The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

384 lines
13 KiB

/*
*
* Copyright 2020 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <map>
#include <mutex>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <vector>
#include "absl/strings/str_split.h"
#include <gflags/gflags.h>
#include <grpcpp/grpcpp.h>
#include <grpcpp/server.h>
#include <grpcpp/server_builder.h>
#include <grpcpp/server_context.h>
#include "src/core/lib/gpr/env.h"
#include "src/proto/grpc/testing/empty.pb.h"
#include "src/proto/grpc/testing/messages.pb.h"
#include "src/proto/grpc/testing/test.grpc.pb.h"
#include "test/core/util/test_config.h"
#include "test/cpp/util/test_config.h"
DEFINE_bool(fail_on_failed_rpc, false,
"Fail client if any RPCs fail after first successful RPC.");
DEFINE_int32(num_channels, 1, "Number of channels.");
DEFINE_bool(print_response, false, "Write RPC response to stdout.");
DEFINE_int32(qps, 1, "Qps per channel.");
DEFINE_int32(rpc_timeout_sec, 30, "Per RPC timeout seconds.");
DEFINE_string(server, "localhost:50051", "Address of server.");
DEFINE_int32(stats_port, 50052,
"Port to expose peer distribution stats service.");
DEFINE_string(rpc, "UnaryCall", "a comma separated list of rpc methods.");
DEFINE_string(metadata, "", "metadata to send with the RPC.");
using grpc::Channel;
using grpc::ClientAsyncResponseReader;
using grpc::ClientContext;
using grpc::CompletionQueue;
using grpc::Server;
using grpc::ServerBuilder;
using grpc::ServerContext;
using grpc::ServerCredentials;
using grpc::ServerReader;
using grpc::ServerReaderWriter;
using grpc::ServerWriter;
using grpc::Status;
using grpc::testing::Empty;
using grpc::testing::LoadBalancerStatsRequest;
using grpc::testing::LoadBalancerStatsResponse;
using grpc::testing::LoadBalancerStatsService;
using grpc::testing::SimpleRequest;
using grpc::testing::SimpleResponse;
using grpc::testing::TestService;
class XdsStatsWatcher;
// Unique ID for each outgoing RPC
int global_request_id;
// Stores a set of watchers that should be notified upon outgoing RPC completion
std::set<XdsStatsWatcher*> watchers;
// Mutex for global_request_id and watchers
std::mutex mu;
// Whether at least one RPC has succeeded, indicating xDS resolution completed.
std::atomic<bool> one_rpc_succeeded(false);
/** Records the remote peer distribution for a given range of RPCs. */
class XdsStatsWatcher {
public:
XdsStatsWatcher(int start_id, int end_id)
: start_id_(start_id), end_id_(end_id), rpcs_needed_(end_id - start_id) {}
void RpcCompleted(int request_id, const std::string& rpc_method,
const std::string& peer) {
if (start_id_ <= request_id && request_id < end_id_) {
{
std::lock_guard<std::mutex> lk(m_);
if (peer.empty()) {
no_remote_peer_++;
} else {
rpcs_by_peer_[peer]++;
rpcs_by_method_[rpc_method][peer]++;
}
rpcs_needed_--;
}
cv_.notify_one();
}
}
void WaitForRpcStatsResponse(LoadBalancerStatsResponse* response,
int timeout_sec) {
{
std::unique_lock<std::mutex> lk(m_);
cv_.wait_for(lk, std::chrono::seconds(timeout_sec),
[this] { return rpcs_needed_ == 0; });
response->mutable_rpcs_by_peer()->insert(rpcs_by_peer_.begin(),
rpcs_by_peer_.end());
auto& response_rpcs_by_method = *response->mutable_rpcs_by_method();
for (const auto& rpc_by_method : rpcs_by_method_) {
auto& response_rpc_by_method =
response_rpcs_by_method[rpc_by_method.first];
auto& response_rpcs_by_peer =
*response_rpc_by_method.mutable_rpcs_by_peer();
for (const auto& rpc_by_peer : rpc_by_method.second) {
auto& response_rpc_by_peer = response_rpcs_by_peer[rpc_by_peer.first];
response_rpc_by_peer = rpc_by_peer.second;
}
}
response->set_num_failures(no_remote_peer_ + rpcs_needed_);
}
}
private:
int start_id_;
int end_id_;
int rpcs_needed_;
int no_remote_peer_ = 0;
// A map of stats keyed by peer name.
std::map<std::string, int> rpcs_by_peer_;
// A two-level map of stats keyed at top level by RPC method and second level
// by peer name.
std::map<std::string, std::map<std::string, int>> rpcs_by_method_;
std::mutex m_;
std::condition_variable cv_;
};
class TestClient {
public:
TestClient(const std::shared_ptr<Channel>& channel)
: stub_(TestService::NewStub(channel)) {}
void AsyncUnaryCall(
std::vector<std::pair<std::string, std::string>> metadata) {
SimpleResponse response;
int saved_request_id;
{
std::lock_guard<std::mutex> lk(mu);
saved_request_id = ++global_request_id;
}
std::chrono::system_clock::time_point deadline =
std::chrono::system_clock::now() +
std::chrono::seconds(FLAGS_rpc_timeout_sec);
AsyncClientCall* call = new AsyncClientCall;
call->context.set_deadline(deadline);
for (const auto& data : metadata) {
call->context.AddMetadata(data.first, data.second);
}
call->saved_request_id = saved_request_id;
call->rpc_method = "UnaryCall";
call->simple_response_reader = stub_->PrepareAsyncUnaryCall(
&call->context, SimpleRequest::default_instance(), &cq_);
call->simple_response_reader->StartCall();
call->simple_response_reader->Finish(&call->simple_response, &call->status,
(void*)call);
}
void AsyncEmptyCall(
std::vector<std::pair<std::string, std::string>> metadata) {
Empty response;
int saved_request_id;
{
std::lock_guard<std::mutex> lk(mu);
saved_request_id = ++global_request_id;
}
std::chrono::system_clock::time_point deadline =
std::chrono::system_clock::now() +
std::chrono::seconds(FLAGS_rpc_timeout_sec);
AsyncClientCall* call = new AsyncClientCall;
call->context.set_deadline(deadline);
for (const auto& data : metadata) {
call->context.AddMetadata(data.first, data.second);
}
call->saved_request_id = saved_request_id;
call->rpc_method = "EmptyCall";
call->empty_response_reader = stub_->PrepareAsyncEmptyCall(
&call->context, Empty::default_instance(), &cq_);
call->empty_response_reader->StartCall();
call->empty_response_reader->Finish(&call->empty_response, &call->status,
(void*)call);
}
void AsyncCompleteRpc() {
void* got_tag;
bool ok = false;
while (cq_.Next(&got_tag, &ok)) {
AsyncClientCall* call = static_cast<AsyncClientCall*>(got_tag);
GPR_ASSERT(ok);
{
std::lock_guard<std::mutex> lk(mu);
auto server_initial_metadata = call->context.GetServerInitialMetadata();
auto metadata_hostname =
call->context.GetServerInitialMetadata().find("hostname");
std::string hostname =
metadata_hostname != call->context.GetServerInitialMetadata().end()
? std::string(metadata_hostname->second.data(),
metadata_hostname->second.length())
: call->simple_response.hostname();
for (auto watcher : watchers) {
watcher->RpcCompleted(call->saved_request_id, call->rpc_method,
hostname);
}
}
if (!call->status.ok()) {
if (FLAGS_print_response || FLAGS_fail_on_failed_rpc) {
std::cout << "RPC failed: " << call->status.error_code() << ": "
<< call->status.error_message() << std::endl;
}
if (FLAGS_fail_on_failed_rpc && one_rpc_succeeded.load()) {
abort();
}
} else {
if (FLAGS_print_response) {
auto metadata_hostname =
call->context.GetServerInitialMetadata().find("hostname");
std::string hostname =
metadata_hostname !=
call->context.GetServerInitialMetadata().end()
? std::string(metadata_hostname->second.data(),
metadata_hostname->second.length())
: call->simple_response.hostname();
std::cout << "Greeting: Hello world, this is " << hostname
<< ", from " << call->context.peer() << std::endl;
}
one_rpc_succeeded = true;
}
delete call;
}
}
private:
struct AsyncClientCall {
Empty empty_response;
SimpleResponse simple_response;
ClientContext context;
Status status;
int saved_request_id;
std::string rpc_method;
std::unique_ptr<ClientAsyncResponseReader<Empty>> empty_response_reader;
std::unique_ptr<ClientAsyncResponseReader<SimpleResponse>>
simple_response_reader;
};
std::unique_ptr<TestService::Stub> stub_;
CompletionQueue cq_;
};
class LoadBalancerStatsServiceImpl : public LoadBalancerStatsService::Service {
public:
Status GetClientStats(ServerContext* context,
const LoadBalancerStatsRequest* request,
LoadBalancerStatsResponse* response) {
int start_id;
int end_id;
XdsStatsWatcher* watcher;
{
std::lock_guard<std::mutex> lk(mu);
start_id = global_request_id + 1;
end_id = start_id + request->num_rpcs();
watcher = new XdsStatsWatcher(start_id, end_id);
watchers.insert(watcher);
}
watcher->WaitForRpcStatsResponse(response, request->timeout_sec());
{
std::lock_guard<std::mutex> lk(mu);
watchers.erase(watcher);
}
delete watcher;
return Status::OK;
}
};
void RunTestLoop(std::chrono::duration<double> duration_per_query) {
std::vector<absl::string_view> rpc_methods =
absl::StrSplit(FLAGS_rpc, ',', absl::SkipEmpty());
// Store Metadata like
// "EmptyCall:key1:value1,UnaryCall:key1:value1,UnaryCall:key2:value2" into a
// map where the key is the RPC method and value is a vector of key:value
// pairs. {EmptyCall, [{key1,value1}],
// UnaryCall, [{key1,value1}, {key2,value2}]}
std::vector<absl::string_view> rpc_metadata =
absl::StrSplit(FLAGS_metadata, ',', absl::SkipEmpty());
std::map<std::string, std::vector<std::pair<std::string, std::string>>>
metadata_map;
for (auto& data : rpc_metadata) {
std::vector<absl::string_view> metadata =
absl::StrSplit(data, ':', absl::SkipEmpty());
GPR_ASSERT(metadata.size() == 3);
metadata_map[std::string(metadata[0])].push_back(
{std::string(metadata[1]), std::string(metadata[2])});
}
TestClient client(
grpc::CreateChannel(FLAGS_server, grpc::InsecureChannelCredentials()));
std::chrono::time_point<std::chrono::system_clock> start =
std::chrono::system_clock::now();
std::chrono::duration<double> elapsed;
std::thread thread = std::thread(&TestClient::AsyncCompleteRpc, &client);
while (true) {
for (const absl::string_view& rpc_method : rpc_methods) {
elapsed = std::chrono::system_clock::now() - start;
if (elapsed > duration_per_query) {
start = std::chrono::system_clock::now();
auto metadata_iter = metadata_map.find(std::string(rpc_method));
if (rpc_method == "EmptyCall") {
client.AsyncEmptyCall(
metadata_iter != metadata_map.end()
? metadata_iter->second
: std::vector<std::pair<std::string, std::string>>());
} else {
client.AsyncUnaryCall(
metadata_iter != metadata_map.end()
? metadata_iter->second
: std::vector<std::pair<std::string, std::string>>());
}
}
}
}
thread.join();
}
void RunServer(const int port) {
GPR_ASSERT(port != 0);
std::ostringstream server_address;
server_address << "0.0.0.0:" << port;
LoadBalancerStatsServiceImpl service;
ServerBuilder builder;
builder.RegisterService(&service);
builder.AddListeningPort(server_address.str(),
grpc::InsecureServerCredentials());
std::unique_ptr<Server> server(builder.BuildAndStart());
gpr_log(GPR_INFO, "Stats server listening on %s",
server_address.str().c_str());
server->Wait();
}
int main(int argc, char** argv) {
grpc::testing::TestEnvironment env(argc, argv);
grpc::testing::InitTest(&argc, &argv, true);
std::chrono::duration<double> duration_per_query =
std::chrono::nanoseconds(std::chrono::seconds(1)) / FLAGS_qps;
std::vector<std::thread> test_threads;
test_threads.reserve(FLAGS_num_channels);
for (int i = 0; i < FLAGS_num_channels; i++) {
test_threads.emplace_back(std::thread(&RunTestLoop, duration_per_query));
}
RunServer(FLAGS_stats_port);
for (auto it = test_threads.begin(); it != test_threads.end(); it++) {
it->join();
}
return 0;
}