The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2.4 KiB

Client Configuration Support for GRPC

This library provides high level configuration machinery to construct client channels and load balance between them.

Each grpc_channel is created with a grpc_resolver. It is the resolver's duty to resolve a name into configuration data for the channel. Such configuration data might include:

  • a list of (ip, port) addresses to connect to
  • a load balancing policy to decide which server to send a request to
  • a set of filters to mutate outgoing requests (say, by adding metadata)

The resolver provides this data as a stream of grpc_client_config objects to the channel. We represent configuration as a stream so that it can be changed by the resolver during execution, by reacting to external events (such as a new configuration file being pushed to some store).

Load Balancing

Load balancing configuration is provided by a grpc_lb_policy object, stored as part of grpc_client_config.

The primary job of the load balancing policies is to pick a target server given only the initial metadata for a request. It does this by providing a grpc_subchannel object to the owning channel.

Sub-Channels

A sub-channel provides a connection to a server for a client channel. It has a connectivity state like a regular channel, and so can be connected or disconnected. This connectivity state can be used to inform load balancing decisions (for example, by avoiding disconnected backends).

Configured sub-channels are fully setup to participate in the grpc data plane. Their behavior is specified by a set of grpc channel filters defined at their construction. To customize this behavior, resolvers build grpc_subchannel_factory objects, which use the decorator pattern to customize construction arguments for concrete grpc_subchannel instances.

Naming for GRPC

Names in GRPC are represented by a URI (as defined in RFC 3986).

The following schemes are currently supported:

dns:///host:port - dns schemes are currently supported so long as authority is empty (authority based dns resolution is expected in a future release)

unix:path - the unix scheme is used to create and connect to unix domain sockets - the authority must be empty, and the path represents the absolute or relative path to the desired socket