The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

225 lines
6.4 KiB

# Copyright 2015 gRPC authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import json
import uuid
from apiclient import discovery
from apiclient.errors import HttpError
import httplib2
from oauth2client.client import GoogleCredentials
# 30 days in milliseconds
_EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000
NUM_RETRIES = 3
def create_big_query():
"""Authenticates with cloud platform and gets a BiqQuery service object"""
creds = GoogleCredentials.get_application_default()
return discovery.build(
"bigquery", "v2", credentials=creds, cache_discovery=False
)
def create_dataset(biq_query, project_id, dataset_id):
is_success = True
body = {
"datasetReference": {"projectId": project_id, "datasetId": dataset_id}
}
try:
dataset_req = biq_query.datasets().insert(
projectId=project_id, body=body
)
dataset_req.execute(num_retries=NUM_RETRIES)
except HttpError as http_error:
if http_error.resp.status == 409:
print("Warning: The dataset %s already exists" % dataset_id)
else:
# Note: For more debugging info, print "http_error.content"
print(
"Error in creating dataset: %s. Err: %s"
% (dataset_id, http_error)
)
is_success = False
return is_success
def create_table(
big_query, project_id, dataset_id, table_id, table_schema, description
):
fields = [
{
"name": field_name,
"type": field_type,
"description": field_description,
}
for (field_name, field_type, field_description) in table_schema
]
return create_table2(
big_query, project_id, dataset_id, table_id, fields, description
)
def create_partitioned_table(
big_query,
project_id,
dataset_id,
table_id,
table_schema,
description,
partition_type="DAY",
expiration_ms=_EXPIRATION_MS,
):
"""Creates a partitioned table. By default, a date-paritioned table is created with
each partition lasting 30 days after it was last modified.
"""
fields = [
{
"name": field_name,
"type": field_type,
"description": field_description,
}
for (field_name, field_type, field_description) in table_schema
]
return create_table2(
big_query,
project_id,
dataset_id,
table_id,
fields,
description,
partition_type,
expiration_ms,
)
def create_table2(
big_query,
project_id,
dataset_id,
table_id,
fields_schema,
description,
partition_type=None,
expiration_ms=None,
):
is_success = True
body = {
"description": description,
"schema": {"fields": fields_schema},
"tableReference": {
"datasetId": dataset_id,
"projectId": project_id,
"tableId": table_id,
},
}
if partition_type and expiration_ms:
body["timePartitioning"] = {
"type": partition_type,
"expirationMs": expiration_ms,
}
try:
table_req = big_query.tables().insert(
projectId=project_id, datasetId=dataset_id, body=body
)
res = table_req.execute(num_retries=NUM_RETRIES)
print('Successfully created %s "%s"' % (res["kind"], res["id"]))
except HttpError as http_error:
if http_error.resp.status == 409:
print("Warning: Table %s already exists" % table_id)
else:
print(
"Error in creating table: %s. Err: %s" % (table_id, http_error)
)
is_success = False
return is_success
def patch_table(big_query, project_id, dataset_id, table_id, fields_schema):
is_success = True
body = {
"schema": {"fields": fields_schema},
"tableReference": {
"datasetId": dataset_id,
"projectId": project_id,
"tableId": table_id,
},
}
try:
table_req = big_query.tables().patch(
projectId=project_id,
datasetId=dataset_id,
tableId=table_id,
body=body,
)
res = table_req.execute(num_retries=NUM_RETRIES)
print('Successfully patched %s "%s"' % (res["kind"], res["id"]))
except HttpError as http_error:
print("Error in creating table: %s. Err: %s" % (table_id, http_error))
is_success = False
return is_success
def insert_rows(big_query, project_id, dataset_id, table_id, rows_list):
is_success = True
body = {"rows": rows_list}
try:
insert_req = big_query.tabledata().insertAll(
projectId=project_id,
datasetId=dataset_id,
tableId=table_id,
body=body,
)
res = insert_req.execute(num_retries=NUM_RETRIES)
if res.get("insertErrors", None):
print("Error inserting rows! Response: %s" % res)
is_success = False
except HttpError as http_error:
print("Error inserting rows to the table %s" % table_id)
print("Error message: %s" % http_error)
is_success = False
return is_success
def sync_query_job(big_query, project_id, query, timeout=5000):
query_data = {"query": query, "timeoutMs": timeout}
query_job = None
try:
query_job = (
big_query.jobs()
.query(projectId=project_id, body=query_data)
.execute(num_retries=NUM_RETRIES)
)
except HttpError as http_error:
print("Query execute job failed with error: %s" % http_error)
print(http_error.content)
return query_job
# List of (column name, column type, description) tuples
def make_row(unique_row_id, row_values_dict):
"""row_values_dict is a dictionary of column name and column value."""
return {"insertId": unique_row_id, "json": row_values_dict}