUG_LOCATION);
ASSERT_TRUE(response_state.has_value()) << "timed out waiting for NACK";
EXPECT_THAT(response_state->error_message,
::testing::HasSubstr("sparse priority list"));
}
// Tests that EDS client should send a NACK if the EDS update contains
// multiple instances of the same locality in the same priority.
TEST_P(EdsTest, NacksDuplicateLocalityInSamePriority) {
EdsResourceArgs args({
{"locality0", {MakeNonExistantEndpoint()}, kDefaultLocalityWeight, 0},
{"locality0", {MakeNonExistantEndpoint()}, kDefaultLocalityWeight, 0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
const auto response_state = WaitForEdsNack(DEBUG_LOCATION);
ASSERT_TRUE(response_state.has_value()) << "timed out waiting for NACK";
EXPECT_THAT(response_state->error_message,
::testing::HasSubstr(
"duplicate locality {region=\"xds_default_locality_region\", "
"zone=\"xds_default_locality_zone\", sub_zone=\"locality0\"} "
"found in priority 0"));
}
// Tests that if the balancer is down, the RPCs will still be sent to the
// backends according to the last balancer response, until a new balancer is
// reachable.
TEST_P(EdsTest, KeepUsingLastDataIfBalancerGoesDown) {
CreateAndStartBackends(2);
// Set up EDS resource pointing to backend 0.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends(0, 1)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Start the client and make sure it sees the backend.
WaitForBackend(DEBUG_LOCATION, 0);
// Stop the balancer, and verify that RPCs continue to flow to backend 0.
balancer_->Shutdown();
auto deadline = grpc_timeout_seconds_to_deadline(5);
do {
CheckRpcSendOk(DEBUG_LOCATION);
} while (gpr_time_cmp(gpr_now(GPR_CLOCK_MONOTONIC), deadline) < 0);
// Check the EDS resource to point to backend 1 and bring the balancer
// back up.
args = EdsResourceArgs({{"locality0", CreateEndpointsForBackends(1, 2)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
balancer_->Start();
// Wait for client to see backend 1.
WaitForBackend(DEBUG_LOCATION, 1);
}
// Tests that the localities in a locality map are picked according to their
// weights.
TEST_P(EdsTest, WeightedRoundRobin) {
CreateAndStartBackends(2);
const int kLocalityWeight0 = 2;
const int kLocalityWeight1 = 8;
const int kTotalLocalityWeight = kLocalityWeight0 + kLocalityWeight1;
const double kLocalityWeightRate0 =
static_cast<double>(kLocalityWeight0) / kTotalLocalityWeight;
const double kLocalityWeightRate1 =
static_cast<double>(kLocalityWeight1) / kTotalLocalityWeight;
const double kErrorTolerance = 0.05;
const size_t kNumRpcs =
ComputeIdealNumRpcs(kLocalityWeightRate0, kErrorTolerance);
// ADS response contains 2 localities, each of which contains 1 backend.
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 1), kLocalityWeight0},
{"locality1", CreateEndpointsForBackends(1, 2), kLocalityWeight1},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for both backends to be ready.
WaitForAllBackends(DEBUG_LOCATION, 0, 2);
// Send kNumRpcs RPCs.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcs);
// The locality picking rates should be roughly equal to the expectation.
const double locality_picked_rate_0 =
static_cast<double>(backends_[0]->backend_service()->request_count()) /
kNumRpcs;
const double locality_picked_rate_1 =
static_cast<double>(backends_[1]->backend_service()->request_count()) /
kNumRpcs;
EXPECT_THAT(locality_picked_rate_0,
::testing::DoubleNear(kLocalityWeightRate0, kErrorTolerance));
EXPECT_THAT(locality_picked_rate_1,
::testing::DoubleNear(kLocalityWeightRate1, kErrorTolerance));
}
// Tests that we correctly handle a locality containing no endpoints.
TEST_P(EdsTest, LocalityContainingNoEndpoints) {
CreateAndStartBackends(2);
const size_t kNumRpcs = 5000;
// EDS response contains 2 localities, one with no endpoints.
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends()},
{"locality1", {}},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for both backends to be ready.
WaitForAllBackends(DEBUG_LOCATION);
// Send kNumRpcs RPCs.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcs);
// All traffic should go to the reachable locality.
EXPECT_EQ(backends_[0]->backend_service()->request_count(),
kNumRpcs / backends_.size());
EXPECT_EQ(backends_[1]->backend_service()->request_count(),
kNumRpcs / backends_.size());
}
// EDS update with no localities.
TEST_P(EdsTest, NoLocalities) {
balancer_->ads_service()->SetEdsResource(BuildEdsResource({}));
Status status = SendRpc();
EXPECT_FALSE(status.ok());
EXPECT_EQ(status.error_code(), StatusCode::UNAVAILABLE);
}
// Tests that the locality map can work properly even when it contains a large
// number of localities.
TEST_P(EdsTest, ManyLocalitiesStressTest) {
CreateAndStartBackends(2);
const size_t kNumLocalities = 100;
const uint32_t kRpcTimeoutMs = 5000;
// The first ADS response contains kNumLocalities localities, each of which
// contains backend 0.
EdsResourceArgs args;
for (size_t i = 0; i < kNumLocalities; ++i) {
std::string name = absl::StrCat("locality", i);
EdsResourceArgs::Locality locality(name, CreateEndpointsForBackends(0, 1));
args.locality_list.emplace_back(std::move(locality));
}
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait until backend 0 is ready.
WaitForBackend(DEBUG_LOCATION, 0,
WaitForBackendOptions().set_reset_counters(false),
RpcOptions().set_timeout_ms(kRpcTimeoutMs));
EXPECT_EQ(0U, backends_[1]->backend_service()->request_count());
// The second ADS response contains 1 locality, which contains backend 1.
args = EdsResourceArgs({{"locality0", CreateEndpointsForBackends(1, 2)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait until backend 1 is ready.
WaitForBackend(DEBUG_LOCATION, 1);
}
// Tests that the localities in a locality map are picked correctly after
// update (addition, modification, deletion).
TEST_P(EdsTest, LocalityMapUpdateChurn) {
CreateAndStartBackends(4);
const size_t kNumRpcs = 3000;
// The locality weight for the first 3 localities.
const std::vector<int> kLocalityWeights0 = {2, 3, 4};
const double kTotalLocalityWeight0 =
std::accumulate(kLocalityWeights0.begin(), kLocalityWeights0.end(), 0);
std::vector<double> locality_weight_rate_0;
locality_weight_rate_0.reserve(kLocalityWeights0.size());
for (int weight : kLocalityWeights0) {
locality_weight_rate_0.push_back(weight / kTotalLocalityWeight0);
}
// Delete the first locality, keep the second locality, change the third
// locality's weight from 4 to 2, and add a new locality with weight 6.
const std::vector<int> kLocalityWeights1 = {3, 2, 6};
const double kTotalLocalityWeight1 =
std::accumulate(kLocalityWeights1.begin(), kLocalityWeights1.end(), 0);
std::vector<double> locality_weight_rate_1 = {
0 /* placeholder for locality 0 */};
for (int weight : kLocalityWeights1) {
locality_weight_rate_1.push_back(weight / kTotalLocalityWeight1);
}
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 1), 2},
{"locality1", CreateEndpointsForBackends(1, 2), 3},
{"locality2", CreateEndpointsForBackends(2, 3), 4},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for the first 3 backends to be ready.
WaitForAllBackends(DEBUG_LOCATION, 0, 3);
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
// Send kNumRpcs RPCs.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcs);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// The picking rates of the first 3 backends should be roughly equal to the
// expectation.
std::vector<double> locality_picked_rates;
for (size_t i = 0; i < 3; ++i) {
locality_picked_rates.push_back(
static_cast<double>(backends_[i]->backend_service()->request_count()) /
kNumRpcs);
}
const double kErrorTolerance = 0.2;
for (size_t i = 0; i < 3; ++i) {
gpr_log(GPR_INFO, "Locality %" PRIuPTR " rate %f", i,
locality_picked_rates[i]);
EXPECT_THAT(
locality_picked_rates[i],
::testing::AllOf(
::testing::Ge(locality_weight_rate_0[i] * (1 - kErrorTolerance)),
::testing::Le(locality_weight_rate_0[i] * (1 + kErrorTolerance))));
}
args = EdsResourceArgs({
{"locality1", CreateEndpointsForBackends(1, 2), 3},
{"locality2", CreateEndpointsForBackends(2, 3), 2},
{"locality3", CreateEndpointsForBackends(3, 4), 6},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Backend 3 hasn't received any request.
EXPECT_EQ(0U, backends_[3]->backend_service()->request_count());
// Wait until the locality update has been processed, as signaled by backend
// 3 receiving a request.
WaitForAllBackends(DEBUG_LOCATION, 3, 4);
gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH ==========");
// Send kNumRpcs RPCs.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcs);
gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH ==========");
// Backend 0 no longer receives any request.
EXPECT_EQ(0U, backends_[0]->backend_service()->request_count());
// The picking rates of the last 3 backends should be roughly equal to the
// expectation.
locality_picked_rates = {0 /* placeholder for backend 0 */};
for (size_t i = 1; i < 4; ++i) {
locality_picked_rates.push_back(
static_cast<double>(backends_[i]->backend_service()->request_count()) /
kNumRpcs);
}
for (size_t i = 1; i < 4; ++i) {
gpr_log(GPR_INFO, "Locality %" PRIuPTR " rate %f", i,
locality_picked_rates[i]);
EXPECT_THAT(
locality_picked_rates[i],
::testing::AllOf(
::testing::Ge(locality_weight_rate_1[i] * (1 - kErrorTolerance)),
::testing::Le(locality_weight_rate_1[i] * (1 + kErrorTolerance))));
}
}
// Tests that we don't fail RPCs when replacing all of the localities in
// a given priority.
TEST_P(EdsTest, ReplaceAllLocalitiesInPriority) {
CreateAndStartBackends(2);
// Initial EDS update has backend 0.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends(0, 1)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for the first backend to be ready.
WaitForBackend(DEBUG_LOCATION, 0);
// Send EDS update that replaces the locality and switches to backend 1.
args = EdsResourceArgs({{"locality1", CreateEndpointsForBackends(1, 2)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// When the client sees the update, RPCs should start going to backend 1.
// No RPCs should fail during this change.
WaitForBackend(DEBUG_LOCATION, 1);
}
TEST_P(EdsTest, ConsistentWeightedTargetUpdates) {
CreateAndStartBackends(4);
// Initial update has two localities.
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(1, 2)},
{"locality1", CreateEndpointsForBackends(2, 3)},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForAllBackends(DEBUG_LOCATION, 1, 3);
// Next update removes locality1.
// Also add backend 0 to locality0, so that we can tell when the
// update has been seen.
args = EdsResourceArgs({
{"locality0", CreateEndpointsForBackends(0, 2)},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 0);
// Next update re-adds locality1.
// Also add backend 3 to locality1, so that we can tell when the
// update has been seen.
args = EdsResourceArgs({
{"locality0", CreateEndpointsForBackends(0, 2)},
{"locality1", CreateEndpointsForBackends(2, 4)},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 3);
}
// Tests that RPCs are dropped according to the drop config.
TEST_P(EdsTest, Drops) {
CreateAndStartBackends(1);
const uint32_t kDropPerMillionForLb = 100000;
const uint32_t kDropPerMillionForThrottle = 200000;
const double kDropRateForLb = kDropPerMillionForLb / 1000000.0;
const double kDropRateForThrottle = kDropPerMillionForThrottle / 1000000.0;
const double kDropRateForLbAndThrottle =
kDropRateForLb + (1 - kDropRateForLb) * kDropRateForThrottle;
const double kErrorTolerance = 0.05;
const size_t kNumRpcs =
ComputeIdealNumRpcs(kDropRateForLbAndThrottle, kErrorTolerance);
// The ADS response contains two drop categories.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
args.drop_categories = {{kLbDropType, kDropPerMillionForLb},
{kThrottleDropType, kDropPerMillionForThrottle}};
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Send kNumRpcs RPCs and count the drops.
size_t num_drops = SendRpcsAndCountFailuresWithMessage(
DEBUG_LOCATION, kNumRpcs, "EDS-configured drop: ");
// The drop rate should be roughly equal to the expectation.
const double seen_drop_rate = static_cast<double>(num_drops) / kNumRpcs;
EXPECT_THAT(seen_drop_rate, ::testing::DoubleNear(kDropRateForLbAndThrottle,
kErrorTolerance));
}
// Tests that drop config is converted correctly from per hundred.
TEST_P(EdsTest, DropPerHundred) {
CreateAndStartBackends(1);
const uint32_t kDropPerHundredForLb = 10;
const double kDropRateForLb = kDropPerHundredForLb / 100.0;
const double kErrorTolerance = 0.05;
const size_t kNumRpcs = ComputeIdealNumRpcs(kDropRateForLb, kErrorTolerance);
// The ADS response contains one drop category.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
args.drop_categories = {{kLbDropType, kDropPerHundredForLb}};
args.drop_denominator = FractionalPercent::HUNDRED;
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Send kNumRpcs RPCs and count the drops.
size_t num_drops = SendRpcsAndCountFailuresWithMessage(
DEBUG_LOCATION, kNumRpcs, "EDS-configured drop: ");
// The drop rate should be roughly equal to the expectation.
const double seen_drop_rate = static_cast<double>(num_drops) / kNumRpcs;
EXPECT_THAT(seen_drop_rate,
::testing::DoubleNear(kDropRateForLb, kErrorTolerance));
}
// Tests that drop config is converted correctly from per ten thousand.
TEST_P(EdsTest, DropPerTenThousand) {
CreateAndStartBackends(1);
const uint32_t kDropPerTenThousandForLb = 1000;
const double kDropRateForLb = kDropPerTenThousandForLb / 10000.0;
const double kErrorTolerance = 0.05;
const size_t kNumRpcs = ComputeIdealNumRpcs(kDropRateForLb, kErrorTolerance);
// The ADS response contains one drop category.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
args.drop_categories = {{kLbDropType, kDropPerTenThousandForLb}};
args.drop_denominator = FractionalPercent::TEN_THOUSAND;
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Send kNumRpcs RPCs and count the drops.
size_t num_drops = SendRpcsAndCountFailuresWithMessage(
DEBUG_LOCATION, kNumRpcs, "EDS-configured drop: ");
// The drop rate should be roughly equal to the expectation.
const double seen_drop_rate = static_cast<double>(num_drops) / kNumRpcs;
EXPECT_THAT(seen_drop_rate,
::testing::DoubleNear(kDropRateForLb, kErrorTolerance));
}
// Tests that drop is working correctly after update.
TEST_P(EdsTest, DropConfigUpdate) {
CreateAndStartBackends(1);
const uint32_t kDropPerMillionForLb = 100000;
const uint32_t kDropPerMillionForThrottle = 200000;
const double kErrorTolerance = 0.05;
const double kDropRateForLb = kDropPerMillionForLb / 1000000.0;
const double kDropRateForThrottle = kDropPerMillionForThrottle / 1000000.0;
const double kDropRateForLbAndThrottle =
kDropRateForLb + (1 - kDropRateForLb) * kDropRateForThrottle;
const size_t kNumRpcsLbOnly =
ComputeIdealNumRpcs(kDropRateForLb, kErrorTolerance);
const size_t kNumRpcsBoth =
ComputeIdealNumRpcs(kDropRateForLbAndThrottle, kErrorTolerance);
// The first ADS response contains one drop category.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
args.drop_categories = {{kLbDropType, kDropPerMillionForLb}};
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Send kNumRpcsLbOnly RPCs and count the drops.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
size_t num_drops = SendRpcsAndCountFailuresWithMessage(
DEBUG_LOCATION, kNumRpcsLbOnly, "EDS-configured drop: ");
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// The drop rate should be roughly equal to the expectation.
double seen_drop_rate = static_cast<double>(num_drops) / kNumRpcsLbOnly;
gpr_log(GPR_INFO, "First batch drop rate %f", seen_drop_rate);
EXPECT_THAT(seen_drop_rate,
::testing::DoubleNear(kDropRateForLb, kErrorTolerance));
// The second ADS response contains two drop categories, send an update EDS
// response.
args.drop_categories = {{kLbDropType, kDropPerMillionForLb},
{kThrottleDropType, kDropPerMillionForThrottle}};
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait until the drop rate increases to the middle of the two configs,
// which implies that the update has been in effect.
const double kDropRateThreshold =
(kDropRateForLb + kDropRateForLbAndThrottle) / 2;
size_t num_rpcs = kNumRpcsBoth;
while (seen_drop_rate < kDropRateThreshold) {
EchoResponse response;
const Status status = SendRpc(RpcOptions(), &response);
++num_rpcs;
if (!status.ok() &&
absl::StartsWith(status.error_message(), "EDS-configured drop: ")) {
++num_drops;
} else {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kRequestMessage);
}
seen_drop_rate = static_cast<double>(num_drops) / num_rpcs;
}
// Send kNumRpcsBoth RPCs and count the drops.
gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH ==========");
num_drops = SendRpcsAndCountFailuresWithMessage(DEBUG_LOCATION, kNumRpcsBoth,
"EDS-configured drop: ");
gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH ==========");
// The new drop rate should be roughly equal to the expectation.
seen_drop_rate = static_cast<double>(num_drops) / kNumRpcsBoth;
gpr_log(GPR_INFO, "Second batch drop rate %f", seen_drop_rate);
EXPECT_THAT(seen_drop_rate, ::testing::DoubleNear(kDropRateForLbAndThrottle,
kErrorTolerance));
}
// Tests that all the RPCs are dropped if any drop category drops 100%.
TEST_P(EdsTest, DropAll) {
const size_t kNumRpcs = 1000;
const uint32_t kDropPerMillionForLb = 100000;
const uint32_t kDropPerMillionForThrottle = 1000000;
// The ADS response contains two drop categories.
EdsResourceArgs args;
args.drop_categories = {{kLbDropType, kDropPerMillionForLb},
{kThrottleDropType, kDropPerMillionForThrottle}};
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Send kNumRpcs RPCs and all of them are dropped.
size_t num_drops = SendRpcsAndCountFailuresWithMessage(
DEBUG_LOCATION, kNumRpcs, "EDS-configured drop: ");
EXPECT_EQ(num_drops, kNumRpcs);
}
//
// EDS failover tests
//
class FailoverTest : public XdsEnd2endTest {
public:
void SetUp() override {
XdsEnd2endTest::SetUp();
ResetStub(/*failover_timeout_ms=*/500);
}
};
INSTANTIATE_TEST_SUITE_P(
XdsTest, FailoverTest,
::testing::Values(XdsTestType(), XdsTestType().set_enable_load_reporting()),
&XdsTestType::Name);
// Localities with the highest priority are used when multiple priority exist.
TEST_P(FailoverTest, ChooseHighestPriority) {
CreateAndStartBackends(4);
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
1},
{"locality1", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
2},
{"locality2", CreateEndpointsForBackends(2, 3), kDefaultLocalityWeight,
3},
{"locality3", CreateEndpointsForBackends(3, 4), kDefaultLocalityWeight,
0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 3,
WaitForBackendOptions().set_reset_counters(false));
for (size_t i = 0; i < 3; ++i) {
EXPECT_EQ(0U, backends_[i]->backend_service()->request_count());
}
}
// Does not choose priority with no endpoints.
TEST_P(FailoverTest, DoesNotUsePriorityWithNoEndpoints) {
CreateAndStartBackends(3);
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
1},
{"locality1", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
2},
{"locality2", CreateEndpointsForBackends(2, 3), kDefaultLocalityWeight,
3},
{"locality3", {}, kDefaultLocalityWeight, 0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 0,
WaitForBackendOptions().set_reset_counters(false));
for (size_t i = 1; i < 3; ++i) {
EXPECT_EQ(0U, backends_[i]->backend_service()->request_count());
}
}
// Does not choose locality with no endpoints.
TEST_P(FailoverTest, DoesNotUseLocalityWithNoEndpoints) {
CreateAndStartBackends(1);
EdsResourceArgs args({
{"locality0", {}, kDefaultLocalityWeight, 0},
{"locality1", CreateEndpointsForBackends(), kDefaultLocalityWeight, 0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for all backends to be used.
WaitForAllBackends(DEBUG_LOCATION);
}
// If the higher priority localities are not reachable, failover to the
// highest priority among the rest.
TEST_P(FailoverTest, Failover) {
CreateAndStartBackends(2);
EdsResourceArgs args({
{"locality0", {MakeNonExistantEndpoint()}, kDefaultLocalityWeight, 1},
{"locality1", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
2},
{"locality2", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
3},
{"locality3", {MakeNonExistantEndpoint()}, kDefaultLocalityWeight, 0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 0,
WaitForBackendOptions().set_reset_counters(false));
EXPECT_EQ(0U, backends_[1]->backend_service()->request_count());
}
// If a locality with higher priority than the current one becomes ready,
// switch to it.
TEST_P(FailoverTest, SwitchBackToHigherPriority) {
CreateAndStartBackends(4);
const size_t kNumRpcs = 100;
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
1},
{"locality1", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
2},
{"locality2", CreateEndpointsForBackends(2, 3), kDefaultLocalityWeight,
3},
{"locality3", CreateEndpointsForBackends(3, 4), kDefaultLocalityWeight,
0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 3);
ShutdownBackend(3);
ShutdownBackend(0);
WaitForBackend(
DEBUG_LOCATION, 1,
WaitForBackendOptions().set_reset_counters(false).set_allow_failures(
true));
for (size_t i = 0; i < backends_.size(); ++i) {
if (i == 1) continue;
EXPECT_EQ(0U, backends_[i]->backend_service()->request_count());
}
StartBackend(0);
WaitForBackend(DEBUG_LOCATION, 0);
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcs);
EXPECT_EQ(kNumRpcs, backends_[0]->backend_service()->request_count());
}
// The first update only contains unavailable priorities. The second update
// contains available priorities.
TEST_P(FailoverTest, UpdateInitialUnavailable) {
CreateAndStartBackends(2);
EdsResourceArgs args({
{"locality0", {MakeNonExistantEndpoint()}, kDefaultLocalityWeight, 0},
{"locality1", {MakeNonExistantEndpoint()}, kDefaultLocalityWeight, 1},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
CheckRpcSendFailure(DEBUG_LOCATION);
args = EdsResourceArgs({
{"locality0", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
0},
{"locality1", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
1},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 0,
WaitForBackendOptions().set_allow_failures(true));
}
// Tests that after the localities' priorities are updated, we still choose
// the highest READY priority with the updated localities.
TEST_P(FailoverTest, UpdatePriority) {
CreateAndStartBackends(4);
const size_t kNumRpcs = 100;
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
1},
{"locality1", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
2},
{"locality2", CreateEndpointsForBackends(2, 3), kDefaultLocalityWeight,
3},
{"locality3", CreateEndpointsForBackends(3, 4), kDefaultLocalityWeight,
0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 3,
WaitForBackendOptions().set_reset_counters(false));
EXPECT_EQ(0U, backends_[0]->backend_service()->request_count());
EXPECT_EQ(0U, backends_[1]->backend_service()->request_count());
EXPECT_EQ(0U, backends_[2]->backend_service()->request_count());
args = EdsResourceArgs({
{"locality0", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
2},
{"locality1", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
0},
{"locality2", CreateEndpointsForBackends(2, 3), kDefaultLocalityWeight,
1},
{"locality3", CreateEndpointsForBackends(3, 4), kDefaultLocalityWeight,
3},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 1);
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcs);
EXPECT_EQ(kNumRpcs, backends_[1]->backend_service()->request_count());
}
// Moves all localities in the current priority to a higher priority.
TEST_P(FailoverTest, MoveAllLocalitiesInCurrentPriorityToHigherPriority) {
CreateAndStartBackends(3);
auto non_existant_endpoint = MakeNonExistantEndpoint();
// First update:
// - Priority 0 is locality 0, containing an unreachable backend.
// - Priority 1 is locality 1, containing backends 0 and 1.
EdsResourceArgs args({
{"locality0", {non_existant_endpoint}, kDefaultLocalityWeight, 0},
{"locality1", CreateEndpointsForBackends(0, 2), kDefaultLocalityWeight,
1},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// When we get the first update, all backends in priority 0 are down,
// so we will create priority 1. Backends 0 and 1 should have traffic,
// but backend 2 should not.
WaitForAllBackends(DEBUG_LOCATION, 0, 2,
WaitForBackendOptions().set_reset_counters(false));
EXPECT_EQ(0UL, backends_[2]->backend_service()->request_count());
// Second update:
// - Priority 0 contains both localities 0 and 1.
// - Priority 1 is not present.
// - We add backend 2 to locality 1, just so we have a way to know
// when the update has been seen by the client.
args = EdsResourceArgs({
{"locality0", {non_existant_endpoint}, kDefaultLocalityWeight, 0},
{"locality1", CreateEndpointsForBackends(0, 3), kDefaultLocalityWeight,
0},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// When backend 2 gets traffic, we know the second update has been seen.
WaitForBackend(DEBUG_LOCATION, 2);
// The xDS server got at least 1 response.
EXPECT_TRUE(balancer_->ads_service()->eds_response_state().has_value());
}
// This tests a bug triggered by the xds_cluster_resolver policy reusing
// a child name for the priority policy when that child name was still
// present but deactivated.
TEST_P(FailoverTest, PriorityChildNameChurn) {
CreateAndStartBackends(4);
auto non_existant_endpoint = MakeNonExistantEndpoint();
// Initial update:
// - P0:locality0, child number 0 (unreachable)
// - P1:locality1, child number 1
// - P2:locality2, child number 2
EdsResourceArgs args({
{"locality0", {non_existant_endpoint}, kDefaultLocalityWeight, 0},
{"locality1", CreateEndpointsForBackends(0, 1), kDefaultLocalityWeight,
1},
{"locality2", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
2},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 0);
// Next update:
// - P0:locality0, child number 0 (still unreachable)
// - P1:locality2, child number 2 (moved from P2 to P1)
// - P2:locality3, child number 3 (new child)
// Child number 1 will be deactivated.
args = EdsResourceArgs({
{"locality0", {non_existant_endpoint}, kDefaultLocalityWeight, 0},
{"locality2", CreateEndpointsForBackends(1, 2), kDefaultLocalityWeight,
1},
{"locality3", CreateEndpointsForBackends(2, 3), kDefaultLocalityWeight,
2},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 1);
// Next update:
// - P0:locality0, child number 0 (still unreachable)
// - P1:locality4, child number 4 (new child number -- should not reuse #1)
// - P2:locality3, child number 3
// Child number 1 will be deactivated.
args = EdsResourceArgs({
{"locality0", {non_existant_endpoint}, kDefaultLocalityWeight, 0},
{"locality4", CreateEndpointsForBackends(3, 4), kDefaultLocalityWeight,
1},
{"locality3", CreateEndpointsForBackends(2, 3), kDefaultLocalityWeight,
2},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
WaitForBackend(DEBUG_LOCATION, 3,
WaitForBackendOptions().set_reset_counters(false));
// P2 should not have gotten any traffic in this change.
EXPECT_EQ(0UL, backends_[2]->backend_service()->request_count());
}
//
// EDS client load reporting tests
//
using ClientLoadReportingTest = XdsEnd2endTest;
INSTANTIATE_TEST_SUITE_P(
XdsTest, ClientLoadReportingTest,
::testing::Values(XdsTestType().set_enable_load_reporting()),
&XdsTestType::Name);
// Tests that the load report received at the balancer is correct.
TEST_P(ClientLoadReportingTest, Vanilla) {
CreateAndStartBackends(4);
const size_t kNumRpcsPerAddress = 10;
const size_t kNumFailuresPerAddress = 3;
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 2)},
{"locality1", CreateEndpointsForBackends(2, 4)},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait until all backends are ready.
size_t num_warmup_rpcs = WaitForAllBackends(
DEBUG_LOCATION, 0, 4, WaitForBackendOptions().set_reset_counters(false));
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcsPerAddress * backends_.size());
CheckRpcSendFailure(DEBUG_LOCATION,
CheckRpcSendFailureOptions()
.set_times(kNumFailuresPerAddress * backends_.size())
.set_rpc_options(RpcOptions().set_server_fail(true)));
const size_t total_successful_rpcs_sent =
(kNumRpcsPerAddress * backends_.size()) + num_warmup_rpcs;
const size_t total_failed_rpcs_sent =
kNumFailuresPerAddress * backends_.size();
// Check that the backends got the right number of requests.
size_t total_rpcs_sent = 0;
for (const auto& backend : backends_) {
total_rpcs_sent += backend->backend_service()->request_count();
}
EXPECT_EQ(total_rpcs_sent,
total_successful_rpcs_sent + total_failed_rpcs_sent);
// The load report received at the balancer should be correct.
std::vector<ClientStats> load_report =
balancer_->lrs_service()->WaitForLoadReport();
ASSERT_EQ(load_report.size(), 1UL);
ClientStats& client_stats = load_report.front();
EXPECT_EQ(client_stats.cluster_name(), kDefaultClusterName);
EXPECT_EQ(client_stats.eds_service_name(), kDefaultEdsServiceName);
EXPECT_EQ(total_successful_rpcs_sent,
client_stats.total_successful_requests());
EXPECT_EQ(0U, client_stats.total_requests_in_progress());
EXPECT_EQ(total_rpcs_sent, client_stats.total_issued_requests());
EXPECT_EQ(total_failed_rpcs_sent, client_stats.total_error_requests());
EXPECT_EQ(0U, client_stats.total_dropped_requests());
ASSERT_THAT(
client_stats.locality_stats(),
::testing::ElementsAre(::testing::Pair("locality0", ::testing::_),
::testing::Pair("locality1", ::testing::_)));
size_t num_successful_rpcs = 0;
size_t num_failed_rpcs = 0;
for (const auto& p : client_stats.locality_stats()) {
EXPECT_EQ(p.second.total_requests_in_progress, 0U);
EXPECT_EQ(
p.second.total_issued_requests,
p.second.total_successful_requests + p.second.total_error_requests);
num_successful_rpcs += p.second.total_successful_requests;
num_failed_rpcs += p.second.total_error_requests;
}
EXPECT_EQ(num_successful_rpcs, total_successful_rpcs_sent);
EXPECT_EQ(num_failed_rpcs, total_failed_rpcs_sent);
EXPECT_EQ(num_successful_rpcs + num_failed_rpcs, total_rpcs_sent);
// The LRS service got a single request, and sent a single response.
EXPECT_EQ(1U, balancer_->lrs_service()->request_count());
EXPECT_EQ(1U, balancer_->lrs_service()->response_count());
}
// Tests send_all_clusters.
TEST_P(ClientLoadReportingTest, SendAllClusters) {
CreateAndStartBackends(2);
balancer_->lrs_service()->set_send_all_clusters(true);
const size_t kNumRpcsPerAddress = 10;
const size_t kNumFailuresPerAddress = 3;
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait until all backends are ready.
size_t num_warmup_rpcs = WaitForAllBackends(DEBUG_LOCATION);
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(DEBUG_LOCATION, kNumRpcsPerAddress * backends_.size());
CheckRpcSendFailure(DEBUG_LOCATION,
CheckRpcSendFailureOptions()
.set_times(kNumFailuresPerAddress * backends_.size())
.set_rpc_options(RpcOptions().set_server_fail(true)));
// Check that each backend got the right number of requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress + kNumFailuresPerAddress,
backends_[i]->backend_service()->request_count());
}
// The load report received at the balancer should be correct.
std::vector<ClientStats> load_report =
balancer_->lrs_service()->WaitForLoadReport();
ASSERT_EQ(load_report.size(), 1UL);
ClientStats& client_stats = load_report.front();
EXPECT_EQ(kNumRpcsPerAddress * backends_.size() + num_warmup_rpcs,
client_stats.total_successful_requests());
EXPECT_EQ(0U, client_stats.total_requests_in_progress());
EXPECT_EQ((kNumRpcsPerAddress + kNumFailuresPerAddress) * backends_.size() +
num_warmup_rpcs,
client_stats.total_issued_requests());
EXPECT_EQ(kNumFailuresPerAddress * backends_.size(),
client_stats.total_error_requests());
EXPECT_EQ(0U, client_stats.total_dropped_requests());
// The LRS service got a single request, and sent a single response.
EXPECT_EQ(1U, balancer_->lrs_service()->request_count());
EXPECT_EQ(1U, balancer_->lrs_service()->response_count());
}
// Tests that we don't include stats for clusters that are not requested
// by the LRS server.
TEST_P(ClientLoadReportingTest, HonorsClustersRequestedByLrsServer) {
CreateAndStartBackends(1);
balancer_->lrs_service()->set_cluster_names({"bogus"});
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait until all backends are ready.
WaitForAllBackends(DEBUG_LOCATION);
// The load report received at the balancer should be correct.
std::vector<ClientStats> load_report =
balancer_->lrs_service()->WaitForLoadReport();
ASSERT_EQ(load_report.size(), 0UL);
// The LRS service got a single request, and sent a single response.
EXPECT_EQ(1U, balancer_->lrs_service()->request_count());
EXPECT_EQ(1U, balancer_->lrs_service()->response_count());
}
// Tests that if the balancer restarts, the client load report contains the
// stats before and after the restart correctly.
TEST_P(ClientLoadReportingTest, BalancerRestart) {
CreateAndStartBackends(4);
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends(0, 2)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait until all backends returned by the balancer are ready.
size_t num_rpcs = WaitForAllBackends(DEBUG_LOCATION, 0, 2);
std::vector<ClientStats> load_report =
balancer_->lrs_service()->WaitForLoadReport();
ASSERT_EQ(load_report.size(), 1UL);
ClientStats client_stats = std::move(load_report.front());
EXPECT_EQ(num_rpcs, client_stats.total_successful_requests());
EXPECT_EQ(0U, client_stats.total_requests_in_progress());
EXPECT_EQ(0U, client_stats.total_error_requests());
EXPECT_EQ(0U, client_stats.total_dropped_requests());
// Shut down the balancer.
balancer_->Shutdown();
// We should continue using the last EDS response we received from the
// balancer before it was shut down.
// Note: We need to use WaitForAllBackends() here instead of just
// CheckRpcSendOk(kNumBackendsFirstPass), because when the balancer
// shuts down, the XdsClient will generate an error to the
// ListenerWatcher, which will cause the xds resolver to send a
// no-op update to the LB policy. When this update gets down to the
// round_robin child policy for the locality, it will generate a new
// subchannel list, which resets the start index randomly. So we need
// to be a little more permissive here to avoid spurious failures.
ResetBackendCounters();
num_rpcs = WaitForAllBackends(DEBUG_LOCATION, 0, 2);
// Now restart the balancer, this time pointing to the new backends.
balancer_->Start();
args = EdsResourceArgs({{"locality0", CreateEndpointsForBackends(2, 4)}});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Wait for queries to start going to one of the new backends.
// This tells us that we're now using the new serverlist.
num_rpcs += WaitForAllBackends(DEBUG_LOCATION, 2, 4);
// Send one RPC per backend.
CheckRpcSendOk(DEBUG_LOCATION, 2);
num_rpcs += 2;
// Check client stats.
load_report = balancer_->lrs_service()->WaitForLoadReport();
ASSERT_EQ(load_report.size(), 1UL);
client_stats = std::move(load_report.front());
EXPECT_EQ(num_rpcs, client_stats.total_successful_requests());
EXPECT_EQ(0U, client_stats.total_requests_in_progress());
EXPECT_EQ(0U, client_stats.total_error_requests());
EXPECT_EQ(0U, client_stats.total_dropped_requests());
}
// Tests load reporting when switching over from one cluster to another.
TEST_P(ClientLoadReportingTest, ChangeClusters) {
CreateAndStartBackends(4);
const char* kNewClusterName = "new_cluster_name";
const char* kNewEdsServiceName = "new_eds_service_name";
balancer_->lrs_service()->set_cluster_names(
{kDefaultClusterName, kNewClusterName});
// cluster kDefaultClusterName -> locality0 -> backends 0 and 1
EdsResourceArgs args({
{"locality0", CreateEndpointsForBackends(0, 2)},
});
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// cluster kNewClusterName -> locality1 -> backends 2 and 3
EdsResourceArgs args2({
{"locality1", CreateEndpointsForBackends(2, 4)},
});
balancer_->ads_service()->SetEdsResource(
BuildEdsResource(args2, kNewEdsServiceName));
// CDS resource for kNewClusterName.
Cluster new_cluster = default_cluster_;
new_cluster.set_name(kNewClusterName);
new_cluster.mutable_eds_cluster_config()->set_service_name(
kNewEdsServiceName);
balancer_->ads_service()->SetCdsResource(new_cluster);
// Wait for all backends to come online.
size_t num_rpcs = WaitForAllBackends(DEBUG_LOCATION, 0, 2);
// The load report received at the balancer should be correct.
std::vector<ClientStats> load_report =
balancer_->lrs_service()->WaitForLoadReport();
EXPECT_THAT(
load_report,
::testing::ElementsAre(::testing::AllOf(
::testing::Property(&ClientStats::cluster_name, kDefaultClusterName),
::testing::Property(&ClientStats::eds_service_name,
kDefaultEdsServiceName),
::testing::Property(
&ClientStats::locality_stats,
::testing::ElementsAre(::testing::Pair(
"locality0",
::testing::AllOf(
::testing::Field(&ClientStats::LocalityStats::
total_successful_requests,
num_rpcs),
::testing::Field(&ClientStats::LocalityStats::
total_requests_in_progress,
0UL),
::testing::Field(
&ClientStats::LocalityStats::total_error_requests,
0UL),
::testing::Field(
&ClientStats::LocalityStats::total_issued_requests,
num_rpcs))))),
::testing::Property(&ClientStats::total_dropped_requests, 0UL))));
// Change RDS resource to point to new cluster.
RouteConfiguration new_route_config = default_route_config_;
new_route_config.mutable_virtual_hosts(0)
->mutable_routes(0)
->mutable_route()
->set_cluster(kNewClusterName);
SetListenerAndRouteConfiguration(balancer_.get(), default_listener_,
new_route_config);
// Wait for all new backends to be used.
num_rpcs = WaitForAllBackends(DEBUG_LOCATION, 2, 4);
// The load report received at the balancer should be correct.
load_report = balancer_->lrs_service()->WaitForLoadReport();
EXPECT_THAT(
load_report,
::testing::ElementsAre(
::testing::AllOf(
::testing::Property(&ClientStats::cluster_name,
kDefaultClusterName),
::testing::Property(&ClientStats::eds_service_name,
kDefaultEdsServiceName),
::testing::Property(
&ClientStats::locality_stats,
::testing::ElementsAre(::testing::Pair(
"locality0",
::testing::AllOf(
::testing::Field(&ClientStats::LocalityStats::
total_successful_requests,
::testing::Lt(num_rpcs)),
::testing::Field(&ClientStats::LocalityStats::
total_requests_in_progress,
0UL),
::testing::Field(
&ClientStats::LocalityStats::total_error_requests,
0UL),
::testing::Field(&ClientStats::LocalityStats::
total_issued_requests,
::testing::Le(num_rpcs)))))),
::testing::Property(&ClientStats::total_dropped_requests, 0UL)),
::testing::AllOf(
::testing::Property(&ClientStats::cluster_name, kNewClusterName),
::testing::Property(&ClientStats::eds_service_name,
kNewEdsServiceName),
::testing::Property(
&ClientStats::locality_stats,
::testing::ElementsAre(::testing::Pair(
"locality1",
::testing::AllOf(
::testing::Field(&ClientStats::LocalityStats::
total_successful_requests,
::testing::Le(num_rpcs)),
::testing::Field(&ClientStats::LocalityStats::
total_requests_in_progress,
0UL),
::testing::Field(
&ClientStats::LocalityStats::total_error_requests,
0UL),
::testing::Field(&ClientStats::LocalityStats::
total_issued_requests,
::testing::Le(num_rpcs)))))),
::testing::Property(&ClientStats::total_dropped_requests, 0UL))));
size_t total_ok = 0;
for (const ClientStats& client_stats : load_report) {
total_ok += client_stats.total_successful_requests();
}
EXPECT_EQ(total_ok, num_rpcs);
// The LRS service got a single request, and sent a single response.
EXPECT_EQ(1U, balancer_->lrs_service()->request_count());
EXPECT_EQ(1U, balancer_->lrs_service()->response_count());
}
// Tests that the drop stats are correctly reported by client load reporting.
TEST_P(ClientLoadReportingTest, DropStats) {
CreateAndStartBackends(1);
const uint32_t kDropPerMillionForLb = 100000;
const uint32_t kDropPerMillionForThrottle = 200000;
const double kErrorTolerance = 0.05;
const double kDropRateForLb = kDropPerMillionForLb / 1000000.0;
const double kDropRateForThrottle = kDropPerMillionForThrottle / 1000000.0;
const double kDropRateForLbAndThrottle =
kDropRateForLb + (1 - kDropRateForLb) * kDropRateForThrottle;
const size_t kNumRpcs =
ComputeIdealNumRpcs(kDropRateForLbAndThrottle, kErrorTolerance);
const char kStatusMessageDropPrefix[] = "EDS-configured drop: ";
// The ADS response contains two drop categories.
EdsResourceArgs args({{"locality0", CreateEndpointsForBackends()}});
args.drop_categories = {{kLbDropType, kDropPerMillionForLb},
{kThrottleDropType, kDropPerMillionForThrottle}};
balancer_->ads_service()->SetEdsResource(BuildEdsResource(args));
// Send kNumRpcs RPCs and count the drops.
size_t num_drops = SendRpcsAndCountFailuresWithMessage(
DEBUG_LOCATION, kNumRpcs, kStatusMessageDropPrefix);
// The drop rate should be roughly equal to the expectation.
const double seen_drop_rate = static_cast<double>(num_drops) / kNumRpcs;
EXPECT_THAT(seen_drop_rate, ::testing::DoubleNear(kDropRateForLbAndThrottle,
kErrorTolerance));
// Check client stats.
ClientStats client_stats;
do {
std::vector<ClientStats> load_reports =
balancer_->lrs_service()->WaitForLoadReport();
for (const auto& load_report : load_reports) {
client_stats += load_report;
}
} while (client_stats.total_issued_requests() +
client_stats.total_dropped_requests() <
kNumRpcs);
EXPECT_EQ(num_drops, client_stats.total_dropped_requests());
EXPECT_THAT(static_cast<double>(client_stats.dropped_requests(kLbDropType)) /
kNumRpcs,
::testing::DoubleNear(kDropRateForLb, kErrorTolerance));
EXPECT_THAT(
static_cast<double>(client_stats.dropped_requests(kThrottleDropType)) /
(kNumRpcs * (1 - kDropRateForLb)),
::testing::DoubleNear(kDropRateForThrottle, kErrorTolerance));
}
} // namespace
} // namespace testing
} // namespace grpc
int main(int argc, char** argv) {
grpc::testing::TestEnvironment env(&argc, argv);
::testing::InitGoogleTest(&argc, argv);
// Make the backup poller poll very frequently in order to pick up
// updates from all the subchannels's FDs.
GPR_GLOBAL_CONFIG_SET(grpc_client_channel_backup_poll_interval_ms, 1);
#if TARGET_OS_IPHONE
// Workaround Apple CFStream bug
gpr_setenv("grpc_cfstream", "0");
#endif
grpc_init();
const auto result = RUN_ALL_TESTS();
grpc_shutdown();
return result;
}