The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

228 lines
8.3 KiB

#ifdef __aarch64__
#include <stdio.h>
#include <stdint.h>
#include <arm_neon.h>
int utf8_naive(const unsigned char *data, int len);
#if 0
static void print128(const char *s, const uint8x16_t v128)
{
unsigned char v8[16];
vst1q_u8(v8, v128);
if (s)
printf("%s:\t", s);
for (int i = 0; i < 16; ++i)
printf("%02x ", v8[i]);
printf("\n");
}
#endif
/*
* Map high nibble of "First Byte" to legal character length minus 1
* 0x00 ~ 0xBF --> 0
* 0xC0 ~ 0xDF --> 1
* 0xE0 ~ 0xEF --> 2
* 0xF0 ~ 0xFF --> 3
*/
static const uint8_t _first_len_tbl[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3,
};
/* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
static const uint8_t _first_range_tbl[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8,
};
/*
* Range table, map range index to min and max values
* Index 0 : 00 ~ 7F (First Byte, ascii)
* Index 1,2,3: 80 ~ BF (Second, Third, Fourth Byte)
* Index 4 : A0 ~ BF (Second Byte after E0)
* Index 5 : 80 ~ 9F (Second Byte after ED)
* Index 6 : 90 ~ BF (Second Byte after F0)
* Index 7 : 80 ~ 8F (Second Byte after F4)
* Index 8 : C2 ~ F4 (First Byte, non ascii)
* Index 9~15 : illegal: u >= 255 && u <= 0
*/
static const uint8_t _range_min_tbl[] = {
0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80,
0xC2, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
};
static const uint8_t _range_max_tbl[] = {
0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F,
0xF4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/*
* This table is for fast handling four special First Bytes(E0,ED,F0,F4), after
* which the Second Byte are not 80~BF. It contains "range index adjustment".
* - The idea is to minus byte with E0, use the result(0~31) as the index to
* lookup the "range index adjustment". Then add the adjustment to original
* range index to get the correct range.
* - Range index adjustment
* +------------+---------------+------------------+----------------+
* | First Byte | original range| range adjustment | adjusted range |
* +------------+---------------+------------------+----------------+
* | E0 | 2 | 2 | 4 |
* +------------+---------------+------------------+----------------+
* | ED | 2 | 3 | 5 |
* +------------+---------------+------------------+----------------+
* | F0 | 3 | 3 | 6 |
* +------------+---------------+------------------+----------------+
* | F4 | 4 | 4 | 8 |
* +------------+---------------+------------------+----------------+
* - Below is a uint8x16x2 table, data is interleaved in NEON register. So I'm
* putting it vertically. 1st column is for E0~EF, 2nd column for F0~FF.
*/
static const uint8_t _range_adjust_tbl[] = {
/* index -> 0~15 16~31 <- index */
/* E0 -> */ 2, 3, /* <- F0 */
0, 0,
0, 0,
0, 0,
0, 4, /* <- F4 */
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
/* ED -> */ 3, 0,
0, 0,
0, 0,
};
/* 2x ~ 4x faster than naive method */
/* Return 0 on success, -1 on error */
int utf8_range(const unsigned char *data, int len)
{
if (len >= 16) {
uint8x16_t prev_input = vdupq_n_u8(0);
uint8x16_t prev_first_len = vdupq_n_u8(0);
/* Cached tables */
const uint8x16_t first_len_tbl = vld1q_u8(_first_len_tbl);
const uint8x16_t first_range_tbl = vld1q_u8(_first_range_tbl);
const uint8x16_t range_min_tbl = vld1q_u8(_range_min_tbl);
const uint8x16_t range_max_tbl = vld1q_u8(_range_max_tbl);
const uint8x16x2_t range_adjust_tbl = vld2q_u8(_range_adjust_tbl);
/* Cached values */
const uint8x16_t const_1 = vdupq_n_u8(1);
const uint8x16_t const_2 = vdupq_n_u8(2);
const uint8x16_t const_e0 = vdupq_n_u8(0xE0);
/* We use two error registers to remove a dependency. */
uint8x16_t error1 = vdupq_n_u8(0);
uint8x16_t error2 = vdupq_n_u8(0);
while (len >= 16) {
const uint8x16_t input = vld1q_u8(data);
/* high_nibbles = input >> 4 */
const uint8x16_t high_nibbles = vshrq_n_u8(input, 4);
/* first_len = legal character length minus 1 */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* first_len = first_len_tbl[high_nibbles] */
const uint8x16_t first_len =
vqtbl1q_u8(first_len_tbl, high_nibbles);
/* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
/* range = first_range_tbl[high_nibbles] */
uint8x16_t range = vqtbl1q_u8(first_range_tbl, high_nibbles);
/* Second Byte: set range index to first_len */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* range |= (first_len, prev_first_len) << 1 byte */
range =
vorrq_u8(range, vextq_u8(prev_first_len, first_len, 15));
/* Third Byte: set range index to saturate_sub(first_len, 1) */
/* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
uint8x16_t tmp1, tmp2;
/* tmp1 = (first_len, prev_first_len) << 2 bytes */
tmp1 = vextq_u8(prev_first_len, first_len, 14);
/* tmp1 = saturate_sub(tmp1, 1) */
tmp1 = vqsubq_u8(tmp1, const_1);
/* range |= tmp1 */
range = vorrq_u8(range, tmp1);
/* Fourth Byte: set range index to saturate_sub(first_len, 2) */
/* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
/* tmp2 = (first_len, prev_first_len) << 3 bytes */
tmp2 = vextq_u8(prev_first_len, first_len, 13);
/* tmp2 = saturate_sub(tmp2, 2) */
tmp2 = vqsubq_u8(tmp2, const_2);
/* range |= tmp2 */
range = vorrq_u8(range, tmp2);
/*
* Now we have below range indices caluclated
* Correct cases:
* - 8 for C0~FF
* - 3 for 1st byte after F0~FF
* - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
* - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
* 3rd byte after F0~FF
* - 0 for others
* Error cases:
* 9,10,11 if non ascii First Byte overlaps
* E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
*/
/* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
/* See _range_adjust_tbl[] definition for details */
/* Overlaps lead to index 9~15, which are illegal in range table */
uint8x16_t shift1 = vextq_u8(prev_input, input, 15);
uint8x16_t pos = vsubq_u8(shift1, const_e0);
range = vaddq_u8(range, vqtbl2q_u8(range_adjust_tbl, pos));
/* Load min and max values per calculated range index */
uint8x16_t minv = vqtbl1q_u8(range_min_tbl, range);
uint8x16_t maxv = vqtbl1q_u8(range_max_tbl, range);
/* Check value range */
error1 = vorrq_u8(error1, vcltq_u8(input, minv));
error2 = vorrq_u8(error2, vcgtq_u8(input, maxv));
prev_input = input;
prev_first_len = first_len;
data += 16;
len -= 16;
}
/* Merge our error counters together */
error1 = vorrq_u8(error1, error2);
/* Delay error check till loop ends */
if (vmaxvq_u8(error1))
return -1;
/* Find previous token (not 80~BF) */
uint32_t token4;
vst1q_lane_u32(&token4, vreinterpretq_u32_u8(prev_input), 3);
const int8_t *token = (const int8_t *)&token4;
int lookahead = 0;
if (token[3] > (int8_t)0xBF)
lookahead = 1;
else if (token[2] > (int8_t)0xBF)
lookahead = 2;
else if (token[1] > (int8_t)0xBF)
lookahead = 3;
data -= lookahead;
len += lookahead;
}
/* Check remaining bytes with naive method */
return utf8_naive(data, len);
}
#endif