The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1065 lines
35 KiB

/*
*
* Copyright 2016, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/* Benchmark gRPC end2end in various configurations */
#include <sstream>
#include <grpc++/channel.h>
#include <grpc++/create_channel.h>
#include <grpc++/impl/grpc_library.h>
#include <grpc++/security/credentials.h>
#include <grpc++/security/server_credentials.h>
#include <grpc++/server.h>
#include <grpc++/server_builder.h>
#include <grpc/support/log.h>
extern "C" {
#include "src/core/ext/transport/chttp2/transport/chttp2_transport.h"
#include "src/core/ext/transport/chttp2/transport/internal.h"
#include "src/core/lib/channel/channel_args.h"
#include "src/core/lib/iomgr/endpoint.h"
#include "src/core/lib/iomgr/endpoint_pair.h"
#include "src/core/lib/iomgr/exec_ctx.h"
#include "src/core/lib/iomgr/tcp_posix.h"
#include "src/core/lib/surface/channel.h"
#include "src/core/lib/surface/completion_queue.h"
#include "src/core/lib/surface/server.h"
#include "test/core/util/memory_counters.h"
#include "test/core/util/passthru_endpoint.h"
#include "test/core/util/port.h"
#include "test/core/util/trickle_endpoint.h"
}
#include "src/core/lib/profiling/timers.h"
#include "src/cpp/client/create_channel_internal.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
#include "third_party/benchmark/include/benchmark/benchmark.h"
namespace grpc {
namespace testing {
static class InitializeStuff {
public:
InitializeStuff() {
grpc_memory_counters_init();
init_lib_.init();
rq_ = grpc_resource_quota_create("bm");
}
~InitializeStuff() { init_lib_.shutdown(); }
grpc_resource_quota* rq() { return rq_; }
private:
internal::GrpcLibrary init_lib_;
grpc_resource_quota* rq_;
} initialize_stuff;
/*******************************************************************************
* FIXTURES
*/
static void ApplyCommonServerBuilderConfig(ServerBuilder* b) {
b->SetMaxReceiveMessageSize(INT_MAX);
b->SetMaxSendMessageSize(INT_MAX);
}
static void ApplyCommonChannelArguments(ChannelArguments* c) {
c->SetInt(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, INT_MAX);
c->SetInt(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, INT_MAX);
}
#ifdef GPR_MU_COUNTERS
extern "C" gpr_atm grpc_mu_locks;
#endif
class BaseFixture {
public:
void Finish(benchmark::State& s) {
std::ostringstream out;
this->AddToLabel(out, s);
#ifdef GPR_MU_COUNTERS
out << " locks/iter:" << ((double)(gpr_atm_no_barrier_load(&grpc_mu_locks) -
mu_locks_at_start_) /
(double)s.iterations());
#endif
grpc_memory_counters counters_at_end = grpc_memory_counters_snapshot();
out << " allocs/iter:"
<< ((double)(counters_at_end.total_allocs_absolute -
counters_at_start_.total_allocs_absolute) /
(double)s.iterations());
auto label = out.str();
if (label.length() && label[0] == ' ') {
label = label.substr(1);
}
s.SetLabel(label);
}
virtual void AddToLabel(std::ostream& out, benchmark::State& s) = 0;
private:
#ifdef GPR_MU_COUNTERS
const size_t mu_locks_at_start_ = gpr_atm_no_barrier_load(&grpc_mu_locks);
#endif
grpc_memory_counters counters_at_start_ = grpc_memory_counters_snapshot();
};
class FullstackFixture : public BaseFixture {
public:
FullstackFixture(Service* service, const grpc::string& address) {
ServerBuilder b;
b.AddListeningPort(address, InsecureServerCredentials());
cq_ = b.AddCompletionQueue(true);
b.RegisterService(service);
ApplyCommonServerBuilderConfig(&b);
server_ = b.BuildAndStart();
ChannelArguments args;
ApplyCommonChannelArguments(&args);
channel_ = CreateCustomChannel(address, InsecureChannelCredentials(), args);
}
virtual ~FullstackFixture() {
server_->Shutdown();
cq_->Shutdown();
void* tag;
bool ok;
while (cq_->Next(&tag, &ok)) {
}
}
ServerCompletionQueue* cq() { return cq_.get(); }
std::shared_ptr<Channel> channel() { return channel_; }
private:
std::unique_ptr<Server> server_;
std::unique_ptr<ServerCompletionQueue> cq_;
std::shared_ptr<Channel> channel_;
};
class TCP : public FullstackFixture {
public:
TCP(Service* service) : FullstackFixture(service, MakeAddress()) {}
void AddToLabel(std::ostream& out, benchmark::State& state) {}
private:
static grpc::string MakeAddress() {
int port = grpc_pick_unused_port_or_die();
std::stringstream addr;
addr << "localhost:" << port;
return addr.str();
}
};
class UDS : public FullstackFixture {
public:
UDS(Service* service) : FullstackFixture(service, MakeAddress()) {}
void AddToLabel(std::ostream& out, benchmark::State& state) override {}
private:
static grpc::string MakeAddress() {
int port = grpc_pick_unused_port_or_die(); // just for a unique id - not a
// real port
std::stringstream addr;
addr << "unix:/tmp/bm_fullstack." << port;
return addr.str();
}
};
class EndpointPairFixture : public BaseFixture {
public:
EndpointPairFixture(Service* service, grpc_endpoint_pair endpoints)
: endpoint_pair_(endpoints) {
ServerBuilder b;
cq_ = b.AddCompletionQueue(true);
b.RegisterService(service);
ApplyCommonServerBuilderConfig(&b);
server_ = b.BuildAndStart();
grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT;
/* add server endpoint to server_ */
{
const grpc_channel_args* server_args =
grpc_server_get_channel_args(server_->c_server());
server_transport_ = grpc_create_chttp2_transport(
&exec_ctx, server_args, endpoints.server, 0 /* is_client */);
grpc_pollset** pollsets;
size_t num_pollsets = 0;
grpc_server_get_pollsets(server_->c_server(), &pollsets, &num_pollsets);
for (size_t i = 0; i < num_pollsets; i++) {
grpc_endpoint_add_to_pollset(&exec_ctx, endpoints.server, pollsets[i]);
}
grpc_server_setup_transport(&exec_ctx, server_->c_server(),
server_transport_, NULL, server_args);
grpc_chttp2_transport_start_reading(&exec_ctx, server_transport_, NULL);
}
/* create channel */
{
ChannelArguments args;
args.SetString(GRPC_ARG_DEFAULT_AUTHORITY, "test.authority");
ApplyCommonChannelArguments(&args);
grpc_channel_args c_args = args.c_channel_args();
client_transport_ =
grpc_create_chttp2_transport(&exec_ctx, &c_args, endpoints.client, 1);
GPR_ASSERT(client_transport_);
grpc_channel* channel =
grpc_channel_create(&exec_ctx, "target", &c_args,
GRPC_CLIENT_DIRECT_CHANNEL, client_transport_);
grpc_chttp2_transport_start_reading(&exec_ctx, client_transport_, NULL);
channel_ = CreateChannelInternal("", channel);
}
grpc_exec_ctx_finish(&exec_ctx);
}
virtual ~EndpointPairFixture() {
server_->Shutdown();
cq_->Shutdown();
void* tag;
bool ok;
while (cq_->Next(&tag, &ok)) {
}
}
ServerCompletionQueue* cq() { return cq_.get(); }
std::shared_ptr<Channel> channel() { return channel_; }
protected:
grpc_endpoint_pair endpoint_pair_;
grpc_transport* client_transport_;
grpc_transport* server_transport_;
private:
std::unique_ptr<Server> server_;
std::unique_ptr<ServerCompletionQueue> cq_;
std::shared_ptr<Channel> channel_;
};
class SockPair : public EndpointPairFixture {
public:
SockPair(Service* service)
: EndpointPairFixture(service, grpc_iomgr_create_endpoint_pair(
"test", initialize_stuff.rq(), 8192)) {
}
void AddToLabel(std::ostream& out, benchmark::State& state) {}
};
class InProcessCHTTP2 : public EndpointPairFixture {
public:
InProcessCHTTP2(Service* service)
: EndpointPairFixture(service, MakeEndpoints()) {}
void AddToLabel(std::ostream& out, benchmark::State& state) {
out << " writes/iter:"
<< ((double)stats_.num_writes / (double)state.iterations());
}
private:
grpc_passthru_endpoint_stats stats_;
grpc_endpoint_pair MakeEndpoints() {
grpc_endpoint_pair p;
grpc_passthru_endpoint_create(&p.client, &p.server, initialize_stuff.rq(),
&stats_);
return p;
}
};
class TrickledCHTTP2 : public EndpointPairFixture {
public:
TrickledCHTTP2(Service* service, size_t megabits_per_second)
: EndpointPairFixture(service, MakeEndpoints(megabits_per_second)) {}
void AddToLabel(std::ostream& out, benchmark::State& state) {
out << " writes/iter:"
<< ((double)stats_.num_writes / (double)state.iterations())
<< " cli_transport_stalls/iter:"
<< ((double)
client_stats_.streams_stalled_due_to_transport_flow_control /
(double)state.iterations())
<< " cli_stream_stalls/iter:"
<< ((double)client_stats_.streams_stalled_due_to_stream_flow_control /
(double)state.iterations())
<< " svr_transport_stalls/iter:"
<< ((double)
server_stats_.streams_stalled_due_to_transport_flow_control /
(double)state.iterations())
<< " svr_stream_stalls/iter:"
<< ((double)server_stats_.streams_stalled_due_to_stream_flow_control /
(double)state.iterations());
}
void Step() {
grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT;
size_t client_backlog =
grpc_trickle_endpoint_trickle(&exec_ctx, endpoint_pair_.client);
size_t server_backlog =
grpc_trickle_endpoint_trickle(&exec_ctx, endpoint_pair_.server);
grpc_exec_ctx_finish(&exec_ctx);
UpdateStats((grpc_chttp2_transport*)client_transport_, &client_stats_,
client_backlog);
UpdateStats((grpc_chttp2_transport*)server_transport_, &server_stats_,
server_backlog);
}
private:
grpc_passthru_endpoint_stats stats_;
struct Stats {
int streams_stalled_due_to_stream_flow_control = 0;
int streams_stalled_due_to_transport_flow_control = 0;
};
Stats client_stats_;
Stats server_stats_;
grpc_endpoint_pair MakeEndpoints(size_t kilobits) {
grpc_endpoint_pair p;
grpc_passthru_endpoint_create(&p.client, &p.server, initialize_stuff.rq(),
&stats_);
double bytes_per_second = 125.0 * kilobits;
p.client = grpc_trickle_endpoint_create(p.client, bytes_per_second);
p.server = grpc_trickle_endpoint_create(p.server, bytes_per_second);
return p;
}
void UpdateStats(grpc_chttp2_transport* t, Stats* s, size_t backlog) {
if (backlog == 0) {
if (t->lists[GRPC_CHTTP2_LIST_STALLED_BY_STREAM].head != NULL) {
s->streams_stalled_due_to_stream_flow_control++;
}
if (t->lists[GRPC_CHTTP2_LIST_STALLED_BY_TRANSPORT].head != NULL) {
s->streams_stalled_due_to_transport_flow_control++;
}
}
}
};
/*******************************************************************************
* CONTEXT MUTATORS
*/
static const int kPregenerateKeyCount = 100000;
template <class F>
auto MakeVector(size_t length, F f) -> std::vector<decltype(f())> {
std::vector<decltype(f())> out;
out.reserve(length);
for (size_t i = 0; i < length; i++) {
out.push_back(f());
}
return out;
}
class NoOpMutator {
public:
template <class ContextType>
NoOpMutator(ContextType* context) {}
};
template <int length>
class RandomBinaryMetadata {
public:
static const grpc::string& Key() { return kKey; }
static const grpc::string& Value() {
return kValues[rand() % kValues.size()];
}
private:
static const grpc::string kKey;
static const std::vector<grpc::string> kValues;
static grpc::string GenerateOneString() {
grpc::string s;
s.reserve(length + 1);
for (int i = 0; i < length; i++) {
s += (char)rand();
}
return s;
}
};
template <int length>
const grpc::string RandomBinaryMetadata<length>::kKey = "foo-bin";
template <int length>
const std::vector<grpc::string> RandomBinaryMetadata<length>::kValues =
MakeVector(kPregenerateKeyCount, GenerateOneString);
template <int length>
class RandomAsciiMetadata {
public:
static const grpc::string& Key() { return kKey; }
static const grpc::string& Value() {
return kValues[rand() % kValues.size()];
}
private:
static const grpc::string kKey;
static const std::vector<grpc::string> kValues;
static grpc::string GenerateOneString() {
grpc::string s;
s.reserve(length + 1);
for (int i = 0; i < length; i++) {
s += (char)(rand() % 26 + 'a');
}
return s;
}
};
template <int length>
const grpc::string RandomAsciiMetadata<length>::kKey = "foo";
template <int length>
const std::vector<grpc::string> RandomAsciiMetadata<length>::kValues =
MakeVector(kPregenerateKeyCount, GenerateOneString);
template <class Generator, int kNumKeys>
class Client_AddMetadata : public NoOpMutator {
public:
Client_AddMetadata(ClientContext* context) : NoOpMutator(context) {
for (int i = 0; i < kNumKeys; i++) {
context->AddMetadata(Generator::Key(), Generator::Value());
}
}
};
template <class Generator, int kNumKeys>
class Server_AddInitialMetadata : public NoOpMutator {
public:
Server_AddInitialMetadata(ServerContext* context) : NoOpMutator(context) {
for (int i = 0; i < kNumKeys; i++) {
context->AddInitialMetadata(Generator::Key(), Generator::Value());
}
}
};
/*******************************************************************************
* BENCHMARKING KERNELS
*/
static void* tag(intptr_t x) { return reinterpret_cast<void*>(x); }
template <class Fixture, class ClientContextMutator, class ServerContextMutator>
static void BM_UnaryPingPong(benchmark::State& state) {
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
EchoRequest send_request;
EchoResponse send_response;
EchoResponse recv_response;
if (state.range(0) > 0) {
send_request.set_message(std::string(state.range(0), 'a'));
}
if (state.range(1) > 0) {
send_response.set_message(std::string(state.range(1), 'a'));
}
Status recv_status;
struct ServerEnv {
ServerContext ctx;
EchoRequest recv_request;
grpc::ServerAsyncResponseWriter<EchoResponse> response_writer;
ServerEnv() : response_writer(&ctx) {}
};
uint8_t server_env_buffer[2 * sizeof(ServerEnv)];
ServerEnv* server_env[2] = {
reinterpret_cast<ServerEnv*>(server_env_buffer),
reinterpret_cast<ServerEnv*>(server_env_buffer + sizeof(ServerEnv))};
new (server_env[0]) ServerEnv;
new (server_env[1]) ServerEnv;
service.RequestEcho(&server_env[0]->ctx, &server_env[0]->recv_request,
&server_env[0]->response_writer, fixture->cq(),
fixture->cq(), tag(0));
service.RequestEcho(&server_env[1]->ctx, &server_env[1]->recv_request,
&server_env[1]->response_writer, fixture->cq(),
fixture->cq(), tag(1));
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
while (state.KeepRunning()) {
GPR_TIMER_SCOPE("BenchmarkCycle", 0);
recv_response.Clear();
ClientContext cli_ctx;
ClientContextMutator cli_ctx_mut(&cli_ctx);
std::unique_ptr<ClientAsyncResponseReader<EchoResponse>> response_reader(
stub->AsyncEcho(&cli_ctx, send_request, fixture->cq()));
void* t;
bool ok;
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
GPR_ASSERT(t == tag(0) || t == tag(1));
intptr_t slot = reinterpret_cast<intptr_t>(t);
ServerEnv* senv = server_env[slot];
ServerContextMutator svr_ctx_mut(&senv->ctx);
senv->response_writer.Finish(send_response, Status::OK, tag(3));
response_reader->Finish(&recv_response, &recv_status, tag(4));
for (int i = (1 << 3) | (1 << 4); i != 0;) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int tagnum = (int)reinterpret_cast<intptr_t>(t);
GPR_ASSERT(i & (1 << tagnum));
i -= 1 << tagnum;
}
GPR_ASSERT(recv_status.ok());
senv->~ServerEnv();
senv = new (senv) ServerEnv();
service.RequestEcho(&senv->ctx, &senv->recv_request, &senv->response_writer,
fixture->cq(), fixture->cq(), tag(slot));
}
fixture->Finish(state);
fixture.reset();
server_env[0]->~ServerEnv();
server_env[1]->~ServerEnv();
state.SetBytesProcessed(state.range(0) * state.iterations() +
state.range(1) * state.iterations());
}
// Repeatedly makes Streaming Bidi calls (exchanging a configurable number of
// messages in each call) in a loop on a single channel
//
// First parmeter (i.e state.range(0)): Message size (in bytes) to use
// Second parameter (i.e state.range(1)): Number of ping pong messages.
// Note: One ping-pong means two messages (one from client to server and
// the other from server to client):
template <class Fixture, class ClientContextMutator, class ServerContextMutator>
static void BM_StreamingPingPong(benchmark::State& state) {
const int msg_size = state.range(0);
const int max_ping_pongs = state.range(1);
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
{
EchoResponse send_response;
EchoResponse recv_response;
EchoRequest send_request;
EchoRequest recv_request;
if (msg_size > 0) {
send_request.set_message(std::string(msg_size, 'a'));
send_response.set_message(std::string(msg_size, 'b'));
}
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
while (state.KeepRunning()) {
ServerContext svr_ctx;
ServerContextMutator svr_ctx_mut(&svr_ctx);
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
ClientContext cli_ctx;
ClientContextMutator cli_ctx_mut(&cli_ctx);
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
// Establish async stream between client side and server side
void* t;
bool ok;
int need_tags = (1 << 0) | (1 << 1);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
// Send 'max_ping_pongs' number of ping pong messages
int ping_pong_cnt = 0;
while (ping_pong_cnt < max_ping_pongs) {
request_rw->Write(send_request, tag(0)); // Start client send
response_rw.Read(&recv_request, tag(1)); // Start server recv
request_rw->Read(&recv_response, tag(2)); // Start client recv
need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
// If server recv is complete, start the server send operation
if (i == 1) {
response_rw.Write(send_response, tag(3));
}
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
ping_pong_cnt++;
}
request_rw->WritesDone(tag(0));
response_rw.Finish(Status::OK, tag(1));
Status recv_status;
request_rw->Finish(&recv_status, tag(2));
need_tags = (1 << 0) | (1 << 1) | (1 << 2);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
GPR_ASSERT(recv_status.ok());
}
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(msg_size * state.iterations() * max_ping_pongs * 2);
}
// Repeatedly sends ping pong messages in a single streaming Bidi call in a loop
// First parmeter (i.e state.range(0)): Message size (in bytes) to use
template <class Fixture, class ClientContextMutator, class ServerContextMutator>
static void BM_StreamingPingPongMsgs(benchmark::State& state) {
const int msg_size = state.range(0);
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
{
EchoResponse send_response;
EchoResponse recv_response;
EchoRequest send_request;
EchoRequest recv_request;
if (msg_size > 0) {
send_request.set_message(std::string(msg_size, 'a'));
send_response.set_message(std::string(msg_size, 'b'));
}
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
ServerContext svr_ctx;
ServerContextMutator svr_ctx_mut(&svr_ctx);
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
ClientContext cli_ctx;
ClientContextMutator cli_ctx_mut(&cli_ctx);
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
// Establish async stream between client side and server side
void* t;
bool ok;
int need_tags = (1 << 0) | (1 << 1);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
while (state.KeepRunning()) {
GPR_TIMER_SCOPE("BenchmarkCycle", 0);
request_rw->Write(send_request, tag(0)); // Start client send
response_rw.Read(&recv_request, tag(1)); // Start server recv
request_rw->Read(&recv_response, tag(2)); // Start client recv
need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
// If server recv is complete, start the server send operation
if (i == 1) {
response_rw.Write(send_response, tag(3));
}
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
}
request_rw->WritesDone(tag(0));
response_rw.Finish(Status::OK, tag(1));
Status recv_status;
request_rw->Finish(&recv_status, tag(2));
need_tags = (1 << 0) | (1 << 1) | (1 << 2);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
GPR_ASSERT(recv_status.ok());
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(msg_size * state.iterations() * 2);
}
template <class Fixture>
static void BM_PumpStreamClientToServer(benchmark::State& state) {
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
{
EchoRequest send_request;
EchoRequest recv_request;
if (state.range(0) > 0) {
send_request.set_message(std::string(state.range(0), 'a'));
}
Status recv_status;
ServerContext svr_ctx;
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
ClientContext cli_ctx;
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
int need_tags = (1 << 0) | (1 << 1);
void* t;
bool ok;
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
response_rw.Read(&recv_request, tag(0));
while (state.KeepRunning()) {
GPR_TIMER_SCOPE("BenchmarkCycle", 0);
request_rw->Write(send_request, tag(1));
while (true) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
if (t == tag(0)) {
response_rw.Read(&recv_request, tag(0));
} else if (t == tag(1)) {
break;
} else {
GPR_ASSERT(false);
}
}
}
request_rw->WritesDone(tag(1));
need_tags = (1 << 0) | (1 << 1);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(state.range(0) * state.iterations());
}
template <class Fixture>
static void BM_PumpStreamServerToClient(benchmark::State& state) {
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
{
EchoResponse send_response;
EchoResponse recv_response;
if (state.range(0) > 0) {
send_response.set_message(std::string(state.range(0), 'a'));
}
Status recv_status;
ServerContext svr_ctx;
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
ClientContext cli_ctx;
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
int need_tags = (1 << 0) | (1 << 1);
void* t;
bool ok;
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
request_rw->Read(&recv_response, tag(0));
while (state.KeepRunning()) {
GPR_TIMER_SCOPE("BenchmarkCycle", 0);
response_rw.Write(send_response, tag(1));
while (true) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
if (t == tag(0)) {
request_rw->Read(&recv_response, tag(0));
} else if (t == tag(1)) {
break;
} else {
GPR_ASSERT(false);
}
}
}
response_rw.Finish(Status::OK, tag(1));
need_tags = (1 << 0) | (1 << 1);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(state.range(0) * state.iterations());
}
static void TrickleCQNext(TrickledCHTTP2* fixture, void** t, bool* ok) {
while (true) {
switch (fixture->cq()->AsyncNext(
t, ok, gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
gpr_time_from_micros(100, GPR_TIMESPAN)))) {
case CompletionQueue::TIMEOUT:
fixture->Step();
break;
case CompletionQueue::SHUTDOWN:
GPR_ASSERT(false);
break;
case CompletionQueue::GOT_EVENT:
return;
}
}
}
static void BM_PumpStreamServerToClient_Trickle(benchmark::State& state) {
EchoTestService::AsyncService service;
std::unique_ptr<TrickledCHTTP2> fixture(
new TrickledCHTTP2(&service, state.range(1)));
{
EchoResponse send_response;
EchoResponse recv_response;
if (state.range(0) > 0) {
send_response.set_message(std::string(state.range(0), 'a'));
}
Status recv_status;
ServerContext svr_ctx;
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
ClientContext cli_ctx;
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
int need_tags = (1 << 0) | (1 << 1);
void* t;
bool ok;
while (need_tags) {
TrickleCQNext(fixture.get(), &t, &ok);
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
request_rw->Read(&recv_response, tag(0));
while (state.KeepRunning()) {
GPR_TIMER_SCOPE("BenchmarkCycle", 0);
response_rw.Write(send_response, tag(1));
while (true) {
TrickleCQNext(fixture.get(), &t, &ok);
if (t == tag(0)) {
request_rw->Read(&recv_response, tag(0));
} else if (t == tag(1)) {
break;
} else {
GPR_ASSERT(false);
}
}
}
response_rw.Finish(Status::OK, tag(1));
need_tags = (1 << 0) | (1 << 1);
while (need_tags) {
TrickleCQNext(fixture.get(), &t, &ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(state.range(0) * state.iterations());
}
/*******************************************************************************
* CONFIGURATIONS
*/
static void SweepSizesArgs(benchmark::internal::Benchmark* b) {
b->Args({0, 0});
for (int i = 1; i <= 128 * 1024 * 1024; i *= 8) {
b->Args({i, 0});
b->Args({0, i});
b->Args({i, i});
}
}
BENCHMARK_TEMPLATE(BM_UnaryPingPong, TCP, NoOpMutator, NoOpMutator)
->Apply(SweepSizesArgs);
BENCHMARK_TEMPLATE(BM_UnaryPingPong, UDS, NoOpMutator, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, SockPair, NoOpMutator, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, NoOpMutator)
->Apply(SweepSizesArgs);
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomBinaryMetadata<10>, 1>, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomBinaryMetadata<31>, 1>, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomBinaryMetadata<100>, 1>,
NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomBinaryMetadata<10>, 2>, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomBinaryMetadata<31>, 2>, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomBinaryMetadata<100>, 2>,
NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator,
Server_AddInitialMetadata<RandomBinaryMetadata<10>, 1>)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator,
Server_AddInitialMetadata<RandomBinaryMetadata<31>, 1>)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator,
Server_AddInitialMetadata<RandomBinaryMetadata<100>, 1>)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomAsciiMetadata<10>, 1>, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomAsciiMetadata<31>, 1>, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2,
Client_AddMetadata<RandomAsciiMetadata<100>, 1>, NoOpMutator)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator,
Server_AddInitialMetadata<RandomAsciiMetadata<10>, 1>)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator,
Server_AddInitialMetadata<RandomAsciiMetadata<31>, 1>)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator,
Server_AddInitialMetadata<RandomAsciiMetadata<100>, 1>)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator,
Server_AddInitialMetadata<RandomAsciiMetadata<10>, 100>)
->Args({0, 0});
BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, TCP)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, UDS)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, SockPair)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, InProcessCHTTP2)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, TCP)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, UDS)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, SockPair)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, InProcessCHTTP2)
->Range(0, 128 * 1024 * 1024);
static void TrickleArgs(benchmark::internal::Benchmark* b) {
for (int i = 1; i <= 128 * 1024 * 1024; i *= 8) {
for (int j = 1; j <= 128 * 1024 * 1024; j *= 8) {
double expected_time =
static_cast<double>(14 + i) / (125.0 * static_cast<double>(j));
if (expected_time > 0.01) continue;
b->Args({i, j});
}
}
}
BENCHMARK(BM_PumpStreamServerToClient_Trickle)->Apply(TrickleArgs);
// Generate Args for StreamingPingPong benchmarks. Currently generates args for
// only "small streams" (i.e streams with 0, 1 or 2 messages)
static void StreamingPingPongArgs(benchmark::internal::Benchmark* b) {
int msg_size = 0;
b->Args({0, 0}); // spl case: 0 ping-pong msgs (msg_size doesn't matter here)
for (msg_size = 0; msg_size <= 128 * 1024 * 1024;
msg_size == 0 ? msg_size++ : msg_size *= 8) {
b->Args({msg_size, 1});
b->Args({msg_size, 2});
}
}
BENCHMARK_TEMPLATE(BM_StreamingPingPong, InProcessCHTTP2, NoOpMutator,
NoOpMutator)
->Apply(StreamingPingPongArgs);
BENCHMARK_TEMPLATE(BM_StreamingPingPong, TCP, NoOpMutator, NoOpMutator)
->Apply(StreamingPingPongArgs);
BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, InProcessCHTTP2, NoOpMutator,
NoOpMutator)
->Range(0, 128 * 1024 * 1024);
BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, TCP, NoOpMutator, NoOpMutator)
->Range(0, 128 * 1024 * 1024);
} // namespace testing
} // namespace grpc
BENCHMARK_MAIN();