The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

331 lines
11 KiB

/*
*
* Copyright 2019 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <condition_variable>
#include <mutex>
#include <benchmark/benchmark.h>
#include <grpc/grpc.h>
#include "src/core/lib/iomgr/executor/threadpool.h"
#include "test/core/util/test_config.h"
#include "test/cpp/microbenchmarks/helpers.h"
#include "test/cpp/util/test_config.h"
namespace grpc {
namespace testing {
// This helper class allows a thread to block for a pre-specified number of
// actions. BlockingCounter has an initial non-negative count on initialization.
// Each call to DecrementCount will decrease the count by 1. When making a call
// to Wait, if the count is greater than 0, the thread will be blocked, until
// the count reaches 0.
class BlockingCounter {
public:
explicit BlockingCounter(int count) : count_(count) {}
void DecrementCount() {
std::lock_guard<std::mutex> l(mu_);
count_--;
if (count_ == 0) cv_.notify_all();
}
void Wait() {
std::unique_lock<std::mutex> l(mu_);
while (count_ > 0) {
cv_.wait(l);
}
}
private:
int count_;
std::mutex mu_;
std::condition_variable cv_;
};
// This is a functor/closure class for threadpool microbenchmark.
// This functor (closure) class will add another functor into pool if the
// number passed in (num_add) is greater than 0. Otherwise, it will decrement
// the counter to indicate that task is finished. This functor will suicide at
// the end, therefore, no need for caller to do clean-ups.
class AddAnotherFunctor : public grpc_completion_queue_functor {
public:
AddAnotherFunctor(grpc_core::ThreadPool* pool, BlockingCounter* counter,
int num_add)
: pool_(pool), counter_(counter), num_add_(num_add) {
functor_run = &AddAnotherFunctor::Run;
inlineable = false;
internal_next = this;
internal_success = 0;
}
// When the functor gets to run in thread pool, it will take itself as first
// argument and internal_success as second one.
static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
auto* callback = static_cast<AddAnotherFunctor*>(cb);
if (--callback->num_add_ > 0) {
callback->pool_->Add(new AddAnotherFunctor(
callback->pool_, callback->counter_, callback->num_add_));
} else {
callback->counter_->DecrementCount();
}
// Suicides.
delete callback;
}
private:
grpc_core::ThreadPool* pool_;
BlockingCounter* counter_;
int num_add_;
};
template <int kConcurrentFunctor>
static void ThreadPoolAddAnother(benchmark::State& state) {
const int num_iterations = state.range(0);
const int num_threads = state.range(1);
// Number of adds done by each closure.
const int num_add = num_iterations / kConcurrentFunctor;
grpc_core::ThreadPool pool(num_threads);
while (state.KeepRunningBatch(num_iterations)) {
BlockingCounter counter(kConcurrentFunctor);
for (int i = 0; i < kConcurrentFunctor; ++i) {
pool.Add(new AddAnotherFunctor(&pool, &counter, num_add));
}
counter.Wait();
}
state.SetItemsProcessed(state.iterations());
}
// First pair of arguments is range for number of iterations (num_iterations).
// Second pair of arguments is range for thread pool size (num_threads).
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 1)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 4)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 8)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 16)
->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 32)
->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 64)
->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 128)
->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 512)
->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 2048)
->RangePair(524288, 524288, 1, 1024);
// A functor class that will delete self on end of running.
class SuicideFunctorForAdd : public grpc_completion_queue_functor {
public:
explicit SuicideFunctorForAdd(BlockingCounter* counter) : counter_(counter) {
functor_run = &SuicideFunctorForAdd::Run;
inlineable = false;
internal_next = this;
internal_success = 0;
}
static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
// On running, the first argument would be itself.
auto* callback = static_cast<SuicideFunctorForAdd*>(cb);
callback->counter_->DecrementCount();
delete callback;
}
private:
BlockingCounter* counter_;
};
// Performs the scenario of external thread(s) adding closures into pool.
static void BM_ThreadPoolExternalAdd(benchmark::State& state) {
static grpc_core::ThreadPool* external_add_pool = nullptr;
int thread_idx = state.thread_index();
// Setup for each run of test.
if (thread_idx == 0) {
const int num_threads = state.range(1);
external_add_pool = new grpc_core::ThreadPool(num_threads);
}
const int num_iterations = state.range(0) / state.threads();
while (state.KeepRunningBatch(num_iterations)) {
BlockingCounter counter(num_iterations);
for (int i = 0; i < num_iterations; ++i) {
external_add_pool->Add(new SuicideFunctorForAdd(&counter));
}
counter.Wait();
}
// Teardown at the end of each test run.
if (thread_idx == 0) {
state.SetItemsProcessed(state.range(0));
delete external_add_pool;
}
}
BENCHMARK(BM_ThreadPoolExternalAdd)
// First pair is range for number of iterations (num_iterations).
// Second pair is range for thread pool size (num_threads).
->RangePair(524288, 524288, 1, 1024)
->ThreadRange(1, 256); // Concurrent external thread(s) up to 256
// Functor (closure) that adds itself into pool repeatedly. By adding self, the
// overhead would be low and can measure the time of add more accurately.
class AddSelfFunctor : public grpc_completion_queue_functor {
public:
AddSelfFunctor(grpc_core::ThreadPool* pool, BlockingCounter* counter,
int num_add)
: pool_(pool), counter_(counter), num_add_(num_add) {
functor_run = &AddSelfFunctor::Run;
inlineable = false;
internal_next = this;
internal_success = 0;
}
// When the functor gets to run in thread pool, it will take itself as first
// argument and internal_success as second one.
static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
auto* callback = static_cast<AddSelfFunctor*>(cb);
if (--callback->num_add_ > 0) {
callback->pool_->Add(cb);
} else {
callback->counter_->DecrementCount();
// Suicides.
delete callback;
}
}
private:
grpc_core::ThreadPool* pool_;
BlockingCounter* counter_;
int num_add_;
};
template <int kConcurrentFunctor>
static void ThreadPoolAddSelf(benchmark::State& state) {
const int num_iterations = state.range(0);
const int num_threads = state.range(1);
// Number of adds done by each closure.
const int num_add = num_iterations / kConcurrentFunctor;
grpc_core::ThreadPool pool(num_threads);
while (state.KeepRunningBatch(num_iterations)) {
BlockingCounter counter(kConcurrentFunctor);
for (int i = 0; i < kConcurrentFunctor; ++i) {
pool.Add(new AddSelfFunctor(&pool, &counter, num_add));
}
counter.Wait();
}
state.SetItemsProcessed(state.iterations());
}
// First pair of arguments is range for number of iterations (num_iterations).
// Second pair of arguments is range for thread pool size (num_threads).
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 1)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 4)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 8)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 16)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 32)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 64)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 128)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 512)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 2048)->RangePair(524288, 524288, 1, 1024);
#if defined(__GNUC__) && !defined(SWIG)
#if defined(__i386__) || defined(__x86_64__)
#define CACHELINE_SIZE 64
#elif defined(__powerpc64__)
#define CACHELINE_SIZE 128
#elif defined(__aarch64__)
#define CACHELINE_SIZE 64
#elif defined(__arm__)
#if defined(__ARM_ARCH_5T__)
#define CACHELINE_SIZE 32
#elif defined(__ARM_ARCH_7A__)
#define CACHELINE_SIZE 64
#endif
#endif
#ifndef CACHELINE_SIZE
#define CACHELINE_SIZE 64
#endif
#endif
// A functor (closure) that simulates closures with small but non-trivial amount
// of work.
class ShortWorkFunctorForAdd : public grpc_completion_queue_functor {
public:
BlockingCounter* counter_;
ShortWorkFunctorForAdd() {
functor_run = &ShortWorkFunctorForAdd::Run;
inlineable = false;
internal_next = this;
internal_success = 0;
val_ = 0;
}
static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
auto* callback = static_cast<ShortWorkFunctorForAdd*>(cb);
// Uses pad to avoid compiler complaining unused variable error.
callback->pad[0] = 0;
for (int i = 0; i < 1000; ++i) {
callback->val_++;
}
callback->counter_->DecrementCount();
}
private:
char pad[CACHELINE_SIZE];
volatile int val_;
};
// Simulates workloads where many short running callbacks are added to the
// threadpool. The callbacks are not enough to keep all the workers busy
// continuously so the number of workers running changes overtime.
//
// In effect this tests how well the threadpool avoids spurious wakeups.
static void BM_SpikyLoad(benchmark::State& state) {
const int num_threads = state.range(0);
const int kNumSpikes = 1000;
const int batch_size = 3 * num_threads;
std::vector<ShortWorkFunctorForAdd> work_vector(batch_size);
grpc_core::ThreadPool pool(num_threads);
while (state.KeepRunningBatch(kNumSpikes * batch_size)) {
for (int i = 0; i != kNumSpikes; ++i) {
BlockingCounter counter(batch_size);
for (auto& w : work_vector) {
w.counter_ = &counter;
pool.Add(&w);
}
counter.Wait();
}
}
state.SetItemsProcessed(state.iterations() * batch_size);
}
BENCHMARK(BM_SpikyLoad)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16);
} // namespace testing
} // namespace grpc
// Some distros have RunSpecifiedBenchmarks under the benchmark namespace,
// and others do not. This allows us to support both modes.
namespace benchmark {
void RunTheBenchmarksNamespaced() { RunSpecifiedBenchmarks(); }
} // namespace benchmark
int main(int argc, char* argv[]) {
grpc::testing::TestEnvironment env(&argc, argv);
LibraryInitializer libInit;
::benchmark::Initialize(&argc, argv);
grpc::testing::InitTest(&argc, &argv, false);
benchmark::RunTheBenchmarksNamespaced();
return 0;
}