The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

89 lines
3.5 KiB

# Copyright 2016, Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# utilities for exporting benchmark results
import json
import os
import sys
import uuid
gcp_utils_dir = os.path.abspath(os.path.join(
os.path.dirname(__file__), '../../gcp/utils'))
sys.path.append(gcp_utils_dir)
import big_query_utils
_PROJECT_ID='grpc-testing'
_DATASET_ID='test_dataset'
_RESULTS_TABLE_ID='scenario_results'
def upload_scenario_result_to_bigquery(result_file):
bq = big_query_utils.create_big_query()
_create_results_table(bq)
with open(result_file, 'r') as f:
scenario_result = json.loads(f.read())
_insert_result(bq, scenario_result)
def _insert_result(bq, scenario_result):
_flatten_result_inplace(scenario_result)
# TODO: handle errors...
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result)
return big_query_utils.insert_rows(bq,
_PROJECT_ID,
_DATASET_ID,
_RESULTS_TABLE_ID,
[row])
def _create_results_table(bq):
with open(os.path.dirname(__file__) + '/scenario_result_schema.json', 'r') as f:
table_schema = json.loads(f.read())
desc = 'Results of performance benchmarks.'
return big_query_utils.create_table2(bq, _PROJECT_ID, _DATASET_ID,
_RESULTS_TABLE_ID, table_schema, desc)
def _flatten_result_inplace(scenario_result):
"""Bigquery is not really great for handling deeply nested data
and repeated fields. To maintain values of some fields while keeping
the schema relatively simple, we artificially leave some of the fields
as JSON strings.
"""
scenario_result['scenario']['clientConfig'] = json.dumps(scenario_result['scenario']['clientConfig'])
scenario_result['scenario']['serverConfig'] = json.dumps(scenario_result['scenario']['serverConfig'])
scenario_result['latencies'] = json.dumps(scenario_result['latencies'])
for stats in scenario_result['clientStats']:
stats['latencies'] = json.dumps(stats['latencies'])
scenario_result['serverCores'] = json.dumps(scenario_result['serverCores'])