The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

314 lines
10 KiB

// Copyright 2022 The gRPC Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <grpc/support/port_platform.h>
#include <cmath>
#include <deque>
#include <sstream>
// ensure assert() is enabled
#undef NDEBUG
#include <cassert>
#include <benchmark/benchmark.h>
#include <grpc/support/log.h>
#include "src/core/lib/event_engine/common_closures.h"
#include "src/core/lib/event_engine/work_queue.h"
#include "src/core/lib/gprpp/crash.h"
#include "test/core/util/test_config.h"
namespace {
using ::grpc_event_engine::experimental::AnyInvocableClosure;
using ::grpc_event_engine::experimental::EventEngine;
using ::grpc_event_engine::experimental::WorkQueue;
grpc_core::Mutex globalMu;
std::vector<WorkQueue*>* globalWorkQueueList;
std::vector<std::deque<EventEngine::Closure*>*>* globalDequeList;
std::vector<grpc_core::Mutex>* globalDequeMutexList;
void GlobalSetup(const benchmark::State& state) {
// called for every test, resets all state
globalWorkQueueList = new std::vector<WorkQueue*>();
globalWorkQueueList->reserve(state.threads());
globalDequeList = new std::vector<std::deque<EventEngine::Closure*>*>();
globalDequeList->reserve(state.threads());
globalDequeMutexList = new std::vector<grpc_core::Mutex>(
std::vector<grpc_core::Mutex>(state.threads()));
}
void GlobalTeardown(const benchmark::State& /* state */) {
// called for every test, resets all state
delete globalWorkQueueList;
delete globalDequeList;
delete globalDequeMutexList;
}
void BM_WorkQueueIntptrPopFront(benchmark::State& state) {
WorkQueue queue;
grpc_event_engine::experimental::AnyInvocableClosure closure([] {});
int element_count = state.range(0);
for (auto _ : state) {
int cnt = 0;
for (int i = 0; i < element_count; i++) queue.Add(&closure);
absl::optional<EventEngine::Closure*> popped;
cnt = 0;
do {
popped = queue.PopFront();
if (popped.has_value()) ++cnt;
} while (cnt < element_count);
}
state.counters["Added"] = element_count * state.iterations();
state.counters["Popped"] = state.counters["Added"];
state.counters["Steal Rate"] =
benchmark::Counter(state.counters["Popped"], benchmark::Counter::kIsRate);
}
BENCHMARK(BM_WorkQueueIntptrPopFront)
->Setup(GlobalSetup)
->Teardown(GlobalTeardown)
->Range(1, 512)
->UseRealTime()
->MeasureProcessCPUTime();
void BM_MultithreadedWorkQueuePopBack(benchmark::State& state) {
if (state.thread_index() == 0) (*globalWorkQueueList)[0] = new WorkQueue();
AnyInvocableClosure closure([] {});
int element_count = state.range(0);
for (auto _ : state) {
int cnt = 0;
auto* queue = (*globalWorkQueueList)[0];
for (int i = 0; i < element_count; i++) queue->Add(&closure);
absl::optional<EventEngine::Closure*> popped;
cnt = 0;
do {
popped = queue->PopBack();
if (popped.has_value()) ++cnt;
} while (cnt < element_count);
}
state.counters["Added"] = element_count * state.iterations();
state.counters["Popped"] = state.counters["Added"];
state.counters["Steal Rate"] =
benchmark::Counter(state.counters["Popped"], benchmark::Counter::kIsRate);
if (state.thread_index() == 0) {
delete (*globalWorkQueueList)[0];
}
}
BENCHMARK(BM_MultithreadedWorkQueuePopBack)
->Setup(GlobalSetup)
->Teardown(GlobalTeardown)
->Range(1, 512)
->UseRealTime()
->MeasureProcessCPUTime()
->Threads(1)
->Threads(4)
->ThreadPerCpu();
void BM_WorkQueueClosureExecution(benchmark::State& state) {
WorkQueue queue;
int element_count = state.range(0);
int run_count = 0;
grpc_event_engine::experimental::AnyInvocableClosure closure(
[&run_count] { ++run_count; });
for (auto _ : state) {
for (int i = 0; i < element_count; i++) queue.Add(&closure);
do {
queue.PopFront()->Run();
} while (run_count < element_count);
run_count = 0;
}
state.counters["Added"] = element_count * state.iterations();
state.counters["Popped"] = state.counters["Added"];
state.counters["Steal Rate"] =
benchmark::Counter(state.counters["Popped"], benchmark::Counter::kIsRate);
}
BENCHMARK(BM_WorkQueueClosureExecution)
->Range(8, 128)
->UseRealTime()
->MeasureProcessCPUTime();
void BM_WorkQueueAnyInvocableExecution(benchmark::State& state) {
WorkQueue queue;
int element_count = state.range(0);
int run_count = 0;
for (auto _ : state) {
for (int i = 0; i < element_count; i++) {
queue.Add([&run_count] { ++run_count; });
}
do {
queue.PopFront()->Run();
} while (run_count < element_count);
run_count = 0;
}
state.counters["Added"] = element_count * state.iterations();
state.counters["Popped"] = state.counters["Added"];
state.counters["Steal Rate"] =
benchmark::Counter(state.counters["Popped"], benchmark::Counter::kIsRate);
}
BENCHMARK(BM_WorkQueueAnyInvocableExecution)
->Range(8, 128)
->UseRealTime()
->MeasureProcessCPUTime();
void BM_StdDequeLIFO(benchmark::State& state) {
if (state.thread_index() == 0) {
(*globalDequeList)[0] = new std::deque<EventEngine::Closure*>();
}
auto& mu = (*globalDequeMutexList)[0];
int element_count = state.range(0);
AnyInvocableClosure closure([] {});
for (auto _ : state) {
auto* queue = (*globalDequeList)[0];
for (int i = 0; i < element_count; i++) {
grpc_core::MutexLock lock(&mu);
queue->emplace_back(&closure);
}
for (int i = 0; i < element_count; i++) {
grpc_core::MutexLock lock(&mu);
EventEngine::Closure* popped = queue->back();
queue->pop_back();
assert(popped != nullptr);
}
}
state.counters["Added"] = element_count * state.iterations();
state.counters["Popped"] = state.counters["Added"];
state.counters["Steal Rate"] =
benchmark::Counter(state.counters["Popped"], benchmark::Counter::kIsRate);
if (state.thread_index() == 0) {
delete (*globalDequeList)[0];
}
}
BENCHMARK(BM_StdDequeLIFO)
->Setup(GlobalSetup)
->Teardown(GlobalTeardown)
->Range(1, 512)
->UseRealTime()
->MeasureProcessCPUTime()
->Threads(1)
->Threads(4)
->ThreadPerCpu();
void PerThreadArguments(benchmark::internal::Benchmark* b) {
b->Setup(GlobalSetup)
->Teardown(GlobalTeardown)
->ArgsProduct({/*pop_attempts=*/{10, 50, 250},
/*pct_fill=*/{2, 10, 50}})
->UseRealTime()
->MeasureProcessCPUTime()
->Threads(10)
->ThreadPerCpu();
}
void BM_WorkQueuePerThread(benchmark::State& state) {
WorkQueue local_queue;
{
grpc_core::MutexLock lock(&globalMu);
(*globalWorkQueueList)[state.thread_index()] = &local_queue;
}
AnyInvocableClosure closure([] {});
int element_count = state.range(0);
float pct_fill = state.range(1) / 100.0;
for (auto _ : state) {
// sparsely populate a queue
for (int i = 0; i < std::ceil(element_count * pct_fill); i++) {
local_queue.Add(&closure);
}
// attempt to pop from all thread queues `element_count` times
int pop_attempts = 0;
auto iq = globalWorkQueueList->begin();
while (pop_attempts++ < element_count) {
// may not get a value if the queue being looked at from another thread
(*iq)->PopBack();
if (iq == globalWorkQueueList->end()) {
iq = globalWorkQueueList->begin();
} else {
iq++;
};
}
}
state.counters["Added"] =
std::ceil(element_count * pct_fill) * state.iterations();
state.counters["Steal Attempts"] = element_count * state.iterations();
state.counters["Steal Rate"] = benchmark::Counter(
state.counters["Steal Attempts"], benchmark::Counter::kIsRate);
if (state.thread_index() == 0) {
for (auto* queue : *globalWorkQueueList) {
assert(queue->Empty());
}
}
}
BENCHMARK(BM_WorkQueuePerThread)->Apply(PerThreadArguments);
void BM_StdDequePerThread(benchmark::State& state) {
std::deque<EventEngine::Closure*> local_queue;
(*globalDequeList)[state.thread_index()] = &local_queue;
int element_count = state.range(0);
float pct_fill = state.range(1) / 100.0;
AnyInvocableClosure closure([] {});
auto& local_mu = (*globalDequeMutexList)[state.thread_index()];
for (auto _ : state) {
// sparsely populate a queue
for (int i = 0; i < std::ceil(element_count * pct_fill); i++) {
grpc_core::MutexLock lock(&local_mu);
local_queue.emplace_back(&closure);
}
int pop_attempts = 0;
auto iq = globalDequeList->begin();
auto mu = globalDequeMutexList->begin();
while (pop_attempts++ < element_count) {
{
grpc_core::MutexLock lock(&*mu);
if (!(*iq)->empty()) {
assert((*iq)->back() != nullptr);
(*iq)->pop_back();
}
}
if (iq == globalDequeList->end()) {
iq = globalDequeList->begin();
mu = globalDequeMutexList->begin();
} else {
++iq;
++mu;
};
}
}
state.counters["Added"] =
std::ceil(element_count * pct_fill) * state.iterations();
state.counters["Steal Attempts"] = element_count * state.iterations();
state.counters["Steal Rate"] = benchmark::Counter(
state.counters["Steal Attempts"], benchmark::Counter::kIsRate);
if (state.thread_index() == 0) {
for (auto* queue : *globalDequeList) {
assert(queue->empty());
}
}
}
BENCHMARK(BM_StdDequePerThread)->Apply(PerThreadArguments);
} // namespace
// Some distros have RunSpecifiedBenchmarks under the benchmark namespace,
// and others do not. This allows us to support both modes.
namespace benchmark {
void RunTheBenchmarksNamespaced() { RunSpecifiedBenchmarks(); }
} // namespace benchmark
int main(int argc, char** argv) {
grpc::testing::TestEnvironment env(&argc, argv);
::benchmark::Initialize(&argc, argv);
benchmark::RunTheBenchmarksNamespaced();
return 0;
}