The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

467 lines
15 KiB

/*
*
* Copyright 2015, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef TEST_QPS_CLIENT_H
#define TEST_QPS_CLIENT_H
#include <condition_variable>
#include <mutex>
#include <unordered_map>
#include <vector>
#include <grpc++/channel.h>
#include <grpc++/support/byte_buffer.h>
#include <grpc++/support/channel_arguments.h>
#include <grpc++/support/slice.h>
#include <grpc/support/log.h>
#include <grpc/support/time.h>
#include "src/core/lib/surface/completion_queue.h"
#include "src/proto/grpc/testing/payloads.pb.h"
#include "src/proto/grpc/testing/services.grpc.pb.h"
#include "test/cpp/qps/histogram.h"
#include "test/cpp/qps/interarrival.h"
#include "test/cpp/qps/usage_timer.h"
#include "test/cpp/util/create_test_channel.h"
namespace grpc {
namespace testing {
template <class RequestType>
class ClientRequestCreator {
public:
ClientRequestCreator(RequestType* req, const PayloadConfig&) {
// this template must be specialized
// fail with an assertion rather than a compile-time
// check since these only happen at the beginning anyway
GPR_ASSERT(false);
}
};
template <>
class ClientRequestCreator<SimpleRequest> {
public:
ClientRequestCreator(SimpleRequest* req,
const PayloadConfig& payload_config) {
if (payload_config.has_bytebuf_params()) {
GPR_ASSERT(false); // not appropriate for this specialization
} else if (payload_config.has_simple_params()) {
req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE);
req->set_response_size(payload_config.simple_params().resp_size());
req->mutable_payload()->set_type(
grpc::testing::PayloadType::COMPRESSABLE);
int size = payload_config.simple_params().req_size();
std::unique_ptr<char[]> body(new char[size]);
req->mutable_payload()->set_body(body.get(), size);
} else if (payload_config.has_complex_params()) {
GPR_ASSERT(false); // not appropriate for this specialization
} else {
// default should be simple proto without payloads
req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE);
req->set_response_size(0);
req->mutable_payload()->set_type(
grpc::testing::PayloadType::COMPRESSABLE);
}
}
};
template <>
class ClientRequestCreator<ByteBuffer> {
public:
ClientRequestCreator(ByteBuffer* req, const PayloadConfig& payload_config) {
if (payload_config.has_bytebuf_params()) {
std::unique_ptr<char[]> buf(
new char[payload_config.bytebuf_params().req_size()]);
grpc_slice s = grpc_slice_from_copied_buffer(
buf.get(), payload_config.bytebuf_params().req_size());
Slice slice(s, Slice::STEAL_REF);
*req = ByteBuffer(&slice, 1);
} else {
GPR_ASSERT(false); // not appropriate for this specialization
}
}
};
class HistogramEntry final {
public:
HistogramEntry() : value_used_(false), status_used_(false) {}
bool value_used() const { return value_used_; }
double value() const { return value_; }
void set_value(double v) {
value_used_ = true;
value_ = v;
}
bool status_used() const { return status_used_; }
int status() const { return status_; }
void set_status(int status) {
status_used_ = true;
status_ = status;
}
private:
bool value_used_;
double value_;
bool status_used_;
int status_;
};
typedef std::unordered_map<int, int64_t> StatusHistogram;
inline void MergeStatusHistogram(const StatusHistogram& from,
StatusHistogram* to) {
for (StatusHistogram::const_iterator it = from.begin(); it != from.end();
++it) {
(*to)[it->first] += it->second;
}
}
class Client {
public:
Client()
: timer_(new UsageTimer),
interarrival_timer_(),
started_requests_(false),
last_reset_poll_count_(0) {
gpr_event_init(&start_requests_);
}
virtual ~Client() {}
ClientStats Mark(bool reset) {
Histogram latencies;
StatusHistogram statuses;
UsageTimer::Result timer_result;
MaybeStartRequests();
int cur_poll_count = GetPollCount();
int poll_count = cur_poll_count - last_reset_poll_count_;
if (reset) {
std::vector<Histogram> to_merge(threads_.size());
std::vector<StatusHistogram> to_merge_status(threads_.size());
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->BeginSwap(&to_merge[i], &to_merge_status[i]);
}
std::unique_ptr<UsageTimer> timer(new UsageTimer);
timer_.swap(timer);
for (size_t i = 0; i < threads_.size(); i++) {
latencies.Merge(to_merge[i]);
MergeStatusHistogram(to_merge_status[i], &statuses);
}
timer_result = timer->Mark();
last_reset_poll_count_ = cur_poll_count;
} else {
// merge snapshots of each thread histogram
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->MergeStatsInto(&latencies, &statuses);
}
timer_result = timer_->Mark();
}
ClientStats stats;
latencies.FillProto(stats.mutable_latencies());
for (StatusHistogram::const_iterator it = statuses.begin();
it != statuses.end(); ++it) {
RequestResultCount* rrc = stats.add_request_results();
rrc->set_status_code(it->first);
rrc->set_count(it->second);
}
stats.set_time_elapsed(timer_result.wall);
stats.set_time_system(timer_result.system);
stats.set_time_user(timer_result.user);
stats.set_cq_poll_count(poll_count);
return stats;
}
// Must call AwaitThreadsCompletion before destructor to avoid a race
// between destructor and invocation of virtual ThreadFunc
void AwaitThreadsCompletion() {
gpr_atm_rel_store(&thread_pool_done_, static_cast<gpr_atm>(true));
DestroyMultithreading();
std::unique_lock<std::mutex> g(thread_completion_mu_);
while (threads_remaining_ != 0) {
threads_complete_.wait(g);
}
}
virtual int GetPollCount() {
// For sync client.
return 0;
}
protected:
bool closed_loop_;
gpr_atm thread_pool_done_;
void StartThreads(size_t num_threads) {
gpr_atm_rel_store(&thread_pool_done_, static_cast<gpr_atm>(false));
threads_remaining_ = num_threads;
for (size_t i = 0; i < num_threads; i++) {
threads_.emplace_back(new Thread(this, i));
}
}
void EndThreads() {
MaybeStartRequests();
threads_.clear();
}
virtual void DestroyMultithreading() = 0;
virtual bool ThreadFunc(HistogramEntry* histogram, size_t thread_idx) = 0;
void SetupLoadTest(const ClientConfig& config, size_t num_threads) {
// Set up the load distribution based on the number of threads
const auto& load = config.load_params();
std::unique_ptr<RandomDistInterface> random_dist;
switch (load.load_case()) {
case LoadParams::kClosedLoop:
// Closed-loop doesn't use random dist at all
break;
case LoadParams::kPoisson:
random_dist.reset(
new ExpDist(load.poisson().offered_load() / num_threads));
break;
default:
GPR_ASSERT(false);
}
// Set closed_loop_ based on whether or not random_dist is set
if (!random_dist) {
closed_loop_ = true;
} else {
closed_loop_ = false;
// set up interarrival timer according to random dist
interarrival_timer_.init(*random_dist, num_threads);
const auto now = gpr_now(GPR_CLOCK_MONOTONIC);
for (size_t i = 0; i < num_threads; i++) {
next_time_.push_back(gpr_time_add(
now,
gpr_time_from_nanos(interarrival_timer_.next(i), GPR_TIMESPAN)));
}
}
}
gpr_timespec NextIssueTime(int thread_idx) {
const gpr_timespec result = next_time_[thread_idx];
next_time_[thread_idx] =
gpr_time_add(next_time_[thread_idx],
gpr_time_from_nanos(interarrival_timer_.next(thread_idx),
GPR_TIMESPAN));
return result;
}
std::function<gpr_timespec()> NextIssuer(int thread_idx) {
return closed_loop_ ? std::function<gpr_timespec()>()
: std::bind(&Client::NextIssueTime, this, thread_idx);
}
private:
class Thread {
public:
Thread(Client* client, size_t idx)
: client_(client), idx_(idx), impl_(&Thread::ThreadFunc, this) {}
~Thread() { impl_.join(); }
void BeginSwap(Histogram* n, StatusHistogram* s) {
std::lock_guard<std::mutex> g(mu_);
n->Swap(&histogram_);
s->swap(statuses_);
}
void MergeStatsInto(Histogram* hist, StatusHistogram* s) {
std::unique_lock<std::mutex> g(mu_);
hist->Merge(histogram_);
MergeStatusHistogram(statuses_, s);
}
private:
Thread(const Thread&);
Thread& operator=(const Thread&);
void ThreadFunc() {
while (!gpr_event_wait(
&client_->start_requests_,
gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_seconds(1, GPR_TIMESPAN)))) {
gpr_log(GPR_INFO, "Waiting for benchmark to start");
}
for (;;) {
// run the loop body
HistogramEntry entry;
const bool thread_still_ok = client_->ThreadFunc(&entry, idx_);
// lock, update histogram if needed and see if we're done
std::lock_guard<std::mutex> g(mu_);
if (entry.value_used()) {
histogram_.Add(entry.value());
}
if (entry.status_used()) {
statuses_[entry.status()]++;
}
if (!thread_still_ok) {
gpr_log(GPR_ERROR, "Finishing client thread due to RPC error");
}
if (!thread_still_ok ||
static_cast<bool>(gpr_atm_acq_load(&client_->thread_pool_done_))) {
client_->CompleteThread();
return;
}
}
}
std::mutex mu_;
Histogram histogram_;
StatusHistogram statuses_;
Client* client_;
const size_t idx_;
std::thread impl_;
};
std::vector<std::unique_ptr<Thread>> threads_;
std::unique_ptr<UsageTimer> timer_;
InterarrivalTimer interarrival_timer_;
std::vector<gpr_timespec> next_time_;
std::mutex thread_completion_mu_;
size_t threads_remaining_;
std::condition_variable threads_complete_;
gpr_event start_requests_;
bool started_requests_;
int last_reset_poll_count_;
void MaybeStartRequests() {
if (!started_requests_) {
started_requests_ = true;
gpr_event_set(&start_requests_, (void*)1);
}
}
void CompleteThread() {
std::lock_guard<std::mutex> g(thread_completion_mu_);
threads_remaining_--;
if (threads_remaining_ == 0) {
threads_complete_.notify_all();
}
}
};
template <class StubType, class RequestType>
class ClientImpl : public Client {
public:
ClientImpl(const ClientConfig& config,
std::function<std::unique_ptr<StubType>(std::shared_ptr<Channel>)>
create_stub)
: cores_(gpr_cpu_num_cores()),
channels_(config.client_channels()),
create_stub_(create_stub) {
for (int i = 0; i < config.client_channels(); i++) {
channels_[i].init(config.server_targets(i % config.server_targets_size()),
config, create_stub_, i);
}
ClientRequestCreator<RequestType> create_req(&request_,
config.payload_config());
}
virtual ~ClientImpl() {}
protected:
const int cores_;
RequestType request_;
class ClientChannelInfo {
public:
ClientChannelInfo() {}
ClientChannelInfo(const ClientChannelInfo& i) {
// The copy constructor is to satisfy old compilers
// that need it for using std::vector . It is only ever
// used for empty entries
GPR_ASSERT(!i.channel_ && !i.stub_);
}
void init(const grpc::string& target, const ClientConfig& config,
std::function<std::unique_ptr<StubType>(std::shared_ptr<Channel>)>
create_stub,
int shard) {
// We have to use a 2-phase init like this with a default
// constructor followed by an initializer function to make
// old compilers happy with using this in std::vector
ChannelArguments args;
args.SetInt("shard_to_ensure_no_subchannel_merges", shard);
set_channel_args(config, &args);
channel_ = CreateTestChannel(
target, config.security_params().server_host_override(),
config.has_security_params(), !config.security_params().use_test_ca(),
std::shared_ptr<CallCredentials>(), args);
gpr_log(GPR_INFO, "Connecting to %s", target.c_str());
GPR_ASSERT(channel_->WaitForConnected(
gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_seconds(300, GPR_TIMESPAN))));
stub_ = create_stub(channel_);
}
Channel* get_channel() { return channel_.get(); }
StubType* get_stub() { return stub_.get(); }
private:
void set_channel_args(const ClientConfig& config, ChannelArguments* args) {
for (auto channel_arg : config.channel_args()) {
if (channel_arg.value_case() == ChannelArg::kStrValue) {
args->SetString(channel_arg.name(), channel_arg.str_value());
} else if (channel_arg.value_case() == ChannelArg::kIntValue) {
args->SetInt(channel_arg.name(), channel_arg.int_value());
} else {
gpr_log(GPR_ERROR, "Empty channel arg value.");
}
}
}
std::shared_ptr<Channel> channel_;
std::unique_ptr<StubType> stub_;
};
std::vector<ClientChannelInfo> channels_;
std::function<std::unique_ptr<StubType>(const std::shared_ptr<Channel>&)>
create_stub_;
};
std::unique_ptr<Client> CreateSynchronousClient(const ClientConfig& args);
std::unique_ptr<Client> CreateAsyncClient(const ClientConfig& args);
std::unique_ptr<Client> CreateGenericAsyncStreamingClient(
const ClientConfig& args);
} // namespace testing
} // namespace grpc
#endif