mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
9.4 KiB
247 lines
9.4 KiB
#!/usr/bin/env python |
|
# Copyright 2016 gRPC authors. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Uploads performance benchmark result file to bigquery. |
|
|
|
from __future__ import print_function |
|
|
|
import argparse |
|
import calendar |
|
import json |
|
import os |
|
import sys |
|
import time |
|
import uuid |
|
|
|
import massage_qps_stats |
|
|
|
gcp_utils_dir = os.path.abspath( |
|
os.path.join(os.path.dirname(__file__), '../../gcp/utils')) |
|
sys.path.append(gcp_utils_dir) |
|
import big_query_utils |
|
|
|
_PROJECT_ID = 'grpc-testing' |
|
|
|
|
|
def _upload_netperf_latency_csv_to_bigquery(dataset_id, table_id, result_file): |
|
with open(result_file, 'r') as f: |
|
(col1, col2, col3) = f.read().split(',') |
|
latency50 = float(col1.strip()) * 1000 |
|
latency90 = float(col2.strip()) * 1000 |
|
latency99 = float(col3.strip()) * 1000 |
|
|
|
scenario_result = { |
|
'scenario': { |
|
'name': 'netperf_tcp_rr' |
|
}, |
|
'summary': { |
|
'latency50': latency50, |
|
'latency90': latency90, |
|
'latency99': latency99 |
|
} |
|
} |
|
|
|
bq = big_query_utils.create_big_query() |
|
_create_results_table(bq, dataset_id, table_id) |
|
|
|
if not _insert_result( |
|
bq, dataset_id, table_id, scenario_result, flatten=False): |
|
print('Error uploading result to bigquery.') |
|
sys.exit(1) |
|
|
|
|
|
def _upload_scenario_result_to_bigquery(dataset_id, table_id, result_file, |
|
metadata_file): |
|
with open(result_file, 'r') as f: |
|
scenario_result = json.loads(f.read()) |
|
|
|
bq = big_query_utils.create_big_query() |
|
_create_results_table(bq, dataset_id, table_id) |
|
|
|
if not _insert_scenario_result(bq, dataset_id, table_id, scenario_result, |
|
metadata_file): |
|
print('Error uploading result to bigquery.') |
|
sys.exit(1) |
|
|
|
|
|
def _insert_result(bq, dataset_id, table_id, scenario_result, flatten=True): |
|
if flatten: |
|
_flatten_result_inplace(scenario_result) |
|
_populate_metadata_inplace(scenario_result) |
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result) |
|
return big_query_utils.insert_rows(bq, _PROJECT_ID, dataset_id, table_id, |
|
[row]) |
|
|
|
|
|
def _insert_scenario_result(bq, |
|
dataset_id, |
|
table_id, |
|
scenario_result, |
|
test_metadata_file, |
|
flatten=True): |
|
if flatten: |
|
_flatten_result_inplace(scenario_result) |
|
_populate_metadata_from_file(scenario_result, test_metadata_file) |
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result) |
|
return big_query_utils.insert_rows(bq, _PROJECT_ID, dataset_id, table_id, |
|
[row]) |
|
|
|
|
|
def _create_results_table(bq, dataset_id, table_id): |
|
with open(os.path.dirname(__file__) + '/scenario_result_schema.json', |
|
'r') as f: |
|
table_schema = json.loads(f.read()) |
|
desc = 'Results of performance benchmarks.' |
|
return big_query_utils.create_table2(bq, _PROJECT_ID, dataset_id, table_id, |
|
table_schema, desc) |
|
|
|
|
|
def _flatten_result_inplace(scenario_result): |
|
"""Bigquery is not really great for handling deeply nested data |
|
and repeated fields. To maintain values of some fields while keeping |
|
the schema relatively simple, we artificially leave some of the fields |
|
as JSON strings. |
|
""" |
|
scenario_result['scenario']['clientConfig'] = json.dumps( |
|
scenario_result['scenario']['clientConfig']) |
|
scenario_result['scenario']['serverConfig'] = json.dumps( |
|
scenario_result['scenario']['serverConfig']) |
|
scenario_result['latencies'] = json.dumps(scenario_result['latencies']) |
|
scenario_result['serverCpuStats'] = [] |
|
for stats in scenario_result['serverStats']: |
|
scenario_result['serverCpuStats'].append(dict()) |
|
scenario_result['serverCpuStats'][-1]['totalCpuTime'] = stats.pop( |
|
'totalCpuTime', None) |
|
scenario_result['serverCpuStats'][-1]['idleCpuTime'] = stats.pop( |
|
'idleCpuTime', None) |
|
for stats in scenario_result['clientStats']: |
|
stats['latencies'] = json.dumps(stats['latencies']) |
|
stats.pop('requestResults', None) |
|
scenario_result['serverCores'] = json.dumps(scenario_result['serverCores']) |
|
scenario_result['clientSuccess'] = json.dumps( |
|
scenario_result['clientSuccess']) |
|
scenario_result['serverSuccess'] = json.dumps( |
|
scenario_result['serverSuccess']) |
|
scenario_result['requestResults'] = json.dumps( |
|
scenario_result.get('requestResults', [])) |
|
scenario_result['serverCpuUsage'] = scenario_result['summary'].pop( |
|
'serverCpuUsage', None) |
|
scenario_result['summary'].pop('successfulRequestsPerSecond', None) |
|
scenario_result['summary'].pop('failedRequestsPerSecond', None) |
|
massage_qps_stats.massage_qps_stats(scenario_result) |
|
|
|
|
|
def _populate_metadata_inplace(scenario_result): |
|
"""Populates metadata based on environment variables set by Jenkins.""" |
|
# NOTE: Grabbing the Kokoro environment variables will only work if the |
|
# driver is running locally on the same machine where Kokoro has started |
|
# the job. For our setup, this is currently the case, so just assume that. |
|
build_number = os.getenv('KOKORO_BUILD_NUMBER') |
|
build_url = 'https://source.cloud.google.com/results/invocations/%s' % os.getenv( |
|
'KOKORO_BUILD_ID') |
|
job_name = os.getenv('KOKORO_JOB_NAME') |
|
git_commit = os.getenv('KOKORO_GIT_COMMIT') |
|
# actual commit is the actual head of PR that is getting tested |
|
# TODO(jtattermusch): unclear how to obtain on Kokoro |
|
git_actual_commit = os.getenv('ghprbActualCommit') |
|
|
|
utc_timestamp = str(calendar.timegm(time.gmtime())) |
|
metadata = {'created': utc_timestamp} |
|
|
|
if build_number: |
|
metadata['buildNumber'] = build_number |
|
if build_url: |
|
metadata['buildUrl'] = build_url |
|
if job_name: |
|
metadata['jobName'] = job_name |
|
if git_commit: |
|
metadata['gitCommit'] = git_commit |
|
if git_actual_commit: |
|
metadata['gitActualCommit'] = git_actual_commit |
|
|
|
scenario_result['metadata'] = metadata |
|
|
|
|
|
def _populate_metadata_from_file(scenario_result, test_metadata_file): |
|
utc_timestamp = str(calendar.timegm(time.gmtime())) |
|
metadata = {'created': utc_timestamp} |
|
|
|
_annotation_to_bq_metadata_key_map = { |
|
'ci_' + key: key for key in ( |
|
'buildNumber', |
|
'buildUrl', |
|
'jobName', |
|
'gitCommit', |
|
'gitActualCommit', |
|
) |
|
} |
|
|
|
if os.access(test_metadata_file, os.R_OK): |
|
with open(test_metadata_file, 'r') as f: |
|
test_metadata = json.loads(f.read()) |
|
|
|
# eliminate managedFields from metadata set |
|
if 'managedFields' in test_metadata: |
|
del test_metadata['managedFields'] |
|
|
|
annotations = test_metadata.get('annotations', {}) |
|
|
|
# if use kubectl apply ..., kubectl will append current configuration to |
|
# annotation, the field is deleted since it includes a lot of irrelevant |
|
# information |
|
if 'kubectl.kubernetes.io/last-applied-configuration' in annotations: |
|
del annotations['kubectl.kubernetes.io/last-applied-configuration'] |
|
|
|
# dump all metadata as JSON to testMetadata field |
|
scenario_result['testMetadata'] = json.dumps(test_metadata) |
|
for key, value in _annotation_to_bq_metadata_key_map.items(): |
|
if key in annotations: |
|
metadata[value] = annotations[key] |
|
|
|
scenario_result['metadata'] = metadata |
|
|
|
|
|
argp = argparse.ArgumentParser(description='Upload result to big query.') |
|
argp.add_argument('--bq_result_table', |
|
required=True, |
|
default=None, |
|
type=str, |
|
help='Bigquery "dataset.table" to upload results to.') |
|
argp.add_argument('--file_to_upload', |
|
default='scenario_result.json', |
|
type=str, |
|
help='Report file to upload.') |
|
argp.add_argument('--metadata_file_to_upload', |
|
default='metadata.json', |
|
type=str, |
|
help='Metadata file to upload.') |
|
argp.add_argument('--file_format', |
|
choices=['scenario_result', 'netperf_latency_csv'], |
|
default='scenario_result', |
|
help='Format of the file to upload.') |
|
|
|
args = argp.parse_args() |
|
|
|
dataset_id, table_id = args.bq_result_table.split('.', 2) |
|
|
|
if args.file_format == 'netperf_latency_csv': |
|
_upload_netperf_latency_csv_to_bigquery(dataset_id, table_id, |
|
args.file_to_upload) |
|
else: |
|
_upload_scenario_result_to_bigquery(dataset_id, table_id, |
|
args.file_to_upload, |
|
args.metadata_file_to_upload) |
|
print('Successfully uploaded %s and %s to BigQuery.\n' % |
|
(args.file_to_upload, args.metadata_file_to_upload))
|
|
|