The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2463 lines
97 KiB

// Copyright 2016 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <deque>
#include <memory>
#include <mutex>
#include <random>
#include <set>
#include <string>
#include <thread>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include <grpc/grpc.h>
#include <grpc/support/alloc.h>
#include <grpc/support/atm.h>
#include <grpc/support/log.h>
#include <grpc/support/time.h>
#include <grpcpp/channel.h>
#include <grpcpp/client_context.h>
#include <grpcpp/create_channel.h>
#include <grpcpp/ext/call_metric_recorder.h>
#include <grpcpp/ext/orca_service.h>
#include <grpcpp/health_check_service_interface.h>
#include <grpcpp/impl/codegen/sync.h>
#include <grpcpp/server.h>
#include <grpcpp/server_builder.h>
#include "src/core/ext/filters/client_channel/backup_poller.h"
#include "src/core/ext/filters/client_channel/global_subchannel_pool.h"
#include "src/core/ext/filters/client_channel/resolver/fake/fake_resolver.h"
#include "src/core/lib/address_utils/parse_address.h"
#include "src/core/lib/address_utils/sockaddr_utils.h"
#include "src/core/lib/backoff/backoff.h"
#include "src/core/lib/channel/channel_args.h"
#include "src/core/lib/gpr/env.h"
#include "src/core/lib/gprpp/debug_location.h"
#include "src/core/lib/gprpp/ref_counted_ptr.h"
#include "src/core/lib/gprpp/time.h"
#include "src/core/lib/iomgr/tcp_client.h"
#include "src/core/lib/resolver/server_address.h"
#include "src/core/lib/security/credentials/fake/fake_credentials.h"
#include "src/core/lib/service_config/service_config.h"
#include "src/core/lib/service_config/service_config_impl.h"
#include "src/core/lib/surface/server.h"
#include "src/cpp/client/secure_credentials.h"
#include "src/cpp/server/secure_server_credentials.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
#include "src/proto/grpc/testing/xds/v3/orca_load_report.pb.h"
#include "test/core/util/port.h"
#include "test/core/util/resolve_localhost_ip46.h"
#include "test/core/util/test_config.h"
#include "test/core/util/test_lb_policies.h"
#include "test/cpp/end2end/connection_delay_injector.h"
#include "test/cpp/end2end/test_service_impl.h"
using grpc::testing::EchoRequest;
using grpc::testing::EchoResponse;
namespace grpc {
namespace testing {
namespace {
constexpr char kRequestMessage[] = "Live long and prosper.";
// Subclass of TestServiceImpl that increments a request counter for
// every call to the Echo RPC.
class MyTestServiceImpl : public TestServiceImpl {
public:
Status Echo(ServerContext* context, const EchoRequest* request,
EchoResponse* response) override {
{
grpc::internal::MutexLock lock(&mu_);
++request_count_;
}
AddClient(context->peer());
if (request->has_param() && request->param().has_backend_metrics()) {
load_report_ = request->param().backend_metrics();
auto* recorder = context->ExperimentalGetCallMetricRecorder();
EXPECT_NE(recorder, nullptr);
recorder->RecordCpuUtilizationMetric(load_report_.cpu_utilization())
.RecordMemoryUtilizationMetric(load_report_.mem_utilization());
for (const auto& p : load_report_.request_cost()) {
recorder->RecordRequestCostMetric(p.first, p.second);
}
for (const auto& p : load_report_.utilization()) {
recorder->RecordUtilizationMetric(p.first, p.second);
}
}
return TestServiceImpl::Echo(context, request, response);
}
int request_count() {
grpc::internal::MutexLock lock(&mu_);
return request_count_;
}
void ResetCounters() {
grpc::internal::MutexLock lock(&mu_);
request_count_ = 0;
}
std::set<std::string> clients() {
grpc::internal::MutexLock lock(&clients_mu_);
return clients_;
}
private:
void AddClient(const std::string& client) {
grpc::internal::MutexLock lock(&clients_mu_);
clients_.insert(client);
}
grpc::internal::Mutex mu_;
int request_count_ = 0;
grpc::internal::Mutex clients_mu_;
std::set<std::string> clients_;
// For strings storage.
xds::data::orca::v3::OrcaLoadReport load_report_;
};
class FakeResolverResponseGeneratorWrapper {
public:
explicit FakeResolverResponseGeneratorWrapper(bool ipv6_only)
: ipv6_only_(ipv6_only),
response_generator_(grpc_core::MakeRefCounted<
grpc_core::FakeResolverResponseGenerator>()) {}
FakeResolverResponseGeneratorWrapper(
FakeResolverResponseGeneratorWrapper&& other) noexcept {
ipv6_only_ = other.ipv6_only_;
response_generator_ = std::move(other.response_generator_);
}
void SetNextResolution(
const std::vector<int>& ports, const char* service_config_json = nullptr,
const char* attribute_key = nullptr,
std::unique_ptr<grpc_core::ServerAddress::AttributeInterface> attribute =
nullptr) {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetResponse(
BuildFakeResults(ipv6_only_, ports, service_config_json, attribute_key,
std::move(attribute)));
}
void SetNextResolutionUponError(const std::vector<int>& ports) {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetReresolutionResponse(
BuildFakeResults(ipv6_only_, ports));
}
void SetFailureOnReresolution() {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetFailureOnReresolution();
}
grpc_core::FakeResolverResponseGenerator* Get() const {
return response_generator_.get();
}
private:
static grpc_core::Resolver::Result BuildFakeResults(
bool ipv6_only, const std::vector<int>& ports,
const char* service_config_json = nullptr,
const char* attribute_key = nullptr,
std::unique_ptr<grpc_core::ServerAddress::AttributeInterface> attribute =
nullptr) {
grpc_core::Resolver::Result result;
result.addresses = grpc_core::ServerAddressList();
for (const int& port : ports) {
absl::StatusOr<grpc_core::URI> lb_uri = grpc_core::URI::Parse(
absl::StrCat(ipv6_only ? "ipv6:[::1]:" : "ipv4:127.0.0.1:", port));
GPR_ASSERT(lb_uri.ok());
grpc_resolved_address address;
GPR_ASSERT(grpc_parse_uri(*lb_uri, &address));
std::map<const char*,
std::unique_ptr<grpc_core::ServerAddress::AttributeInterface>>
attributes;
if (attribute != nullptr) {
attributes[attribute_key] = attribute->Copy();
}
result.addresses->emplace_back(address.addr, address.len,
nullptr /* args */, std::move(attributes));
}
if (service_config_json != nullptr) {
grpc_error_handle error = GRPC_ERROR_NONE;
result.service_config = grpc_core::ServiceConfigImpl::Create(
nullptr, service_config_json, &error);
GPR_ASSERT(*result.service_config != nullptr);
}
return result;
}
bool ipv6_only_ = false;
grpc_core::RefCountedPtr<grpc_core::FakeResolverResponseGenerator>
response_generator_;
};
class ClientLbEnd2endTest : public ::testing::Test {
protected:
ClientLbEnd2endTest()
: server_host_("localhost"),
creds_(new SecureChannelCredentials(
grpc_fake_transport_security_credentials_create())) {}
static void SetUpTestCase() {
// Make the backup poller poll very frequently in order to pick up
// updates from all the subchannels's FDs.
GPR_GLOBAL_CONFIG_SET(grpc_client_channel_backup_poll_interval_ms, 1);
#if TARGET_OS_IPHONE
// Workaround Apple CFStream bug
gpr_setenv("grpc_cfstream", "0");
#endif
}
void SetUp() override {
grpc_init();
bool localhost_resolves_to_ipv4 = false;
bool localhost_resolves_to_ipv6 = false;
grpc_core::LocalhostResolves(&localhost_resolves_to_ipv4,
&localhost_resolves_to_ipv6);
ipv6_only_ = !localhost_resolves_to_ipv4 && localhost_resolves_to_ipv6;
}
void TearDown() override {
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
servers_.clear();
creds_.reset();
grpc_shutdown();
}
void CreateServers(size_t num_servers,
std::vector<int> ports = std::vector<int>()) {
servers_.clear();
for (size_t i = 0; i < num_servers; ++i) {
int port = 0;
if (ports.size() == num_servers) port = ports[i];
servers_.emplace_back(new ServerData(port));
}
}
void StartServer(size_t index) { servers_[index]->Start(server_host_); }
void StartServers(size_t num_servers,
std::vector<int> ports = std::vector<int>()) {
CreateServers(num_servers, std::move(ports));
for (size_t i = 0; i < num_servers; ++i) {
StartServer(i);
}
}
std::vector<int> GetServersPorts(size_t start_index = 0,
size_t stop_index = 0) {
if (stop_index == 0) stop_index = servers_.size();
std::vector<int> ports;
for (size_t i = start_index; i < stop_index; ++i) {
ports.push_back(servers_[i]->port_);
}
return ports;
}
FakeResolverResponseGeneratorWrapper BuildResolverResponseGenerator() {
return FakeResolverResponseGeneratorWrapper(ipv6_only_);
}
std::unique_ptr<grpc::testing::EchoTestService::Stub> BuildStub(
const std::shared_ptr<Channel>& channel) {
return grpc::testing::EchoTestService::NewStub(channel);
}
std::shared_ptr<Channel> BuildChannel(
const std::string& lb_policy_name,
const FakeResolverResponseGeneratorWrapper& response_generator,
ChannelArguments args = ChannelArguments()) {
if (!lb_policy_name.empty()) {
args.SetLoadBalancingPolicyName(lb_policy_name);
} // else, default to pick first
args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR,
response_generator.Get());
return grpc::CreateCustomChannel("fake:///", creds_, args);
}
bool SendRpc(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
EchoResponse* response = nullptr, int timeout_ms = 1000,
Status* result = nullptr, bool wait_for_ready = false,
EchoRequest* request = nullptr) {
EchoResponse local_response;
if (response == nullptr) response = &local_response;
EchoRequest local_request;
if (request == nullptr) request = &local_request;
request->set_message(kRequestMessage);
request->mutable_param()->set_echo_metadata(true);
ClientContext context;
context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms));
if (wait_for_ready) context.set_wait_for_ready(true);
context.AddMetadata("foo", "1");
context.AddMetadata("bar", "2");
context.AddMetadata("baz", "3");
Status status = stub->Echo(&context, *request, response);
if (result != nullptr) *result = status;
return status.ok();
}
void CheckRpcSendOk(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
const grpc_core::DebugLocation& location, bool wait_for_ready = false,
xds::data::orca::v3::OrcaLoadReport* load_report = nullptr,
int timeout_ms = 2000) {
EchoResponse response;
Status status;
EchoRequest request;
EchoRequest* request_ptr = nullptr;
if (load_report != nullptr) {
request_ptr = &request;
auto params = request.mutable_param();
auto backend_metrics = params->mutable_backend_metrics();
*backend_metrics = *load_report;
}
const bool success = SendRpc(stub, &response, timeout_ms, &status,
wait_for_ready, request_ptr);
ASSERT_TRUE(success) << "From " << location.file() << ":" << location.line()
<< "\nError: " << status.error_message() << " "
<< status.error_details();
ASSERT_EQ(response.message(), kRequestMessage)
<< "From " << location.file() << ":" << location.line();
if (!success) abort();
}
void CheckRpcSendFailure(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub) {
const bool success = SendRpc(stub);
EXPECT_FALSE(success);
}
struct ServerData {
const int port_;
std::unique_ptr<Server> server_;
MyTestServiceImpl service_;
experimental::OrcaService orca_service_;
std::unique_ptr<std::thread> thread_;
grpc::internal::Mutex mu_;
grpc::internal::CondVar cond_;
bool server_ready_ ABSL_GUARDED_BY(mu_) = false;
bool started_ ABSL_GUARDED_BY(mu_) = false;
explicit ServerData(int port = 0)
: port_(port > 0 ? port : grpc_pick_unused_port_or_die()),
orca_service_(experimental::OrcaService::Options()) {}
void Start(const std::string& server_host) {
gpr_log(GPR_INFO, "starting server on port %d", port_);
grpc::internal::MutexLock lock(&mu_);
started_ = true;
thread_ = absl::make_unique<std::thread>(
std::bind(&ServerData::Serve, this, server_host));
while (!server_ready_) {
cond_.Wait(&mu_);
}
server_ready_ = false;
gpr_log(GPR_INFO, "server startup complete");
}
void Serve(const std::string& server_host) {
std::ostringstream server_address;
server_address << server_host << ":" << port_;
ServerBuilder builder;
experimental::EnableCallMetricRecording(&builder);
std::shared_ptr<ServerCredentials> creds(new SecureServerCredentials(
grpc_fake_transport_security_server_credentials_create()));
builder.AddListeningPort(server_address.str(), std::move(creds));
builder.RegisterService(&service_);
builder.RegisterService(&orca_service_);
server_ = builder.BuildAndStart();
grpc::internal::MutexLock lock(&mu_);
server_ready_ = true;
cond_.Signal();
}
void Shutdown() {
grpc::internal::MutexLock lock(&mu_);
if (!started_) return;
server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0));
thread_->join();
started_ = false;
}
void SetServingStatus(const std::string& service, bool serving) {
server_->GetHealthCheckService()->SetServingStatus(service, serving);
}
};
void ResetCounters() {
for (const auto& server : servers_) server->service_.ResetCounters();
}
bool SeenAllServers(size_t start_index, size_t stop_index) {
for (size_t i = start_index; i < stop_index; ++i) {
if (servers_[i]->service_.request_count() == 0) return false;
}
return true;
}
void WaitForServers(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
size_t start_index, size_t stop_index,
const grpc_core::DebugLocation& location, bool ignore_failure = false,
absl::Duration timeout = absl::Seconds(30)) {
auto deadline = absl::Now() + (timeout * grpc_test_slowdown_factor());
gpr_log(GPR_INFO,
"========= WAITING FOR BACKENDS [%" PRIuPTR ", %" PRIuPTR
") ==========",
start_index, stop_index);
while (!SeenAllServers(start_index, stop_index)) {
if (ignore_failure) {
SendRpc(stub);
} else {
CheckRpcSendOk(stub, location, true);
}
EXPECT_LE(absl::Now(), deadline)
<< " at " << location.file() << ":" << location.line();
if (absl::Now() >= deadline) break;
}
ResetCounters();
}
void WaitForServer(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
size_t server_index, const grpc_core::DebugLocation& location,
bool ignore_failure = false) {
WaitForServers(stub, server_index, server_index + 1, location,
ignore_failure);
}
bool WaitForChannelState(
Channel* channel,
const std::function<bool(grpc_connectivity_state)>& predicate,
bool try_to_connect = false, int timeout_seconds = 5) {
const gpr_timespec deadline =
grpc_timeout_seconds_to_deadline(timeout_seconds);
while (true) {
grpc_connectivity_state state = channel->GetState(try_to_connect);
if (predicate(state)) break;
if (!channel->WaitForStateChange(state, deadline)) return false;
}
return true;
}
bool WaitForChannelNotReady(Channel* channel, int timeout_seconds = 5) {
auto predicate = [](grpc_connectivity_state state) {
return state != GRPC_CHANNEL_READY;
};
return WaitForChannelState(channel, predicate, false, timeout_seconds);
}
bool WaitForChannelReady(Channel* channel, int timeout_seconds = 5) {
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_READY;
};
return WaitForChannelState(channel, predicate, true, timeout_seconds);
}
bool SeenAllServers() {
for (const auto& server : servers_) {
if (server->service_.request_count() == 0) return false;
}
return true;
}
// Updates \a connection_order by appending to it the index of the newly
// connected server. Must be called after every single RPC.
void UpdateConnectionOrder(
const std::vector<std::unique_ptr<ServerData>>& servers,
std::vector<int>* connection_order) {
for (size_t i = 0; i < servers.size(); ++i) {
if (servers[i]->service_.request_count() == 1) {
// Was the server index known? If not, update connection_order.
const auto it =
std::find(connection_order->begin(), connection_order->end(), i);
if (it == connection_order->end()) {
connection_order->push_back(i);
return;
}
}
}
}
const std::string server_host_;
std::vector<std::unique_ptr<ServerData>> servers_;
std::shared_ptr<ChannelCredentials> creds_;
bool ipv6_only_ = false;
};
TEST_F(ClientLbEnd2endTest, ChannelStateConnectingWhenResolving) {
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator);
auto stub = BuildStub(channel);
// Initial state should be IDLE.
EXPECT_EQ(channel->GetState(false /* try_to_connect */), GRPC_CHANNEL_IDLE);
// Tell the channel to try to connect.
// Note that this call also returns IDLE, since the state change has
// not yet occurred; it just gets triggered by this call.
EXPECT_EQ(channel->GetState(true /* try_to_connect */), GRPC_CHANNEL_IDLE);
// Now that the channel is trying to connect, we should be in state
// CONNECTING.
EXPECT_EQ(channel->GetState(false /* try_to_connect */),
GRPC_CHANNEL_CONNECTING);
// Return a resolver result, which allows the connection attempt to proceed.
response_generator.SetNextResolution(GetServersPorts());
// We should eventually transition into state READY.
EXPECT_TRUE(WaitForChannelReady(channel.get()));
}
TEST_F(ClientLbEnd2endTest, ChannelIdleness) {
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Set max idle time and build the channel.
ChannelArguments args;
args.SetInt(GRPC_ARG_CLIENT_IDLE_TIMEOUT_MS, 1000);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator, args);
auto stub = BuildStub(channel);
// The initial channel state should be IDLE.
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
// After sending RPC, channel state should be READY.
gpr_log(GPR_INFO, "*** SENDING RPC, CHANNEL SHOULD CONNECT ***");
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// After a period time not using the channel, the channel state should switch
// to IDLE.
gpr_log(GPR_INFO, "*** WAITING FOR CHANNEL TO GO IDLE ***");
gpr_sleep_until(grpc_timeout_milliseconds_to_deadline(1200));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
// Sending a new RPC should awake the IDLE channel.
gpr_log(GPR_INFO, "*** SENDING ANOTHER RPC, CHANNEL SHOULD RECONNECT ***");
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
}
//
// pick_first tests
//
using PickFirstTest = ClientLbEnd2endTest;
TEST_F(PickFirstTest, Basic) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel(
"", response_generator); // test that pick first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// All requests should have gone to a single server.
bool found = false;
for (size_t i = 0; i < servers_.size(); ++i) {
const int request_count = servers_[i]->service_.request_count();
if (request_count == kNumServers) {
found = true;
} else {
EXPECT_EQ(0, request_count);
}
}
EXPECT_TRUE(found);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, ProcessPending) {
StartServers(1); // Single server
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel(
"", response_generator); // test that pick first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution({servers_[0]->port_});
WaitForServer(stub, 0, DEBUG_LOCATION);
// Create a new channel and its corresponding PF LB policy, which will pick
// the subchannels in READY state from the previous RPC against the same
// target (even if it happened over a different channel, because subchannels
// are globally reused). Progress should happen without any transition from
// this READY state.
auto second_response_generator = BuildResolverResponseGenerator();
auto second_channel = BuildChannel("", second_response_generator);
auto second_stub = BuildStub(second_channel);
second_response_generator.SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(second_stub, DEBUG_LOCATION);
}
TEST_F(PickFirstTest, SelectsReadyAtStartup) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 5000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
// Create 2 servers, but start only the second one.
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
CreateServers(2, ports);
StartServer(1);
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("pick_first", response_generator1, args);
auto stub1 = BuildStub(channel1);
response_generator1.SetNextResolution(ports);
// Wait for second server to be ready.
WaitForServer(stub1, 1, DEBUG_LOCATION);
// Create a second channel with the same addresses. Its PF instance
// should immediately pick the second subchannel, since it's already
// in READY state.
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("pick_first", response_generator2, args);
response_generator2.SetNextResolution(ports);
// Check that the channel reports READY without waiting for the
// initial backoff.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1 /* timeout_seconds */));
}
TEST_F(PickFirstTest, BackOffInitialReconnect) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 100;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
// The channel won't become connected (there's no server).
ASSERT_FALSE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 2)));
// Bring up a server on the chosen port.
StartServers(1, ports);
// Now it will.
ASSERT_TRUE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 2)));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
// We should have waited at least kInitialBackOffMs. We substract one to
// account for test and precision accuracy drift.
EXPECT_GE(waited.millis(), kInitialBackOffMs - 1);
// But not much more.
EXPECT_GT(
gpr_time_cmp(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 1.10), t1),
0);
}
TEST_F(PickFirstTest, BackOffMinReconnect) {
ChannelArguments args;
constexpr int kMinReconnectBackOffMs = 1000;
args.SetInt(GRPC_ARG_MIN_RECONNECT_BACKOFF_MS, kMinReconnectBackOffMs);
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
// Make connection delay a 10% longer than it's willing to in order to make
// sure we are hitting the codepath that waits for the min reconnect backoff.
ConnectionDelayInjector delay_injector(
grpc_core::Duration::Milliseconds(kMinReconnectBackOffMs * 1.10));
delay_injector.Start();
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kMinReconnectBackOffMs * 2));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
// We should have waited at least kMinReconnectBackOffMs. We substract one to
// account for test and precision accuracy drift.
EXPECT_GE(waited.millis(), kMinReconnectBackOffMs - 1);
}
TEST_F(PickFirstTest, ResetConnectionBackoff) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 1000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
// The channel won't become connected (there's no server).
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Bring up a server on the chosen port.
StartServers(1, ports);
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
// Wait for connect, but not long enough. This proves that we're
// being throttled by initial backoff.
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Reset connection backoff.
experimental::ChannelResetConnectionBackoff(channel.get());
// Wait for connect. Should happen as soon as the client connects to
// the newly started server, which should be before the initial
// backoff timeout elapses.
EXPECT_TRUE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(20)));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
// We should have waited less than kInitialBackOffMs.
EXPECT_LT(waited.millis(), kInitialBackOffMs);
}
TEST_F(ClientLbEnd2endTest,
ResetConnectionBackoffNextAttemptStartsImmediately) {
// A connection attempt injector that allows us to control timing of a
// connection attempt.
class ConnectionInjector : public ConnectionAttemptInjector {
public:
explicit ConnectionInjector(int port) : port_(port) {}
void InterceptNextAttempt(grpc_core::CondVar* cv) {
grpc_core::MutexLock lock(&mu_);
cv_ = cv;
}
void WaitForAttemptToStart(grpc_core::CondVar* cv) {
grpc_core::MutexLock lock(&mu_);
while (queued_attempt_ == nullptr) {
cv->Wait(&mu_);
}
}
void ResumeAttempt() {
grpc_core::ExecCtx exec_ctx;
std::unique_ptr<QueuedAttempt> attempt;
{
grpc_core::MutexLock lock(&mu_);
attempt = std::move(queued_attempt_);
}
attempt->Resume();
}
void HandleConnection(grpc_closure* closure, grpc_endpoint** ep,
grpc_pollset_set* interested_parties,
const grpc_channel_args* channel_args,
const grpc_resolved_address* addr,
grpc_core::Timestamp deadline) override {
const int port = grpc_sockaddr_get_port(addr);
gpr_log(GPR_INFO, "==> HandleConnection(): port=%d", port);
if (port == port_) {
grpc_core::MutexLock lock(&mu_);
if (cv_ != nullptr) {
gpr_log(GPR_INFO, "*** INTERCEPTING CONNECTION ATTEMPT");
GPR_ASSERT(queued_attempt_ == nullptr);
queued_attempt_ = absl::make_unique<QueuedAttempt>(
closure, ep, interested_parties, channel_args, addr, deadline);
cv_->Signal();
cv_ = nullptr;
return;
}
}
AttemptConnection(closure, ep, interested_parties, channel_args, addr,
deadline);
}
private:
const int port_;
grpc_core::Mutex mu_;
grpc_core::CondVar* cv_ = nullptr;
std::unique_ptr<QueuedAttempt> queued_attempt_ ABSL_GUARDED_BY(mu_);
};
// Get an unused port and start connection injector.
const int port = grpc_pick_unused_port_or_die();
ConnectionInjector injector(port);
injector.Start();
// Create client.
ChannelArguments args;
const int kInitialBackOffMs = 5000 * grpc_test_slowdown_factor();
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({port});
// Intercept initial connection attempt.
grpc_core::CondVar cv1;
injector.InterceptNextAttempt(&cv1);
gpr_log(GPR_INFO, "=== TRIGGERING INITIAL CONNECTION ATTEMPT");
EXPECT_EQ(GRPC_CHANNEL_IDLE, channel->GetState(/*try_to_connect=*/true));
injector.WaitForAttemptToStart(&cv1);
EXPECT_EQ(GRPC_CHANNEL_CONNECTING,
channel->GetState(/*try_to_connect=*/false));
// Reset backoff.
gpr_log(GPR_INFO, "=== RESETTING BACKOFF");
experimental::ChannelResetConnectionBackoff(channel.get());
// Intercept next attempt. Do this before resuming the first attempt,
// just in case the client makes progress faster than this thread.
grpc_core::CondVar cv2;
injector.InterceptNextAttempt(&cv2);
// Fail current attempt and wait for next one to start.
gpr_log(GPR_INFO, "=== RESUMING INITIAL ATTEMPT");
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
injector.ResumeAttempt();
gpr_log(GPR_INFO, "=== WAITING FOR SECOND ATTEMPT");
// This WaitForStateChange() call just makes sure we're doing some polling.
EXPECT_TRUE(channel->WaitForStateChange(GRPC_CHANNEL_CONNECTING,
grpc_timeout_seconds_to_deadline(1)));
injector.WaitForAttemptToStart(&cv2);
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
gpr_log(GPR_INFO, "=== RESUMING SECOND ATTEMPT");
injector.ResumeAttempt();
// Elapsed time should be very short, much less than kInitialBackOffMs.
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
EXPECT_LT(waited.millis(), 1000 * grpc_test_slowdown_factor());
}
TEST_F(PickFirstTest, Updates) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports;
// Perform one RPC against the first server.
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
// An empty update will result in the channel going into TRANSIENT_FAILURE.
ports.clear();
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET none *******");
grpc_connectivity_state channel_state;
do {
channel_state = channel->GetState(true /* try to connect */);
} while (channel_state == GRPC_CHANNEL_READY);
ASSERT_NE(channel_state, GRPC_CHANNEL_READY);
servers_[0]->service_.ResetCounters();
// Next update introduces servers_[1], making the channel recover.
ports.clear();
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [1] *******");
WaitForServer(stub, 1, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 0);
// And again for servers_[2]
ports.clear();
ports.emplace_back(servers_[2]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [2] *******");
WaitForServer(stub, 2, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 0);
EXPECT_EQ(servers_[1]->service_.request_count(), 0);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, UpdateSuperset) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports;
// Perform one RPC against the first server.
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
servers_[0]->service_.ResetCounters();
// Send and superset update
ports.clear();
ports.emplace_back(servers_[1]->port_);
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET superset *******");
CheckRpcSendOk(stub, DEBUG_LOCATION);
// We stick to the previously connected server.
WaitForServer(stub, 0, DEBUG_LOCATION);
EXPECT_EQ(0, servers_[1]->service_.request_count());
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, UpdateToUnconnected) {
const int kNumServers = 2;
CreateServers(kNumServers);
StartServer(0);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports;
// Try to send rpcs against a list where the server is available.
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(stub, DEBUG_LOCATION);
// Send resolution for which all servers are currently unavailable. Eventually
// this triggers replacing the existing working subchannel_list with the new
// currently unresponsive list.
ports.clear();
ports.emplace_back(grpc_pick_unused_port_or_die());
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [unavailable] *******");
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
// Ensure that the last resolution was installed correctly by verifying that
// the channel becomes ready once one of if its endpoints becomes available.
gpr_log(GPR_INFO, "****** StartServer(1) *******");
StartServer(1);
EXPECT_TRUE(WaitForChannelReady(channel.get()));
}
TEST_F(PickFirstTest, GlobalSubchannelPool) {
// Start one server.
const int kNumServers = 1;
StartServers(kNumServers);
std::vector<int> ports = GetServersPorts();
// Create two channels that (by default) use the global subchannel pool.
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("pick_first", response_generator1);
auto stub1 = BuildStub(channel1);
response_generator1.SetNextResolution(ports);
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("pick_first", response_generator2);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
WaitForServer(stub1, 0, DEBUG_LOCATION);
// Send one RPC on each channel.
CheckRpcSendOk(stub1, DEBUG_LOCATION);
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// The server receives two requests.
EXPECT_EQ(2, servers_[0]->service_.request_count());
// The two requests are from the same client port, because the two channels
// share subchannels via the global subchannel pool.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
}
TEST_F(PickFirstTest, LocalSubchannelPool) {
// Start one server.
const int kNumServers = 1;
StartServers(kNumServers);
std::vector<int> ports = GetServersPorts();
// Create two channels that use local subchannel pool.
ChannelArguments args;
args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, 1);
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("pick_first", response_generator1, args);
auto stub1 = BuildStub(channel1);
response_generator1.SetNextResolution(ports);
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("pick_first", response_generator2, args);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
WaitForServer(stub1, 0, DEBUG_LOCATION);
// Send one RPC on each channel.
CheckRpcSendOk(stub1, DEBUG_LOCATION);
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// The server receives two requests.
EXPECT_EQ(2, servers_[0]->service_.request_count());
// The two requests are from two client ports, because the two channels didn't
// share subchannels with each other.
EXPECT_EQ(2UL, servers_[0]->service_.clients().size());
}
TEST_F(PickFirstTest, ManyUpdates) {
const int kNumUpdates = 1000;
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
for (size_t i = 0; i < kNumUpdates; ++i) {
std::shuffle(ports.begin(), ports.end(),
std::mt19937(std::random_device()()));
response_generator.SetNextResolution(ports);
// We should re-enter core at the end of the loop to give the resolution
// setting closure a chance to run.
if ((i + 1) % 10 == 0) CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, ReresolutionNoSelected) {
// Prepare the ports for up servers and down servers.
const int kNumServers = 3;
const int kNumAliveServers = 1;
StartServers(kNumAliveServers);
std::vector<int> alive_ports, dead_ports;
for (size_t i = 0; i < kNumServers; ++i) {
if (i < kNumAliveServers) {
alive_ports.emplace_back(servers_[i]->port_);
} else {
dead_ports.emplace_back(grpc_pick_unused_port_or_die());
}
}
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
// The initial resolution only contains dead ports. There won't be any
// selected subchannel. Re-resolution will return the same result.
response_generator.SetNextResolution(dead_ports);
gpr_log(GPR_INFO, "****** INITIAL RESOLUTION SET *******");
for (size_t i = 0; i < 10; ++i) CheckRpcSendFailure(stub);
// Set a re-resolution result that contains reachable ports, so that the
// pick_first LB policy can recover soon.
response_generator.SetNextResolutionUponError(alive_ports);
gpr_log(GPR_INFO, "****** RE-RESOLUTION SET *******");
WaitForServer(stub, 0, DEBUG_LOCATION, true /* ignore_failure */);
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, ReconnectWithoutNewResolverResult) {
std::vector<int> ports = {grpc_pick_unused_port_or_die()};
StartServers(1, ports);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** INITIAL CONNECTION *******");
WaitForServer(stub, 0, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** STOPPING SERVER ******");
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
gpr_log(GPR_INFO, "****** RESTARTING SERVER ******");
StartServers(1, ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
}
TEST_F(PickFirstTest, ReconnectWithoutNewResolverResultStartsFromTopOfList) {
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
CreateServers(2, ports);
StartServer(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** INITIAL CONNECTION *******");
WaitForServer(stub, 1, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** STOPPING SERVER ******");
servers_[1]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
gpr_log(GPR_INFO, "****** STARTING BOTH SERVERS ******");
StartServers(2, ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
}
TEST_F(PickFirstTest, CheckStateBeforeStartWatch) {
std::vector<int> ports = {grpc_pick_unused_port_or_die()};
StartServers(1, ports);
auto response_generator = BuildResolverResponseGenerator();
auto channel_1 = BuildChannel("pick_first", response_generator);
auto stub_1 = BuildStub(channel_1);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** RESOLUTION SET FOR CHANNEL 1 *******");
WaitForServer(stub_1, 0, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** CHANNEL 1 CONNECTED *******");
servers_[0]->Shutdown();
// Channel 1 will receive a re-resolution containing the same server. It will
// create a new subchannel and hold a ref to it.
StartServers(1, ports);
gpr_log(GPR_INFO, "****** SERVER RESTARTED *******");
auto response_generator_2 = BuildResolverResponseGenerator();
auto channel_2 = BuildChannel("pick_first", response_generator_2);
auto stub_2 = BuildStub(channel_2);
response_generator_2.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** RESOLUTION SET FOR CHANNEL 2 *******");
WaitForServer(stub_2, 0, DEBUG_LOCATION, true);
gpr_log(GPR_INFO, "****** CHANNEL 2 CONNECTED *******");
servers_[0]->Shutdown();
// Wait until the disconnection has triggered the connectivity notification.
// Otherwise, the subchannel may be picked for next call but will fail soon.
EXPECT_TRUE(WaitForChannelNotReady(channel_2.get()));
// Channel 2 will also receive a re-resolution containing the same server.
// Both channels will ref the same subchannel that failed.
StartServers(1, ports);
gpr_log(GPR_INFO, "****** SERVER RESTARTED AGAIN *******");
gpr_log(GPR_INFO, "****** CHANNEL 2 STARTING A CALL *******");
// The first call after the server restart will succeed.
CheckRpcSendOk(stub_2, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** CHANNEL 2 FINISHED A CALL *******");
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel_1->GetLoadBalancingPolicyName());
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel_2->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, IdleOnDisconnect) {
// Start server, send RPC, and make sure channel is READY.
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("", response_generator); // pick_first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Stop server. Channel should go into state IDLE.
response_generator.SetFailureOnReresolution();
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
servers_.clear();
}
TEST_F(PickFirstTest, PendingUpdateAndSelectedSubchannelFails) {
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("", response_generator); // pick_first is the default.
auto stub = BuildStub(channel);
// Create a number of servers, but only start 1 of them.
CreateServers(10);
StartServer(0);
// Initially resolve to first server and make sure it connects.
gpr_log(GPR_INFO, "Phase 1: Connect to first server.");
response_generator.SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(stub, DEBUG_LOCATION, true /* wait_for_ready */);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Send a resolution update with the remaining servers, none of which are
// running yet, so the update will stay pending. Note that it's important
// to have multiple servers here, or else the test will be flaky; with only
// one server, the pending subchannel list has already gone into
// TRANSIENT_FAILURE due to hitting the end of the list by the time we
// check the state.
gpr_log(GPR_INFO,
"Phase 2: Resolver update pointing to remaining "
"(not started) servers.");
response_generator.SetNextResolution(GetServersPorts(1 /* start_index */));
// RPCs will continue to be sent to the first server.
CheckRpcSendOk(stub, DEBUG_LOCATION);
// Now stop the first server, so that the current subchannel list
// fails. This should cause us to immediately swap over to the
// pending list, even though it's not yet connected. The state should
// be set to CONNECTING, since that's what the pending subchannel list
// was doing when we swapped over.
gpr_log(GPR_INFO, "Phase 3: Stopping first server.");
servers_[0]->Shutdown();
WaitForChannelNotReady(channel.get());
// TODO(roth): This should always return CONNECTING, but it's flaky
// between that and TRANSIENT_FAILURE. I suspect that this problem
// will go away once we move the backoff code out of the subchannel
// and into the LB policies.
EXPECT_THAT(channel->GetState(false),
::testing::AnyOf(GRPC_CHANNEL_CONNECTING,
GRPC_CHANNEL_TRANSIENT_FAILURE));
// Now start the second server.
gpr_log(GPR_INFO, "Phase 4: Starting second server.");
StartServer(1);
// The channel should go to READY state and RPCs should go to the
// second server.
WaitForChannelReady(channel.get());
WaitForServer(stub, 1, DEBUG_LOCATION, true /* ignore_failure */);
}
TEST_F(PickFirstTest, StaysIdleUponEmptyUpdate) {
// Start server, send RPC, and make sure channel is READY.
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("", response_generator); // pick_first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Stop server. Channel should go into state IDLE.
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
// Now send resolver update that includes no addresses. Channel
// should stay in state IDLE.
response_generator.SetNextResolution({});
EXPECT_FALSE(channel->WaitForStateChange(
GRPC_CHANNEL_IDLE, grpc_timeout_seconds_to_deadline(3)));
// Now bring the backend back up and send a non-empty resolver update,
// and then try to send an RPC. Channel should go back into state READY.
StartServer(0);
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
}
TEST_F(PickFirstTest,
StaysTransientFailureOnFailedConnectionAttemptUntilReady) {
// Allocate 3 ports, with no servers running.
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
// Create channel with a 1-second backoff.
ChannelArguments args;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS,
1000 * grpc_test_slowdown_factor());
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
EXPECT_EQ(GRPC_CHANNEL_IDLE, channel->GetState(false));
// Send an RPC, which should fail.
CheckRpcSendFailure(stub);
// Channel should be in TRANSIENT_FAILURE.
EXPECT_EQ(GRPC_CHANNEL_TRANSIENT_FAILURE, channel->GetState(false));
// Now start a server on the last port.
StartServers(1, {ports.back()});
// Channel should remain in TRANSIENT_FAILURE until it transitions to READY.
EXPECT_TRUE(channel->WaitForStateChange(GRPC_CHANNEL_TRANSIENT_FAILURE,
grpc_timeout_seconds_to_deadline(4)));
EXPECT_EQ(GRPC_CHANNEL_READY, channel->GetState(false));
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
//
// round_robin tests
//
using RoundRobinTest = ClientLbEnd2endTest;
TEST_F(RoundRobinTest, Basic) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Wait until all backends are ready.
do {
CheckRpcSendOk(stub, DEBUG_LOCATION);
} while (!SeenAllServers());
ResetCounters();
// "Sync" to the end of the list. Next sequence of picks will start at the
// first server (index 0).
WaitForServer(stub, servers_.size() - 1, DEBUG_LOCATION);
std::vector<int> connection_order;
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
UpdateConnectionOrder(servers_, &connection_order);
}
// Backends should be iterated over in the order in which the addresses were
// given.
const auto expected = std::vector<int>{0, 1, 2};
EXPECT_EQ(expected, connection_order);
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(RoundRobinTest, ProcessPending) {
StartServers(1); // Single server
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({servers_[0]->port_});
WaitForServer(stub, 0, DEBUG_LOCATION);
// Create a new channel and its corresponding RR LB policy, which will pick
// the subchannels in READY state from the previous RPC against the same
// target (even if it happened over a different channel, because subchannels
// are globally reused). Progress should happen without any transition from
// this READY state.
auto second_response_generator = BuildResolverResponseGenerator();
auto second_channel = BuildChannel("round_robin", second_response_generator);
auto second_stub = BuildStub(second_channel);
second_response_generator.SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(second_stub, DEBUG_LOCATION);
}
TEST_F(RoundRobinTest, Updates) {
// Start servers.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
// Start with a single server.
gpr_log(GPR_INFO, "*** FIRST BACKEND ***");
std::vector<int> ports = {servers_[0]->port_};
response_generator.SetNextResolution(ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
// Send RPCs. They should all go servers_[0]
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
ResetCounters();
// And now for the second server.
gpr_log(GPR_INFO, "*** SECOND BACKEND ***");
ports.clear();
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
// Wait until update has been processed, as signaled by the second backend
// receiving a request.
EXPECT_EQ(0, servers_[1]->service_.request_count());
WaitForServer(stub, 1, DEBUG_LOCATION);
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(0, servers_[0]->service_.request_count());
EXPECT_EQ(10, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
ResetCounters();
// ... and for the last server.
gpr_log(GPR_INFO, "*** THIRD BACKEND ***");
ports.clear();
ports.emplace_back(servers_[2]->port_);
response_generator.SetNextResolution(ports);
WaitForServer(stub, 2, DEBUG_LOCATION);
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(0, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(10, servers_[2]->service_.request_count());
ResetCounters();
// Back to all servers.
gpr_log(GPR_INFO, "*** ALL BACKENDS ***");
ports.clear();
ports.emplace_back(servers_[0]->port_);
ports.emplace_back(servers_[1]->port_);
ports.emplace_back(servers_[2]->port_);
response_generator.SetNextResolution(ports);
WaitForServers(stub, 0, 3, DEBUG_LOCATION);
// Send three RPCs, one per server.
for (size_t i = 0; i < 3; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(1, servers_[0]->service_.request_count());
EXPECT_EQ(1, servers_[1]->service_.request_count());
EXPECT_EQ(1, servers_[2]->service_.request_count());
ResetCounters();
// An empty update will result in the channel going into TRANSIENT_FAILURE.
gpr_log(GPR_INFO, "*** NO BACKENDS ***");
ports.clear();
response_generator.SetNextResolution(ports);
WaitForChannelNotReady(channel.get());
CheckRpcSendFailure(stub);
servers_[0]->service_.ResetCounters();
// Next update introduces servers_[1], making the channel recover.
gpr_log(GPR_INFO, "*** BACK TO SECOND BACKEND ***");
ports.clear();
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
WaitForServer(stub, 1, DEBUG_LOCATION);
EXPECT_EQ(GRPC_CHANNEL_READY, channel->GetState(/*try_to_connect=*/false));
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(RoundRobinTest, UpdateInError) {
StartServers(2);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
// Start with a single server.
response_generator.SetNextResolution(GetServersPorts(0, 1));
// Send RPCs. They should all go to server 0.
for (size_t i = 0; i < 10; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION, /*wait_for_ready=*/false,
/*load_report=*/nullptr, /*timeout_ms=*/4000);
}
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
servers_[0]->service_.ResetCounters();
// Send an update adding an unreachable server and server 2.
std::vector<int> ports = {servers_[0]->port_, grpc_pick_unused_port_or_die(),
servers_[1]->port_};
response_generator.SetNextResolution(ports);
WaitForServers(stub, 0, 2, DEBUG_LOCATION, /*ignore_failure=*/false,
/*timeout=*/absl::Seconds(60));
// Send a bunch more RPCs. They should all succeed and should be
// split evenly between the two servers.
for (size_t i = 0; i < 10; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION, /*wait_for_ready=*/false,
/*load_report=*/nullptr, /*timeout_ms=*/4000);
}
EXPECT_EQ(5, servers_[0]->service_.request_count());
EXPECT_EQ(5, servers_[1]->service_.request_count());
}
TEST_F(RoundRobinTest, ManyUpdates) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
for (size_t i = 0; i < 1000; ++i) {
std::shuffle(ports.begin(), ports.end(),
std::mt19937(std::random_device()()));
response_generator.SetNextResolution(ports);
if (i % 10 == 0) CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(RoundRobinTest, ReresolveOnSubchannelConnectionFailure) {
// Start 3 servers.
StartServers(3);
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
// Initially, tell the channel about only the first two servers.
std::vector<int> ports = {servers_[0]->port_, servers_[1]->port_};
response_generator.SetNextResolution(ports);
// Wait for both servers to be seen.
WaitForServers(stub, 0, 2, DEBUG_LOCATION);
// Tell the fake resolver to send an update that adds the last server, but
// only when the LB policy requests re-resolution.
ports.push_back(servers_[2]->port_);
response_generator.SetNextResolutionUponError(ports);
// Have server 0 send a GOAWAY. This should trigger a re-resolution.
gpr_log(GPR_INFO, "****** SENDING GOAWAY FROM SERVER 0 *******");
{
grpc_core::ExecCtx exec_ctx;
grpc_core::Server::FromC(servers_[0]->server_->c_server())->SendGoaways();
}
// Wait for the client to see server 2.
WaitForServer(stub, 2, DEBUG_LOCATION);
}
TEST_F(RoundRobinTest, TransientFailure) {
// Start servers and create channel. Channel should go to READY state.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
EXPECT_TRUE(WaitForChannelReady(channel.get()));
// Now kill the servers. The channel should transition to TRANSIENT_FAILURE.
// TODO(roth): This test should ideally check that even when the
// subchannels are in state CONNECTING for an extended period of time,
// we will still report TRANSIENT_FAILURE. Unfortunately, we don't
// currently have a good way to get a subchannel to report CONNECTING
// for a long period of time, since the servers in this test framework
// are on the loopback interface, which will immediately return a
// "Connection refused" error, so the subchannels will only be in
// CONNECTING state very briefly. When we have time, see if we can
// find a way to fix this.
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_TRANSIENT_FAILURE;
};
EXPECT_TRUE(WaitForChannelState(channel.get(), predicate));
}
TEST_F(RoundRobinTest, TransientFailureAtStartup) {
// Create channel and return servers that don't exist. Channel should
// quickly transition into TRANSIENT_FAILURE.
// TODO(roth): This test should ideally check that even when the
// subchannels are in state CONNECTING for an extended period of time,
// we will still report TRANSIENT_FAILURE. Unfortunately, we don't
// currently have a good way to get a subchannel to report CONNECTING
// for a long period of time, since the servers in this test framework
// are on the loopback interface, which will immediately return a
// "Connection refused" error, so the subchannels will only be in
// CONNECTING state very briefly. When we have time, see if we can
// find a way to fix this.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({
grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(),
});
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_TRANSIENT_FAILURE;
};
EXPECT_TRUE(WaitForChannelState(channel.get(), predicate, true));
}
TEST_F(RoundRobinTest, DoesNotFailRpcsUponDisconnection) {
// A connection attempt injector that allows us to control timing.
class ConnectionInjector : public ConnectionAttemptInjector {
public:
explicit ConnectionInjector(int port) : port_(port) {}
void InterceptNextAttempt() {
grpc_core::MutexLock lock(&mu_);
intercept_next_attempt_ = true;
}
void WaitForAttemptToStart() {
grpc_core::MutexLock lock(&mu_);
while (queued_attempt_ == nullptr) {
start_cond_.Wait(&mu_);
}
}
void ResumeAttempt() {
grpc_core::ExecCtx exec_ctx;
std::unique_ptr<QueuedAttempt> attempt;
{
grpc_core::MutexLock lock(&mu_);
attempt = std::move(queued_attempt_);
}
attempt->Resume();
}
void WaitForAttemptComplete() {
grpc_core::MutexLock lock(&mu_);
while (!attempt_complete_) {
complete_cond_.Wait(&mu_);
}
}
void HandleConnection(grpc_closure* closure, grpc_endpoint** ep,
grpc_pollset_set* interested_parties,
const grpc_channel_args* channel_args,
const grpc_resolved_address* addr,
grpc_core::Timestamp deadline) override {
const int port = grpc_sockaddr_get_port(addr);
gpr_log(GPR_INFO, "==> HandleConnection(): port=%d", port);
if (port == port_) {
grpc_core::MutexLock lock(&mu_);
if (intercept_next_attempt_) {
gpr_log(GPR_INFO, "*** INTERCEPTING CONNECTION ATTEMPT");
original_closure_ = closure;
closure = GRPC_CLOSURE_INIT(&closure_, OnComplete, this, nullptr);
intercept_next_attempt_ = false;
queued_attempt_ = absl::make_unique<QueuedAttempt>(
closure, ep, interested_parties, channel_args, addr, deadline);
start_cond_.Signal();
return;
}
}
AttemptConnection(closure, ep, interested_parties, channel_args, addr,
deadline);
}
private:
static void OnComplete(void* arg, grpc_error_handle error) {
auto* self = static_cast<ConnectionInjector*>(arg);
{
grpc_core::MutexLock lock(&self->mu_);
self->attempt_complete_ = true;
self->complete_cond_.Signal();
}
grpc_core::Closure::Run(DEBUG_LOCATION, self->original_closure_,
GRPC_ERROR_REF(error));
}
const int port_;
grpc_core::Mutex mu_;
bool intercept_next_attempt_ ABSL_GUARDED_BY(mu_) = false;
grpc_core::CondVar start_cond_;
std::unique_ptr<QueuedAttempt> queued_attempt_ ABSL_GUARDED_BY(mu_);
grpc_closure* original_closure_ = nullptr;
grpc_closure closure_;
grpc_core::CondVar complete_cond_;
bool attempt_complete_ ABSL_GUARDED_BY(mu_) = false;
};
// Start server.
StartServers(1);
ConnectionInjector injector(servers_[0]->port_);
injector.Start();
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Start a thread constantly sending RPCs in a loop.
gpr_log(GPR_ERROR, "=== STARTING CLIENT THREAD ===");
std::atomic<bool> shutdown{false};
gpr_event ev;
gpr_event_init(&ev);
std::thread thd([&]() {
gpr_log(GPR_INFO, "sending first RPC");
CheckRpcSendOk(stub, DEBUG_LOCATION);
gpr_event_set(&ev, reinterpret_cast<void*>(1));
while (!shutdown.load()) {
gpr_log(GPR_INFO, "sending RPC");
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
});
// Wait for first RPC to complete.
gpr_log(GPR_ERROR, "=== WAITING FOR FIRST RPC TO COMPLETE ===");
ASSERT_EQ(reinterpret_cast<void*>(1),
gpr_event_wait(&ev, grpc_timeout_seconds_to_deadline(1)));
// Channel should now be READY.
ASSERT_EQ(GRPC_CHANNEL_READY, channel->GetState(false));
// Tell injector to intercept the next connection attempt.
injector.InterceptNextAttempt();
// Now kill the server. The subchannel should report IDLE and be
// immediately reconnected to, but this should not cause any test
// failures.
gpr_log(GPR_ERROR, "=== SHUTTING DOWN SERVER ===");
{
grpc_core::ExecCtx exec_ctx;
grpc_core::Server::FromC(servers_[0]->server_->c_server())->SendGoaways();
}
gpr_sleep_until(grpc_timeout_seconds_to_deadline(1));
servers_[0]->Shutdown();
// Wait for next attempt to start.
gpr_log(GPR_ERROR, "=== WAITING FOR RECONNECTION ATTEMPT ===");
injector.WaitForAttemptToStart();
// Start server and allow attempt to continue.
gpr_log(GPR_ERROR, "=== RESTARTING SERVER ===");
StartServer(0);
injector.ResumeAttempt();
// Wait for next attempt to complete.
gpr_log(GPR_ERROR, "=== WAITING FOR RECONNECTION ATTEMPT TO COMPLETE ===");
injector.WaitForAttemptComplete();
// Now shut down the thread.
gpr_log(GPR_ERROR, "=== SHUTTING DOWN CLIENT THREAD ===");
shutdown.store(true);
thd.join();
}
TEST_F(RoundRobinTest, SingleReconnect) {
const int kNumServers = 3;
StartServers(kNumServers);
const auto ports = GetServersPorts();
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
for (size_t i = 0; i < kNumServers; ++i) {
WaitForServer(stub, i, DEBUG_LOCATION);
}
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(1, servers_[i]->service_.request_count()) << "for backend #" << i;
}
// One request should have gone to each server.
for (size_t i = 0; i < servers_.size(); ++i) {
EXPECT_EQ(1, servers_[i]->service_.request_count());
}
const auto pre_death = servers_[0]->service_.request_count();
// Kill the first server.
servers_[0]->Shutdown();
// Client request still succeed. May need retrying if RR had returned a pick
// before noticing the change in the server's connectivity.
while (!SendRpc(stub)) {
} // Retry until success.
// Send a bunch of RPCs that should succeed.
for (int i = 0; i < 10 * kNumServers; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
const auto post_death = servers_[0]->service_.request_count();
// No requests have gone to the deceased server.
EXPECT_EQ(pre_death, post_death);
// Bring the first server back up.
StartServer(0);
// Requests should start arriving at the first server either right away (if
// the server managed to start before the RR policy retried the subchannel) or
// after the subchannel retry delay otherwise (RR's subchannel retried before
// the server was fully back up).
WaitForServer(stub, 0, DEBUG_LOCATION);
}
// If health checking is required by client but health checking service
// is not running on the server, the channel should be treated as healthy.
TEST_F(RoundRobinTest, ServersHealthCheckingUnimplementedTreatedAsHealthy) {
StartServers(1); // Single server
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({servers_[0]->port_});
EXPECT_TRUE(WaitForChannelReady(channel.get()));
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
TEST_F(RoundRobinTest, HealthChecking) {
EnableDefaultHealthCheckService(true);
// Start servers.
const int kNumServers = 3;
StartServers(kNumServers);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Channel should not become READY, because health checks should be failing.
gpr_log(GPR_INFO,
"*** initial state: unknown health check service name for "
"all servers");
EXPECT_FALSE(WaitForChannelReady(channel.get(), 1));
// Now set one of the servers to be healthy.
// The channel should become healthy and all requests should go to
// the healthy server.
gpr_log(GPR_INFO, "*** server 0 healthy");
servers_[0]->SetServingStatus("health_check_service_name", true);
EXPECT_TRUE(WaitForChannelReady(channel.get()));
for (int i = 0; i < 10; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
// Now set a second server to be healthy.
gpr_log(GPR_INFO, "*** server 2 healthy");
servers_[2]->SetServingStatus("health_check_service_name", true);
WaitForServer(stub, 2, DEBUG_LOCATION);
for (int i = 0; i < 10; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
EXPECT_EQ(5, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(5, servers_[2]->service_.request_count());
// Now set the remaining server to be healthy.
gpr_log(GPR_INFO, "*** server 1 healthy");
servers_[1]->SetServingStatus("health_check_service_name", true);
WaitForServer(stub, 1, DEBUG_LOCATION);
for (int i = 0; i < 9; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
EXPECT_EQ(3, servers_[0]->service_.request_count());
EXPECT_EQ(3, servers_[1]->service_.request_count());
EXPECT_EQ(3, servers_[2]->service_.request_count());
// Now set one server to be unhealthy again. Then wait until the
// unhealthiness has hit the client. We know that the client will see
// this when we send kNumServers requests and one of the remaining servers
// sees two of the requests.
gpr_log(GPR_INFO, "*** server 0 unhealthy");
servers_[0]->SetServingStatus("health_check_service_name", false);
do {
ResetCounters();
for (int i = 0; i < kNumServers; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
} while (servers_[1]->service_.request_count() != 2 &&
servers_[2]->service_.request_count() != 2);
// Now set the remaining two servers to be unhealthy. Make sure the
// channel leaves READY state and that RPCs fail.
gpr_log(GPR_INFO, "*** all servers unhealthy");
servers_[1]->SetServingStatus("health_check_service_name", false);
servers_[2]->SetServingStatus("health_check_service_name", false);
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
CheckRpcSendFailure(stub);
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(RoundRobinTest, HealthCheckingHandlesSubchannelFailure) {
EnableDefaultHealthCheckService(true);
// Start servers.
const int kNumServers = 3;
StartServers(kNumServers);
servers_[0]->SetServingStatus("health_check_service_name", true);
servers_[1]->SetServingStatus("health_check_service_name", true);
servers_[2]->SetServingStatus("health_check_service_name", true);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
WaitForServer(stub, 0, DEBUG_LOCATION);
// Stop server 0 and send a new resolver result to ensure that RR
// checks each subchannel's state.
servers_[0]->Shutdown();
response_generator.SetNextResolution(GetServersPorts());
// Send a bunch more RPCs.
for (size_t i = 0; i < 100; i++) {
SendRpc(stub);
}
}
TEST_F(RoundRobinTest, WithHealthCheckingInhibitPerChannel) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("round_robin", response_generator1, args);
auto stub1 = BuildStub(channel1);
std::vector<int> ports = GetServersPorts();
response_generator1.SetNextResolution(ports);
// Create a channel with health checking enabled but inhibited.
args.SetInt(GRPC_ARG_INHIBIT_HEALTH_CHECKING, 1);
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("round_robin", response_generator2, args);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
// First channel should not become READY, because health checks should be
// failing.
EXPECT_FALSE(WaitForChannelReady(channel1.get(), 1));
CheckRpcSendFailure(stub1);
// Second channel should be READY.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1));
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// Enable health checks on the backend and wait for channel 1 to succeed.
servers_[0]->SetServingStatus("health_check_service_name", true);
CheckRpcSendOk(stub1, DEBUG_LOCATION, true /* wait_for_ready */);
// Check that we created only one subchannel to the backend.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(RoundRobinTest, HealthCheckingServiceNamePerChannel) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("round_robin", response_generator1, args);
auto stub1 = BuildStub(channel1);
std::vector<int> ports = GetServersPorts();
response_generator1.SetNextResolution(ports);
// Create a channel with health-checking enabled with a different
// service name.
ChannelArguments args2;
args2.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name2\"}}");
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("round_robin", response_generator2, args2);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
// Allow health checks from channel 2 to succeed.
servers_[0]->SetServingStatus("health_check_service_name2", true);
// First channel should not become READY, because health checks should be
// failing.
EXPECT_FALSE(WaitForChannelReady(channel1.get(), 1));
CheckRpcSendFailure(stub1);
// Second channel should be READY.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1));
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// Enable health checks for channel 1 and wait for it to succeed.
servers_[0]->SetServingStatus("health_check_service_name", true);
CheckRpcSendOk(stub1, DEBUG_LOCATION, true /* wait_for_ready */);
// Check that we created only one subchannel to the backend.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(RoundRobinTest,
HealthCheckingServiceNameChangesAfterSubchannelsCreated) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
const char* kServiceConfigJson =
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}";
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
response_generator.SetNextResolution(ports, kServiceConfigJson);
servers_[0]->SetServingStatus("health_check_service_name", true);
EXPECT_TRUE(WaitForChannelReady(channel.get(), 1 /* timeout_seconds */));
// Send an update on the channel to change it to use a health checking
// service name that is not being reported as healthy.
const char* kServiceConfigJson2 =
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name2\"}}";
response_generator.SetNextResolution(ports, kServiceConfigJson2);
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
// Clean up.
EnableDefaultHealthCheckService(false);
}
//
// LB policy pick args
//
class ClientLbPickArgsTest : public ClientLbEnd2endTest {
protected:
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestCase() {
grpc_init();
grpc_core::RegisterTestPickArgsLoadBalancingPolicy(SavePickArgs);
}
static void TearDownTestCase() { grpc_shutdown(); }
std::vector<grpc_core::PickArgsSeen> args_seen_list() {
grpc::internal::MutexLock lock(&mu_);
return args_seen_list_;
}
static std::string ArgsSeenListString(
const std::vector<grpc_core::PickArgsSeen>& args_seen_list) {
std::vector<std::string> entries;
for (const auto& args_seen : args_seen_list) {
std::vector<std::string> metadata;
for (const auto& p : args_seen.metadata) {
metadata.push_back(absl::StrCat(p.first, "=", p.second));
}
entries.push_back(absl::StrFormat("{path=\"%s\", metadata=[%s]}",
args_seen.path,
absl::StrJoin(metadata, ", ")));
}
return absl::StrCat("[", absl::StrJoin(entries, ", "), "]");
}
private:
static void SavePickArgs(const grpc_core::PickArgsSeen& args_seen) {
ClientLbPickArgsTest* self = current_test_instance_;
grpc::internal::MutexLock lock(&self->mu_);
self->args_seen_list_.emplace_back(args_seen);
}
static ClientLbPickArgsTest* current_test_instance_;
grpc::internal::Mutex mu_;
std::vector<grpc_core::PickArgsSeen> args_seen_list_;
};
ClientLbPickArgsTest* ClientLbPickArgsTest::current_test_instance_ = nullptr;
TEST_F(ClientLbPickArgsTest, Basic) {
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("test_pick_args_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Proactively connect the channel, so that the LB policy will always
// be connected before it sees the pick. Otherwise, the test would be
// flaky because sometimes the pick would be seen twice (once in
// CONNECTING and again in READY) and other times only once (in READY).
ASSERT_TRUE(channel->WaitForConnected(gpr_inf_future(GPR_CLOCK_MONOTONIC)));
// Check LB policy name for the channel.
EXPECT_EQ("test_pick_args_lb", channel->GetLoadBalancingPolicyName());
// Now send an RPC and check that the picker sees the expected data.
CheckRpcSendOk(stub, DEBUG_LOCATION, /*wait_for_ready=*/true);
auto pick_args_seen_list = args_seen_list();
EXPECT_THAT(pick_args_seen_list,
::testing::ElementsAre(::testing::AllOf(
::testing::Field(&grpc_core::PickArgsSeen::path,
"/grpc.testing.EchoTestService/Echo"),
::testing::Field(&grpc_core::PickArgsSeen::metadata,
::testing::UnorderedElementsAre(
::testing::Pair("foo", "1"),
::testing::Pair("bar", "2"),
::testing::Pair("baz", "3"))))))
<< ArgsSeenListString(pick_args_seen_list);
}
//
// tests that LB policies can get the call's trailing metadata
//
xds::data::orca::v3::OrcaLoadReport BackendMetricDataToOrcaLoadReport(
const grpc_core::BackendMetricData& backend_metric_data) {
xds::data::orca::v3::OrcaLoadReport load_report;
load_report.set_cpu_utilization(backend_metric_data.cpu_utilization);
load_report.set_mem_utilization(backend_metric_data.mem_utilization);
for (const auto& p : backend_metric_data.request_cost) {
std::string name(p.first);
(*load_report.mutable_request_cost())[name] = p.second;
}
for (const auto& p : backend_metric_data.utilization) {
std::string name(p.first);
(*load_report.mutable_utilization())[name] = p.second;
}
return load_report;
}
class ClientLbInterceptTrailingMetadataTest : public ClientLbEnd2endTest {
protected:
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestCase() {
grpc_init();
grpc_core::RegisterInterceptRecvTrailingMetadataLoadBalancingPolicy(
ReportTrailerIntercepted);
}
static void TearDownTestCase() { grpc_shutdown(); }
int trailers_intercepted() {
grpc::internal::MutexLock lock(&mu_);
return trailers_intercepted_;
}
absl::Status last_status() {
grpc::internal::MutexLock lock(&mu_);
return last_status_;
}
grpc_core::MetadataVector trailing_metadata() {
grpc::internal::MutexLock lock(&mu_);
return std::move(trailing_metadata_);
}
absl::optional<xds::data::orca::v3::OrcaLoadReport> backend_load_report() {
grpc::internal::MutexLock lock(&mu_);
return std::move(load_report_);
}
private:
static void ReportTrailerIntercepted(
const grpc_core::TrailingMetadataArgsSeen& args_seen) {
const auto* backend_metric_data = args_seen.backend_metric_data;
ClientLbInterceptTrailingMetadataTest* self = current_test_instance_;
grpc::internal::MutexLock lock(&self->mu_);
self->last_status_ = args_seen.status;
self->trailers_intercepted_++;
self->trailing_metadata_ = args_seen.metadata;
if (backend_metric_data != nullptr) {
self->load_report_ =
BackendMetricDataToOrcaLoadReport(*backend_metric_data);
}
}
static ClientLbInterceptTrailingMetadataTest* current_test_instance_;
grpc::internal::Mutex mu_;
int trailers_intercepted_ = 0;
absl::Status last_status_;
grpc_core::MetadataVector trailing_metadata_;
absl::optional<xds::data::orca::v3::OrcaLoadReport> load_report_;
};
ClientLbInterceptTrailingMetadataTest*
ClientLbInterceptTrailingMetadataTest::current_test_instance_ = nullptr;
TEST_F(ClientLbInterceptTrailingMetadataTest, StatusOk) {
StartServers(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Send an OK RPC.
CheckRpcSendOk(stub, DEBUG_LOCATION);
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(1, trailers_intercepted());
EXPECT_EQ(absl::OkStatus(), last_status());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, StatusFailed) {
StartServers(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
EchoRequest request;
auto* expected_error = request.mutable_param()->mutable_expected_error();
expected_error->set_code(GRPC_STATUS_PERMISSION_DENIED);
expected_error->set_error_message("bummer, man");
Status status;
SendRpc(stub, /*response=*/nullptr, /*timeout_ms=*/1000, &status,
/*wait_for_ready=*/false, &request);
EXPECT_EQ(status.error_code(), StatusCode::PERMISSION_DENIED);
EXPECT_EQ(status.error_message(), "bummer, man");
absl::Status status_seen_by_lb = last_status();
EXPECT_EQ(status_seen_by_lb.code(), absl::StatusCode::kPermissionDenied);
EXPECT_EQ(status_seen_by_lb.message(), "bummer, man");
}
TEST_F(ClientLbInterceptTrailingMetadataTest,
StatusCancelledWithoutStartingRecvTrailingMetadata) {
StartServers(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
response_generator.SetNextResolution(GetServersPorts());
auto stub = BuildStub(channel);
{
// Start a stream (sends initial metadata) and then cancel without
// calling Finish().
ClientContext ctx;
auto stream = stub->BidiStream(&ctx);
ctx.TryCancel();
}
// Check status seen by LB policy.
EXPECT_EQ(1, trailers_intercepted());
absl::Status status_seen_by_lb = last_status();
EXPECT_EQ(status_seen_by_lb.code(), absl::StatusCode::kCancelled);
EXPECT_EQ(status_seen_by_lb.message(), "call cancelled");
}
TEST_F(ClientLbInterceptTrailingMetadataTest, InterceptsRetriesDisabled) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
ChannelArguments channel_args;
channel_args.SetInt(GRPC_ARG_ENABLE_RETRIES, 0);
auto channel = BuildChannel("intercept_trailing_metadata_lb",
response_generator, channel_args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, trailers_intercepted());
EXPECT_THAT(trailing_metadata(),
::testing::UnorderedElementsAre(
// TODO(roth): Should grpc-status be visible here?
::testing::Pair("grpc-status", "0"),
::testing::Pair("user-agent", ::testing::_),
::testing::Pair("foo", "1"), ::testing::Pair("bar", "2"),
::testing::Pair("baz", "3")));
EXPECT_FALSE(backend_load_report().has_value());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, InterceptsRetriesEnabled) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\n"
" \"methodConfig\": [ {\n"
" \"name\": [\n"
" { \"service\": \"grpc.testing.EchoTestService\" }\n"
" ],\n"
" \"retryPolicy\": {\n"
" \"maxAttempts\": 3,\n"
" \"initialBackoff\": \"1s\",\n"
" \"maxBackoff\": \"120s\",\n"
" \"backoffMultiplier\": 1.6,\n"
" \"retryableStatusCodes\": [ \"ABORTED\" ]\n"
" }\n"
" } ]\n"
"}");
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, trailers_intercepted());
EXPECT_THAT(trailing_metadata(),
::testing::UnorderedElementsAre(
// TODO(roth): Should grpc-status be visible here?
::testing::Pair("grpc-status", "0"),
::testing::Pair("user-agent", ::testing::_),
::testing::Pair("foo", "1"), ::testing::Pair("bar", "2"),
::testing::Pair("baz", "3")));
EXPECT_FALSE(backend_load_report().has_value());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, BackendMetricData) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
xds::data::orca::v3::OrcaLoadReport load_report;
load_report.set_cpu_utilization(0.5);
load_report.set_mem_utilization(0.75);
auto* request_cost = load_report.mutable_request_cost();
(*request_cost)["foo"] = 0.8;
(*request_cost)["bar"] = 1.4;
auto* utilization = load_report.mutable_utilization();
(*utilization)["baz"] = 1.1;
(*utilization)["quux"] = 0.9;
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION, false, &load_report);
auto actual = backend_load_report();
ASSERT_TRUE(actual.has_value());
// TODO(roth): Change this to use EqualsProto() once that becomes
// available in OSS.
EXPECT_EQ(actual->cpu_utilization(), load_report.cpu_utilization());
EXPECT_EQ(actual->mem_utilization(), load_report.mem_utilization());
EXPECT_EQ(actual->request_cost().size(), load_report.request_cost().size());
for (const auto& p : actual->request_cost()) {
auto it = load_report.request_cost().find(p.first);
ASSERT_NE(it, load_report.request_cost().end());
EXPECT_EQ(it->second, p.second);
}
EXPECT_EQ(actual->utilization().size(), load_report.utilization().size());
for (const auto& p : actual->utilization()) {
auto it = load_report.utilization().find(p.first);
ASSERT_NE(it, load_report.utilization().end());
EXPECT_EQ(it->second, p.second);
}
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, trailers_intercepted());
}
//
// tests that address attributes from the resolver are visible to the LB policy
//
class ClientLbAddressTest : public ClientLbEnd2endTest {
protected:
static const char* kAttributeKey;
class Attribute : public grpc_core::ServerAddress::AttributeInterface {
public:
explicit Attribute(const std::string& str) : str_(str) {}
std::unique_ptr<AttributeInterface> Copy() const override {
return absl::make_unique<Attribute>(str_);
}
int Cmp(const AttributeInterface* other) const override {
return str_.compare(static_cast<const Attribute*>(other)->str_);
}
std::string ToString() const override { return str_; }
private:
std::string str_;
};
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestCase() {
grpc_init();
grpc_core::RegisterAddressTestLoadBalancingPolicy(SaveAddress);
}
static void TearDownTestCase() { grpc_shutdown(); }
const std::vector<std::string>& addresses_seen() {
grpc::internal::MutexLock lock(&mu_);
return addresses_seen_;
}
private:
static void SaveAddress(const grpc_core::ServerAddress& address) {
ClientLbAddressTest* self = current_test_instance_;
grpc::internal::MutexLock lock(&self->mu_);
self->addresses_seen_.emplace_back(address.ToString());
}
static ClientLbAddressTest* current_test_instance_;
grpc::internal::Mutex mu_;
std::vector<std::string> addresses_seen_;
};
const char* ClientLbAddressTest::kAttributeKey = "attribute_key";
ClientLbAddressTest* ClientLbAddressTest::current_test_instance_ = nullptr;
TEST_F(ClientLbAddressTest, Basic) {
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("address_test_lb", response_generator);
auto stub = BuildStub(channel);
// Addresses returned by the resolver will have attached attributes.
response_generator.SetNextResolution(GetServersPorts(), nullptr,
kAttributeKey,
absl::make_unique<Attribute>("foo"));
CheckRpcSendOk(stub, DEBUG_LOCATION);
// Check LB policy name for the channel.
EXPECT_EQ("address_test_lb", channel->GetLoadBalancingPolicyName());
// Make sure that the attributes wind up on the subchannels.
std::vector<std::string> expected;
for (const int port : GetServersPorts()) {
expected.emplace_back(
absl::StrCat(ipv6_only_ ? "[::1]:" : "127.0.0.1:", port,
" args={} attributes={", kAttributeKey, "=foo}"));
}
EXPECT_EQ(addresses_seen(), expected);
}
//
// tests OOB backend metric API
//
class OobBackendMetricTest : public ClientLbEnd2endTest {
protected:
using BackendMetricReport =
std::pair<int /*port*/, xds::data::orca::v3::OrcaLoadReport>;
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestCase() {
grpc_init();
grpc_core::RegisterOobBackendMetricTestLoadBalancingPolicy(
BackendMetricCallback);
}
static void TearDownTestCase() { grpc_shutdown(); }
absl::optional<BackendMetricReport> GetBackendMetricReport() {
grpc::internal::MutexLock lock(&mu_);
if (backend_metric_reports_.empty()) return absl::nullopt;
auto result = std::move(backend_metric_reports_.front());
backend_metric_reports_.pop_front();
return result;
}
private:
static void BackendMetricCallback(
grpc_core::ServerAddress address,
const grpc_core::BackendMetricData& backend_metric_data) {
auto load_report = BackendMetricDataToOrcaLoadReport(backend_metric_data);
int port = grpc_sockaddr_get_port(&address.address());
grpc::internal::MutexLock lock(&current_test_instance_->mu_);
current_test_instance_->backend_metric_reports_.push_back(
{port, std::move(load_report)});
}
static OobBackendMetricTest* current_test_instance_;
grpc::internal::Mutex mu_;
std::deque<BackendMetricReport> backend_metric_reports_ ABSL_GUARDED_BY(&mu_);
};
OobBackendMetricTest* OobBackendMetricTest::current_test_instance_ = nullptr;
TEST_F(OobBackendMetricTest, Basic) {
StartServers(1);
// Set initial backend metric data on server.
constexpr char kMetricName[] = "foo";
servers_[0]->orca_service_.SetCpuUtilization(0.1);
servers_[0]->orca_service_.SetMemoryUtilization(0.2);
servers_[0]->orca_service_.SetNamedUtilization(kMetricName, 0.3);
// Start client.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("oob_backend_metric_test_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Send an OK RPC.
CheckRpcSendOk(stub, DEBUG_LOCATION);
// Check LB policy name for the channel.
EXPECT_EQ("oob_backend_metric_test_lb",
channel->GetLoadBalancingPolicyName());
// Check report seen by client.
for (size_t i = 0; i < 5; ++i) {
auto report = GetBackendMetricReport();
if (report.has_value()) {
EXPECT_EQ(report->first, servers_[0]->port_);
EXPECT_EQ(report->second.cpu_utilization(), 0.1);
EXPECT_EQ(report->second.mem_utilization(), 0.2);
EXPECT_THAT(
report->second.utilization(),
::testing::UnorderedElementsAre(::testing::Pair(kMetricName, 0.3)));
break;
}
gpr_sleep_until(grpc_timeout_seconds_to_deadline(1));
}
// Now update the utilization data on the server.
// Note that the server may send a new report while we're updating these,
// so we set them in reverse order, so that we know we'll get all new
// data once we see a report with the new CPU utilization value.
servers_[0]->orca_service_.SetNamedUtilization(kMetricName, 0.6);
servers_[0]->orca_service_.SetMemoryUtilization(0.5);
servers_[0]->orca_service_.SetCpuUtilization(0.4);
// Wait for client to see new report.
for (size_t i = 0; i < 5; ++i) {
auto report = GetBackendMetricReport();
if (report.has_value()) {
EXPECT_EQ(report->first, servers_[0]->port_);
if (report->second.cpu_utilization() != 0.1) {
EXPECT_EQ(report->second.cpu_utilization(), 0.4);
EXPECT_EQ(report->second.mem_utilization(), 0.5);
EXPECT_THAT(
report->second.utilization(),
::testing::UnorderedElementsAre(::testing::Pair(kMetricName, 0.6)));
break;
}
}
gpr_sleep_until(grpc_timeout_seconds_to_deadline(1));
}
}
} // namespace
} // namespace testing
} // namespace grpc
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
grpc::testing::TestEnvironment env(&argc, argv);
grpc_init();
grpc::testing::ConnectionAttemptInjector::Init();
const auto result = RUN_ALL_TESTS();
grpc_shutdown();
return result;
}