mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
478 lines
15 KiB
478 lines
15 KiB
// |
|
// |
|
// Copyright 2015 gRPC authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// |
|
|
|
// Test of gpr synchronization support. |
|
|
|
#include <grpc/support/alloc.h> |
|
#include <grpc/support/sync.h> |
|
#include <grpc/support/time.h> |
|
#include <stdint.h> |
|
#include <stdio.h> |
|
|
|
#include <memory> |
|
|
|
#include "gtest/gtest.h" |
|
#include "src/core/util/thd.h" |
|
#include "test/core/test_util/test_config.h" |
|
|
|
// ==================Example use of interface=================== |
|
|
|
// A producer-consumer queue of up to N integers, |
|
// illustrating the use of the calls in this interface. |
|
|
|
#define N 4 |
|
|
|
typedef struct queue { |
|
gpr_cv non_empty; // Signalled when length becomes non-zero. |
|
gpr_cv non_full; // Signalled when length becomes non-N. |
|
gpr_mu mu; // Protects all fields below. |
|
// (That is, except during initialization or |
|
// destruction, the fields below should be accessed |
|
// only by a thread that holds mu.) |
|
int head; // Index of head of queue 0..N-1. |
|
int length; // Number of valid elements in queue 0..N. |
|
int elem[N]; // elem[head .. head+length-1] are queue elements. |
|
} queue; |
|
|
|
// Initialize *q. |
|
void queue_init(queue* q) { |
|
gpr_mu_init(&q->mu); |
|
gpr_cv_init(&q->non_empty); |
|
gpr_cv_init(&q->non_full); |
|
q->head = 0; |
|
q->length = 0; |
|
} |
|
|
|
// Free storage associated with *q. |
|
void queue_destroy(queue* q) { |
|
gpr_mu_destroy(&q->mu); |
|
gpr_cv_destroy(&q->non_empty); |
|
gpr_cv_destroy(&q->non_full); |
|
} |
|
|
|
// Wait until there is room in *q, then append x to *q. |
|
void queue_append(queue* q, int x) { |
|
gpr_mu_lock(&q->mu); |
|
// To wait for a predicate without a deadline, loop on the negation of the |
|
// predicate, and use gpr_cv_wait(..., gpr_inf_future(GPR_CLOCK_REALTIME)) |
|
// inside the loop |
|
// to release the lock, wait, and reacquire on each iteration. Code that |
|
// makes the condition true should use gpr_cv_broadcast() on the |
|
// corresponding condition variable. The predicate must be on state |
|
// protected by the lock. |
|
while (q->length == N) { |
|
gpr_cv_wait(&q->non_full, &q->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC)); |
|
} |
|
if (q->length == 0) { // Wake threads blocked in queue_remove(). |
|
// It's normal to use gpr_cv_broadcast() or gpr_signal() while |
|
// holding the lock. |
|
gpr_cv_broadcast(&q->non_empty); |
|
} |
|
q->elem[(q->head + q->length) % N] = x; |
|
q->length++; |
|
gpr_mu_unlock(&q->mu); |
|
} |
|
|
|
// If it can be done without blocking, append x to *q and return non-zero. |
|
// Otherwise return 0. |
|
int queue_try_append(queue* q, int x) { |
|
int result = 0; |
|
if (gpr_mu_trylock(&q->mu)) { |
|
if (q->length != N) { |
|
if (q->length == 0) { // Wake threads blocked in queue_remove(). |
|
gpr_cv_broadcast(&q->non_empty); |
|
} |
|
q->elem[(q->head + q->length) % N] = x; |
|
q->length++; |
|
result = 1; |
|
} |
|
gpr_mu_unlock(&q->mu); |
|
} |
|
return result; |
|
} |
|
|
|
// Wait until the *q is non-empty or deadline abs_deadline passes. If the |
|
// queue is non-empty, remove its head entry, place it in *head, and return |
|
// non-zero. Otherwise return 0. |
|
int queue_remove(queue* q, int* head, gpr_timespec abs_deadline) { |
|
int result = 0; |
|
gpr_mu_lock(&q->mu); |
|
// To wait for a predicate with a deadline, loop on the negation of the |
|
// predicate or until gpr_cv_wait() returns true. Code that makes |
|
// the condition true should use gpr_cv_broadcast() on the corresponding |
|
// condition variable. The predicate must be on state protected by the |
|
// lock. |
|
while (q->length == 0 && !gpr_cv_wait(&q->non_empty, &q->mu, abs_deadline)) { |
|
} |
|
if (q->length != 0) { // Queue is non-empty. |
|
result = 1; |
|
if (q->length == N) { // Wake threads blocked in queue_append(). |
|
gpr_cv_broadcast(&q->non_full); |
|
} |
|
*head = q->elem[q->head]; |
|
q->head = (q->head + 1) % N; |
|
q->length--; |
|
} // else deadline exceeded |
|
gpr_mu_unlock(&q->mu); |
|
return result; |
|
} |
|
|
|
// ------------------------------------------------- |
|
// Tests for gpr_mu and gpr_cv, and the queue example. |
|
struct test { |
|
int nthreads; // number of threads |
|
grpc_core::Thread* threads; |
|
|
|
int64_t iterations; // number of iterations per thread |
|
int64_t counter; |
|
int thread_count; // used to allocate thread ids |
|
int done; // threads not yet completed |
|
int incr_step; // how much to increment/decrement refcount each time |
|
|
|
gpr_mu mu; // protects iterations, counter, thread_count, done |
|
|
|
gpr_cv cv; // signalling depends on test |
|
|
|
gpr_cv done_cv; // signalled when done == 0 |
|
|
|
queue q; |
|
|
|
gpr_stats_counter stats_counter; |
|
|
|
gpr_refcount refcount; |
|
gpr_refcount thread_refcount; |
|
gpr_event event; |
|
}; |
|
|
|
// Return pointer to a new struct test. |
|
static struct test* test_new(int nthreads, int64_t iterations, int incr_step) { |
|
struct test* m = static_cast<struct test*>(gpr_malloc(sizeof(*m))); |
|
m->nthreads = nthreads; |
|
m->threads = static_cast<grpc_core::Thread*>( |
|
gpr_malloc(sizeof(*m->threads) * nthreads)); |
|
m->iterations = iterations; |
|
m->counter = 0; |
|
m->thread_count = 0; |
|
m->done = nthreads; |
|
m->incr_step = incr_step; |
|
gpr_mu_init(&m->mu); |
|
gpr_cv_init(&m->cv); |
|
gpr_cv_init(&m->done_cv); |
|
queue_init(&m->q); |
|
gpr_stats_init(&m->stats_counter, 0); |
|
gpr_ref_init(&m->refcount, 0); |
|
gpr_ref_init(&m->thread_refcount, nthreads); |
|
gpr_event_init(&m->event); |
|
return m; |
|
} |
|
|
|
// Return pointer to a new struct test. |
|
static void test_destroy(struct test* m) { |
|
gpr_mu_destroy(&m->mu); |
|
gpr_cv_destroy(&m->cv); |
|
gpr_cv_destroy(&m->done_cv); |
|
queue_destroy(&m->q); |
|
gpr_free(m->threads); |
|
gpr_free(m); |
|
} |
|
|
|
// Create m->nthreads threads, each running (*body)(m) |
|
static void test_create_threads(struct test* m, void (*body)(void* arg)) { |
|
int i; |
|
for (i = 0; i != m->nthreads; i++) { |
|
m->threads[i] = grpc_core::Thread("grpc_create_threads", body, m); |
|
m->threads[i].Start(); |
|
} |
|
} |
|
|
|
// Wait until all threads report done. |
|
static void test_wait(struct test* m) { |
|
gpr_mu_lock(&m->mu); |
|
while (m->done != 0) { |
|
gpr_cv_wait(&m->done_cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC)); |
|
} |
|
gpr_mu_unlock(&m->mu); |
|
for (int i = 0; i != m->nthreads; i++) { |
|
m->threads[i].Join(); |
|
} |
|
} |
|
|
|
// Get an integer thread id in the raneg 0..nthreads-1 |
|
static int thread_id(struct test* m) { |
|
int id; |
|
gpr_mu_lock(&m->mu); |
|
id = m->thread_count++; |
|
gpr_mu_unlock(&m->mu); |
|
return id; |
|
} |
|
|
|
// Indicate that a thread is done, by decrementing m->done |
|
// and signalling done_cv if m->done==0. |
|
static void mark_thread_done(struct test* m) { |
|
gpr_mu_lock(&m->mu); |
|
ASSERT_NE(m->done, 0); |
|
m->done--; |
|
if (m->done == 0) { |
|
gpr_cv_signal(&m->done_cv); |
|
} |
|
gpr_mu_unlock(&m->mu); |
|
} |
|
|
|
// Test several threads running (*body)(struct test *m) for increasing settings |
|
// of m->iterations, until about timeout_s to 2*timeout_s seconds have elapsed. |
|
// If extra!=NULL, run (*extra)(m) in an additional thread. |
|
// incr_step controls by how much m->refcount should be incremented/decremented |
|
// (if at all) each time in the tests. |
|
// |
|
static void test(const char* name, void (*body)(void* m), |
|
void (*extra)(void* m), int timeout_s, int incr_step) { |
|
int64_t iterations = 8; |
|
struct test* m; |
|
gpr_timespec start = gpr_now(GPR_CLOCK_REALTIME); |
|
gpr_timespec time_taken; |
|
gpr_timespec deadline = gpr_time_add( |
|
start, gpr_time_from_micros(static_cast<int64_t>(timeout_s) * 1000000, |
|
GPR_TIMESPAN)); |
|
fprintf(stderr, "%s:", name); |
|
fflush(stderr); |
|
while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0) { |
|
fprintf(stderr, " %ld", static_cast<long>(iterations)); |
|
fflush(stderr); |
|
m = test_new(10, iterations, incr_step); |
|
grpc_core::Thread extra_thd; |
|
if (extra != nullptr) { |
|
extra_thd = grpc_core::Thread(name, extra, m); |
|
extra_thd.Start(); |
|
m->done++; // one more thread to wait for |
|
} |
|
test_create_threads(m, body); |
|
test_wait(m); |
|
if (extra != nullptr) { |
|
extra_thd.Join(); |
|
} |
|
if (m->counter != m->nthreads * m->iterations * m->incr_step) { |
|
fprintf(stderr, "counter %ld threads %d iterations %ld\n", |
|
static_cast<long>(m->counter), m->nthreads, |
|
static_cast<long>(m->iterations)); |
|
fflush(stderr); |
|
ASSERT_TRUE(0); |
|
} |
|
test_destroy(m); |
|
iterations <<= 1; |
|
} |
|
time_taken = gpr_time_sub(gpr_now(GPR_CLOCK_REALTIME), start); |
|
fprintf(stderr, " done %lld.%09d s\n", |
|
static_cast<long long>(time_taken.tv_sec), |
|
static_cast<int>(time_taken.tv_nsec)); |
|
fflush(stderr); |
|
} |
|
|
|
// Increment m->counter on each iteration; then mark thread as done. |
|
static void inc(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
for (i = 0; i != m->iterations; i++) { |
|
gpr_mu_lock(&m->mu); |
|
m->counter++; |
|
gpr_mu_unlock(&m->mu); |
|
} |
|
mark_thread_done(m); |
|
} |
|
|
|
// Increment m->counter under lock acquired with trylock, m->iterations times; |
|
// then mark thread as done. |
|
static void inctry(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
for (i = 0; i != m->iterations;) { |
|
if (gpr_mu_trylock(&m->mu)) { |
|
m->counter++; |
|
gpr_mu_unlock(&m->mu); |
|
i++; |
|
} |
|
} |
|
mark_thread_done(m); |
|
} |
|
|
|
// Increment counter only when (m->counter%m->nthreads)==m->thread_id; then mark |
|
// thread as done. |
|
static void inc_by_turns(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
int id = thread_id(m); |
|
for (i = 0; i != m->iterations; i++) { |
|
gpr_mu_lock(&m->mu); |
|
while ((m->counter % m->nthreads) != id) { |
|
gpr_cv_wait(&m->cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC)); |
|
} |
|
m->counter++; |
|
gpr_cv_broadcast(&m->cv); |
|
gpr_mu_unlock(&m->mu); |
|
} |
|
mark_thread_done(m); |
|
} |
|
|
|
// Wait a millisecond and increment counter on each iteration; |
|
// then mark thread as done. |
|
static void inc_with_1ms_delay(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
for (i = 0; i != m->iterations; i++) { |
|
gpr_timespec deadline; |
|
gpr_mu_lock(&m->mu); |
|
deadline = gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC), |
|
gpr_time_from_micros(1000, GPR_TIMESPAN)); |
|
while (!gpr_cv_wait(&m->cv, &m->mu, deadline)) { |
|
} |
|
m->counter++; |
|
gpr_mu_unlock(&m->mu); |
|
} |
|
mark_thread_done(m); |
|
} |
|
|
|
// Wait a millisecond and increment counter on each iteration, using an event |
|
// for timing; then mark thread as done. |
|
static void inc_with_1ms_delay_event(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
for (i = 0; i != m->iterations; i++) { |
|
gpr_timespec deadline; |
|
deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), |
|
gpr_time_from_micros(1000, GPR_TIMESPAN)); |
|
ASSERT_EQ(gpr_event_wait(&m->event, deadline), nullptr); |
|
gpr_mu_lock(&m->mu); |
|
m->counter++; |
|
gpr_mu_unlock(&m->mu); |
|
} |
|
mark_thread_done(m); |
|
} |
|
|
|
// Produce m->iterations elements on queue m->q, then mark thread as done. |
|
// Even threads use queue_append(), and odd threads use queue_try_append() |
|
// until it succeeds. |
|
static void many_producers(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
int x = thread_id(m); |
|
if ((x & 1) == 0) { |
|
for (i = 0; i != m->iterations; i++) { |
|
queue_append(&m->q, 1); |
|
} |
|
} else { |
|
for (i = 0; i != m->iterations; i++) { |
|
while (!queue_try_append(&m->q, 1)) { |
|
} |
|
} |
|
} |
|
mark_thread_done(m); |
|
} |
|
|
|
// Consume elements from m->q until m->nthreads*m->iterations are seen, |
|
// wait an extra second to confirm that no more elements are arriving, |
|
// then mark thread as done. |
|
static void consumer(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t n = m->iterations * m->nthreads; |
|
int64_t i; |
|
int value; |
|
for (i = 0; i != n; i++) { |
|
queue_remove(&m->q, &value, gpr_inf_future(GPR_CLOCK_MONOTONIC)); |
|
} |
|
gpr_mu_lock(&m->mu); |
|
m->counter = n; |
|
gpr_mu_unlock(&m->mu); |
|
ASSERT_TRUE( |
|
!queue_remove(&m->q, &value, |
|
gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC), |
|
gpr_time_from_micros(1000000, GPR_TIMESPAN)))); |
|
mark_thread_done(m); |
|
} |
|
|
|
// Increment m->stats_counter m->iterations times, transfer counter value to |
|
// m->counter, then mark thread as done. |
|
static void statsinc(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
for (i = 0; i != m->iterations; i++) { |
|
gpr_stats_inc(&m->stats_counter, 1); |
|
} |
|
gpr_mu_lock(&m->mu); |
|
m->counter = gpr_stats_read(&m->stats_counter); |
|
gpr_mu_unlock(&m->mu); |
|
mark_thread_done(m); |
|
} |
|
|
|
// Increment m->refcount by m->incr_step for m->iterations times. Decrement |
|
// m->thread_refcount once, and if it reaches zero, set m->event to (void*)1; |
|
// then mark thread as done. |
|
static void refinc(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t i; |
|
for (i = 0; i != m->iterations; i++) { |
|
if (m->incr_step == 1) { |
|
gpr_ref(&m->refcount); |
|
} else { |
|
gpr_refn(&m->refcount, m->incr_step); |
|
} |
|
} |
|
if (gpr_unref(&m->thread_refcount)) { |
|
gpr_event_set(&m->event, reinterpret_cast<void*>(1)); |
|
} |
|
mark_thread_done(m); |
|
} |
|
|
|
// Wait until m->event is set to (void *)1, then decrement m->refcount by 1 |
|
// (m->nthreads * m->iterations * m->incr_step) times, and ensure that the last |
|
// decrement caused the counter to reach zero, then mark thread as done. |
|
static void refcheck(void* v /*=m*/) { |
|
struct test* m = static_cast<struct test*>(v); |
|
int64_t n = m->iterations * m->nthreads * m->incr_step; |
|
int64_t i; |
|
ASSERT_EQ(gpr_event_wait(&m->event, gpr_inf_future(GPR_CLOCK_REALTIME)), |
|
(void*)1); |
|
ASSERT_EQ(gpr_event_get(&m->event), (void*)1); |
|
for (i = 1; i != n; i++) { |
|
ASSERT_FALSE(gpr_unref(&m->refcount)); |
|
m->counter++; |
|
} |
|
ASSERT_TRUE(gpr_unref(&m->refcount)); |
|
m->counter++; |
|
mark_thread_done(m); |
|
} |
|
|
|
// ------------------------------------------------- |
|
|
|
TEST(SyncTest, MainTest) { |
|
test("mutex", &inc, nullptr, 1, 1); |
|
test("mutex try", &inctry, nullptr, 1, 1); |
|
test("cv", &inc_by_turns, nullptr, 1, 1); |
|
test("timedcv", &inc_with_1ms_delay, nullptr, 1, 1); |
|
test("queue", &many_producers, &consumer, 10, 1); |
|
test("stats_counter", &statsinc, nullptr, 1, 1); |
|
test("refcount by 1", &refinc, &refcheck, 1, 1); |
|
test("refcount by 3", &refinc, &refcheck, 1, 3); // incr_step of 3 is an |
|
// arbitrary choice. Any |
|
// number > 1 is okay here |
|
test("timedevent", &inc_with_1ms_delay_event, nullptr, 1, 1); |
|
} |
|
|
|
int main(int argc, char** argv) { |
|
grpc::testing::TestEnvironment env(&argc, argv); |
|
::testing::InitGoogleTest(&argc, argv); |
|
return RUN_ALL_TESTS(); |
|
}
|
|
|