The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

489 lines
17 KiB

/*
*
* Copyright 2016 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include "test/core/util/passthru_endpoint.h"
#include <inttypes.h>
#include <string.h>
#include <string>
#include "absl/strings/str_format.h"
#include <grpc/support/alloc.h>
#include <grpc/support/string_util.h>
#include "src/core/lib/iomgr/sockaddr.h"
#include "src/core/lib/iomgr/timer.h"
#include "src/core/lib/slice/slice_internal.h"
typedef struct passthru_endpoint passthru_endpoint;
typedef struct {
bool is_armed;
grpc_endpoint* ep;
grpc_slice_buffer* slices;
grpc_closure* cb;
} pending_op;
typedef struct {
grpc_timer timer;
uint64_t allowed_write_bytes;
uint64_t allowed_read_bytes;
std::vector<grpc_passthru_endpoint_channel_action> actions;
std::function<void()> on_complete;
} grpc_passthru_endpoint_channel_effects;
typedef struct {
grpc_endpoint base;
passthru_endpoint* parent;
grpc_slice_buffer read_buffer;
grpc_slice_buffer write_buffer;
grpc_slice_buffer* on_read_out;
grpc_closure* on_read;
pending_op pending_read_op;
pending_op pending_write_op;
uint64_t bytes_read_so_far;
uint64_t bytes_written_so_far;
} half;
struct passthru_endpoint {
gpr_mu mu;
int halves;
grpc_passthru_endpoint_stats* stats;
grpc_passthru_endpoint_channel_effects* channel_effects;
bool simulate_channel_actions;
bool shutdown;
half client;
half server;
};
static void do_pending_read_op_locked(half* m, grpc_error_handle error) {
GPR_ASSERT(m->pending_read_op.is_armed);
GPR_ASSERT(m->bytes_read_so_far <=
m->parent->channel_effects->allowed_read_bytes);
if (m->parent->shutdown) {
grpc_core::ExecCtx::Run(
DEBUG_LOCATION, m->pending_read_op.cb,
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Already shutdown"));
grpc_slice_buffer_reset_and_unref(&m->read_buffer);
m->pending_read_op.is_armed = false;
return;
}
if (m->bytes_read_so_far == m->parent->channel_effects->allowed_read_bytes) {
// Keep it in pending state.
return;
}
// This delayed processing should only be invoked when read_buffer has
// something in it.
GPR_ASSERT(m->read_buffer.count > 0);
uint64_t readable_length = std::min<uint64_t>(
m->read_buffer.length,
m->parent->channel_effects->allowed_read_bytes - m->bytes_read_so_far);
GPR_ASSERT(readable_length > 0);
grpc_slice_buffer_move_first_no_ref(&m->read_buffer, readable_length,
m->pending_read_op.slices);
grpc_core::ExecCtx::Run(DEBUG_LOCATION, m->pending_read_op.cb, error);
if (m->parent->simulate_channel_actions) {
m->bytes_read_so_far += readable_length;
}
m->pending_read_op.is_armed = false;
}
static void me_read(grpc_endpoint* ep, grpc_slice_buffer* slices,
grpc_closure* cb, bool /*urgent*/) {
half* m = reinterpret_cast<half*>(ep);
gpr_mu_lock(&m->parent->mu);
if (m->parent->shutdown) {
grpc_core::ExecCtx::Run(
DEBUG_LOCATION, cb,
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Already shutdown"));
} else if (m->read_buffer.count > 0) {
GPR_ASSERT(!m->pending_read_op.is_armed);
GPR_ASSERT(!m->on_read);
m->pending_read_op.is_armed = true;
m->pending_read_op.cb = cb;
m->pending_read_op.ep = ep;
m->pending_read_op.slices = slices;
do_pending_read_op_locked(m, GRPC_ERROR_NONE);
} else {
GPR_ASSERT(!m->pending_read_op.is_armed);
m->on_read = cb;
m->on_read_out = slices;
}
gpr_mu_unlock(&m->parent->mu);
}
// Copy src slice and split the copy at n bytes into two separate slices
void grpc_slice_copy_split(grpc_slice src, uint64_t n, grpc_slice& split1,
grpc_slice& split2) {
GPR_ASSERT(n <= GRPC_SLICE_LENGTH(src));
if (n == GRPC_SLICE_LENGTH(src)) {
split1 = grpc_slice_copy(src);
split2 = grpc_empty_slice();
return;
}
split1 = GRPC_SLICE_MALLOC(n);
memcpy(GRPC_SLICE_START_PTR(split1), GRPC_SLICE_START_PTR(src), n);
split2 = GRPC_SLICE_MALLOC(GRPC_SLICE_LENGTH(src) - n);
memcpy(GRPC_SLICE_START_PTR(split2), GRPC_SLICE_START_PTR(src) + n,
GRPC_SLICE_LENGTH(src) - n);
}
static half* other_half(half* h) {
if (h == &h->parent->client) return &h->parent->server;
return &h->parent->client;
}
static void do_pending_write_op_locked(half* m, grpc_error_handle error) {
GPR_ASSERT(m->pending_write_op.is_armed);
GPR_ASSERT(m->bytes_written_so_far <=
m->parent->channel_effects->allowed_write_bytes);
if (m->parent->shutdown) {
grpc_core::ExecCtx::Run(
DEBUG_LOCATION, m->pending_write_op.cb,
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Already shutdown"));
m->pending_write_op.is_armed = false;
grpc_slice_buffer_reset_and_unref(m->pending_write_op.slices);
return;
}
if (m->bytes_written_so_far ==
m->parent->channel_effects->allowed_write_bytes) {
// Keep it in pending state.
return;
}
half* other = other_half(m);
uint64_t max_writable =
std::min<uint64_t>(m->pending_write_op.slices->length,
m->parent->channel_effects->allowed_write_bytes -
m->bytes_written_so_far);
uint64_t max_readable = other->parent->channel_effects->allowed_read_bytes -
other->bytes_read_so_far;
uint64_t immediate_bytes_read =
other->on_read != nullptr ? std::min<uint64_t>(max_readable, max_writable)
: 0;
GPR_ASSERT(max_writable > 0);
GPR_ASSERT(max_readable >= 0);
// At the end of this process, we should have written max_writable bytes;
if (m->parent->simulate_channel_actions) {
m->bytes_written_so_far += max_writable;
}
// Estimate if the original write would still be pending at the end of this
// process
bool would_write_be_pending =
max_writable < m->pending_write_op.slices->length;
if (!m->parent->simulate_channel_actions) {
GPR_ASSERT(!would_write_be_pending);
}
grpc_slice_buffer* slices = m->pending_write_op.slices;
grpc_slice_buffer* dest =
other->on_read != nullptr ? other->on_read_out : &other->read_buffer;
while (max_writable > 0) {
grpc_slice slice = grpc_slice_buffer_take_first(slices);
uint64_t slice_length = GPR_SLICE_LENGTH(slice);
GPR_ASSERT(slice_length > 0);
grpc_slice split1, split2;
uint64_t split_length = 0;
if (slice_length <= max_readable) {
split_length = std::min<uint64_t>(slice_length, max_writable);
} else if (max_readable > 0) {
// slice_length > max_readable
split_length = std::min<uint64_t>(max_readable, max_writable);
} else {
// slice_length still > max_readable but max_readable is 0.
// In this case put the bytes into other->read_buffer. During a future
// read if max_readable still remains zero at the time of read, the
// pending read logic will kick in.
dest = &other->read_buffer;
split_length = std::min<uint64_t>(slice_length, max_writable);
}
grpc_slice_copy_split(slice, split_length, split1, split2);
grpc_slice_unref_internal(slice);
// Write a copy of the slice to the destination to be read
grpc_slice_buffer_add_indexed(dest, split1);
// Re-insert split2 into source for next iteration.
if (GPR_SLICE_LENGTH(split2) > 0) {
grpc_slice_buffer_undo_take_first(slices, split2);
} else {
grpc_slice_unref_internal(split2);
}
if (max_readable > 0) {
GPR_ASSERT(max_readable >= static_cast<uint64_t>(split_length));
max_readable -= split_length;
}
GPR_ASSERT(max_writable >= static_cast<uint64_t>(split_length));
max_writable -= split_length;
}
if (immediate_bytes_read > 0) {
GPR_ASSERT(!other->pending_read_op.is_armed);
if (m->parent->simulate_channel_actions) {
other->bytes_read_so_far += immediate_bytes_read;
}
grpc_core::ExecCtx::Run(DEBUG_LOCATION, other->on_read, error);
other->on_read = nullptr;
}
if (!would_write_be_pending) {
// No slices should be left
GPR_ASSERT(m->pending_write_op.slices->count == 0);
grpc_slice_buffer_reset_and_unref(m->pending_write_op.slices);
m->pending_write_op.is_armed = false;
grpc_core::ExecCtx::Run(DEBUG_LOCATION, m->pending_write_op.cb, error);
}
}
static void me_write(grpc_endpoint* ep, grpc_slice_buffer* slices,
grpc_closure* cb, void* /*arg*/) {
half* m = reinterpret_cast<half*>(ep);
gpr_mu_lock(&m->parent->mu);
gpr_atm_no_barrier_fetch_add(&m->parent->stats->num_writes, (gpr_atm)1);
if (m->parent->shutdown) {
grpc_core::ExecCtx::Run(
DEBUG_LOCATION, cb,
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Endpoint already shutdown"));
} else {
GPR_ASSERT(!m->pending_write_op.is_armed);
m->pending_write_op.is_armed = true;
m->pending_write_op.cb = cb;
m->pending_write_op.ep = ep;
// Copy slices into m->pending_write_op.slices
m->pending_write_op.slices = &m->write_buffer;
GPR_ASSERT(m->pending_write_op.slices->count == 0);
for (int i = 0; i < static_cast<int>(slices->count); i++) {
grpc_slice_buffer_add_indexed(m->pending_write_op.slices,
grpc_slice_copy(slices->slices[i]));
}
do_pending_write_op_locked(m, GRPC_ERROR_NONE);
}
gpr_mu_unlock(&m->parent->mu);
}
void flush_pending_ops_locked(half* m, grpc_error_handle error) {
if (m->pending_read_op.is_armed) {
do_pending_read_op_locked(m, error);
}
if (m->pending_write_op.is_armed) {
do_pending_write_op_locked(m, error);
}
}
static void me_add_to_pollset(grpc_endpoint* /*ep*/,
grpc_pollset* /*pollset*/) {}
static void me_add_to_pollset_set(grpc_endpoint* /*ep*/,
grpc_pollset_set* /*pollset*/) {}
static void me_delete_from_pollset_set(grpc_endpoint* /*ep*/,
grpc_pollset_set* /*pollset*/) {}
static void me_shutdown(grpc_endpoint* ep, grpc_error_handle why) {
half* m = reinterpret_cast<half*>(ep);
gpr_mu_lock(&m->parent->mu);
m->parent->shutdown = true;
flush_pending_ops_locked(m, GRPC_ERROR_NONE);
if (m->on_read) {
grpc_core::ExecCtx::Run(
DEBUG_LOCATION, m->on_read,
GRPC_ERROR_CREATE_REFERENCING_FROM_STATIC_STRING("Shutdown", &why, 1));
m->on_read = nullptr;
}
m = other_half(m);
flush_pending_ops_locked(m, GRPC_ERROR_NONE);
if (m->on_read) {
grpc_core::ExecCtx::Run(
DEBUG_LOCATION, m->on_read,
GRPC_ERROR_CREATE_REFERENCING_FROM_STATIC_STRING("Shutdown", &why, 1));
m->on_read = nullptr;
}
gpr_mu_unlock(&m->parent->mu);
GRPC_ERROR_UNREF(why);
}
void grpc_passthru_endpoint_destroy(passthru_endpoint* p) {
gpr_mu_destroy(&p->mu);
grpc_passthru_endpoint_stats_destroy(p->stats);
delete p->channel_effects;
grpc_slice_buffer_destroy_internal(&p->client.read_buffer);
grpc_slice_buffer_destroy_internal(&p->server.read_buffer);
grpc_slice_buffer_destroy_internal(&p->client.write_buffer);
grpc_slice_buffer_destroy_internal(&p->server.write_buffer);
gpr_free(p);
}
static void me_destroy(grpc_endpoint* ep) {
passthru_endpoint* p = (reinterpret_cast<half*>(ep))->parent;
gpr_mu_lock(&p->mu);
if (0 == --p->halves && p->channel_effects->actions.empty()) {
// no pending channel actions exist
gpr_mu_unlock(&p->mu);
grpc_passthru_endpoint_destroy(p);
} else {
if (p->halves == 0 && p->simulate_channel_actions) {
grpc_timer_cancel(&p->channel_effects->timer);
}
gpr_mu_unlock(&p->mu);
}
}
static absl::string_view me_get_peer(grpc_endpoint* ep) {
passthru_endpoint* p = (reinterpret_cast<half*>(ep))->parent;
return (reinterpret_cast<half*>(ep)) == &p->client
? "fake:mock_client_endpoint"
: "fake:mock_server_endpoint";
}
static absl::string_view me_get_local_address(grpc_endpoint* ep) {
passthru_endpoint* p = (reinterpret_cast<half*>(ep))->parent;
return (reinterpret_cast<half*>(ep)) == &p->client
? "fake:mock_client_endpoint"
: "fake:mock_server_endpoint";
}
static int me_get_fd(grpc_endpoint* /*ep*/) { return -1; }
static bool me_can_track_err(grpc_endpoint* /*ep*/) { return false; }
static const grpc_endpoint_vtable vtable = {
me_read,
me_write,
me_add_to_pollset,
me_add_to_pollset_set,
me_delete_from_pollset_set,
me_shutdown,
me_destroy,
me_get_peer,
me_get_local_address,
me_get_fd,
me_can_track_err,
};
static void half_init(half* m, passthru_endpoint* parent,
const char* half_name) {
m->base.vtable = &vtable;
m->parent = parent;
grpc_slice_buffer_init(&m->read_buffer);
grpc_slice_buffer_init(&m->write_buffer);
m->pending_write_op.slices = nullptr;
m->on_read = nullptr;
m->bytes_read_so_far = 0;
m->bytes_written_so_far = 0;
m->pending_write_op.is_armed = false;
m->pending_read_op.is_armed = false;
std::string name =
absl::StrFormat("passthru_endpoint_%s_%p", half_name, parent);
}
void grpc_passthru_endpoint_create(grpc_endpoint** client,
grpc_endpoint** server,
grpc_passthru_endpoint_stats* stats,
bool simulate_channel_actions) {
passthru_endpoint* m =
static_cast<passthru_endpoint*>(gpr_malloc(sizeof(*m)));
m->halves = 2;
m->shutdown = false;
if (stats == nullptr) {
m->stats = grpc_passthru_endpoint_stats_create();
} else {
gpr_ref(&stats->refs);
m->stats = stats;
}
m->channel_effects = new grpc_passthru_endpoint_channel_effects();
m->simulate_channel_actions = simulate_channel_actions;
if (!simulate_channel_actions) {
m->channel_effects->allowed_read_bytes = UINT64_MAX;
m->channel_effects->allowed_write_bytes = UINT64_MAX;
}
half_init(&m->client, m, "client");
half_init(&m->server, m, "server");
gpr_mu_init(&m->mu);
*client = &m->client.base;
*server = &m->server.base;
}
grpc_passthru_endpoint_stats* grpc_passthru_endpoint_stats_create() {
grpc_passthru_endpoint_stats* stats =
static_cast<grpc_passthru_endpoint_stats*>(
gpr_malloc(sizeof(grpc_passthru_endpoint_stats)));
memset(stats, 0, sizeof(*stats));
gpr_ref_init(&stats->refs, 1);
return stats;
}
void grpc_passthru_endpoint_stats_destroy(grpc_passthru_endpoint_stats* stats) {
if (gpr_unref(&stats->refs)) {
gpr_free(stats);
}
}
static void sched_next_channel_action_locked(half* m);
static void do_next_sched_channel_action(void* arg, grpc_error_handle error) {
half* m = reinterpret_cast<half*>(arg);
gpr_mu_lock(&m->parent->mu);
GPR_ASSERT(!m->parent->channel_effects->actions.empty());
if (m->parent->halves == 0) {
gpr_mu_unlock(&m->parent->mu);
grpc_passthru_endpoint_destroy(m->parent);
return;
}
auto curr_action = m->parent->channel_effects->actions[0];
m->parent->channel_effects->actions.erase(
m->parent->channel_effects->actions.begin());
m->parent->channel_effects->allowed_read_bytes +=
curr_action.add_n_readable_bytes;
m->parent->channel_effects->allowed_write_bytes +=
curr_action.add_n_writable_bytes;
flush_pending_ops_locked(m, error);
flush_pending_ops_locked(other_half(m), error);
sched_next_channel_action_locked(m);
gpr_mu_unlock(&m->parent->mu);
}
static void sched_next_channel_action_locked(half* m) {
if (m->parent->channel_effects->actions.empty()) {
m->parent->channel_effects->on_complete();
return;
}
grpc_timer_init(&m->parent->channel_effects->timer,
m->parent->channel_effects->actions[0].wait_ms +
grpc_core::ExecCtx::Get()->Now(),
GRPC_CLOSURE_CREATE(do_next_sched_channel_action, m,
grpc_schedule_on_exec_ctx));
}
void start_scheduling_grpc_passthru_endpoint_channel_effects(
grpc_endpoint* ep,
const std::vector<grpc_passthru_endpoint_channel_action>& actions,
std::function<void()> on_complete) {
half* m = reinterpret_cast<half*>(ep);
gpr_mu_lock(&m->parent->mu);
if (!m->parent->simulate_channel_actions || m->parent->shutdown) {
gpr_mu_unlock(&m->parent->mu);
return;
}
m->parent->channel_effects->actions = actions;
m->parent->channel_effects->on_complete = std::move(on_complete);
sched_next_channel_action_locked(m);
gpr_mu_unlock(&m->parent->mu);
}