The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1491 lines
58 KiB

/*
*
* Copyright 2016 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <algorithm>
#include <memory>
#include <mutex>
#include <random>
#include <set>
#include <thread>
#include <grpc/grpc.h>
#include <grpc/support/alloc.h>
#include <grpc/support/atm.h>
#include <grpc/support/log.h>
#include <grpc/support/string_util.h>
#include <grpc/support/time.h>
#include <grpcpp/channel.h>
#include <grpcpp/client_context.h>
#include <grpcpp/create_channel.h>
#include <grpcpp/health_check_service_interface.h>
#include <grpcpp/impl/codegen/sync.h>
#include <grpcpp/server.h>
#include <grpcpp/server_builder.h>
#include "src/core/ext/filters/client_channel/backup_poller.h"
#include "src/core/ext/filters/client_channel/global_subchannel_pool.h"
#include "src/core/ext/filters/client_channel/parse_address.h"
#include "src/core/ext/filters/client_channel/resolver/fake/fake_resolver.h"
#include "src/core/ext/filters/client_channel/server_address.h"
#include "src/core/lib/backoff/backoff.h"
#include "src/core/lib/channel/channel_args.h"
#include "src/core/lib/gprpp/debug_location.h"
#include "src/core/lib/gprpp/ref_counted_ptr.h"
#include "src/core/lib/iomgr/tcp_client.h"
#include "src/core/lib/security/credentials/fake/fake_credentials.h"
#include "src/cpp/client/secure_credentials.h"
#include "src/cpp/server/secure_server_credentials.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
#include "test/core/util/port.h"
#include "test/core/util/test_config.h"
#include "test/core/util/test_lb_policies.h"
#include "test/cpp/end2end/test_service_impl.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
using grpc::testing::EchoRequest;
using grpc::testing::EchoResponse;
using std::chrono::system_clock;
// defined in tcp_client.cc
extern grpc_tcp_client_vtable* grpc_tcp_client_impl;
static grpc_tcp_client_vtable* default_client_impl;
namespace grpc {
namespace testing {
namespace {
gpr_atm g_connection_delay_ms;
void tcp_client_connect_with_delay(grpc_closure* closure, grpc_endpoint** ep,
grpc_pollset_set* interested_parties,
const grpc_channel_args* channel_args,
const grpc_resolved_address* addr,
grpc_millis deadline) {
const int delay_ms = gpr_atm_acq_load(&g_connection_delay_ms);
if (delay_ms > 0) {
gpr_sleep_until(grpc_timeout_milliseconds_to_deadline(delay_ms));
}
default_client_impl->connect(closure, ep, interested_parties, channel_args,
addr, deadline + delay_ms);
}
grpc_tcp_client_vtable delayed_connect = {tcp_client_connect_with_delay};
// Subclass of TestServiceImpl that increments a request counter for
// every call to the Echo RPC.
class MyTestServiceImpl : public TestServiceImpl {
public:
MyTestServiceImpl() : request_count_(0) {}
Status Echo(ServerContext* context, const EchoRequest* request,
EchoResponse* response) override {
{
grpc::internal::MutexLock lock(&mu_);
++request_count_;
}
AddClient(context->peer());
return TestServiceImpl::Echo(context, request, response);
}
int request_count() {
grpc::internal::MutexLock lock(&mu_);
return request_count_;
}
void ResetCounters() {
grpc::internal::MutexLock lock(&mu_);
request_count_ = 0;
}
std::set<grpc::string> clients() {
grpc::internal::MutexLock lock(&clients_mu_);
return clients_;
}
private:
void AddClient(const grpc::string& client) {
grpc::internal::MutexLock lock(&clients_mu_);
clients_.insert(client);
}
grpc::internal::Mutex mu_;
int request_count_;
grpc::internal::Mutex clients_mu_;
std::set<grpc::string> clients_;
};
class ClientLbEnd2endTest : public ::testing::Test {
protected:
ClientLbEnd2endTest()
: server_host_("localhost"),
kRequestMessage_("Live long and prosper."),
creds_(new SecureChannelCredentials(
grpc_fake_transport_security_credentials_create())) {}
void SetUp() override {
grpc_init();
response_generator_ =
grpc_core::MakeRefCounted<grpc_core::FakeResolverResponseGenerator>();
}
void TearDown() override {
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
// Explicitly destroy all the members so that we can make sure grpc_shutdown
// has finished by the end of this function, and thus all the registered
// LB policy factories are removed.
stub_.reset();
servers_.clear();
creds_.reset();
grpc_shutdown_blocking();
}
void CreateServers(size_t num_servers,
std::vector<int> ports = std::vector<int>()) {
servers_.clear();
for (size_t i = 0; i < num_servers; ++i) {
int port = 0;
if (ports.size() == num_servers) port = ports[i];
servers_.emplace_back(new ServerData(port));
}
}
void StartServer(size_t index) { servers_[index]->Start(server_host_); }
void StartServers(size_t num_servers,
std::vector<int> ports = std::vector<int>()) {
CreateServers(num_servers, std::move(ports));
for (size_t i = 0; i < num_servers; ++i) {
StartServer(i);
}
}
grpc_core::Resolver::Result BuildFakeResults(const std::vector<int>& ports) {
grpc_core::Resolver::Result result;
for (const int& port : ports) {
char* lb_uri_str;
gpr_asprintf(&lb_uri_str, "ipv4:127.0.0.1:%d", port);
grpc_uri* lb_uri = grpc_uri_parse(lb_uri_str, true);
GPR_ASSERT(lb_uri != nullptr);
grpc_resolved_address address;
GPR_ASSERT(grpc_parse_uri(lb_uri, &address));
result.addresses.emplace_back(address.addr, address.len,
nullptr /* args */);
grpc_uri_destroy(lb_uri);
gpr_free(lb_uri_str);
}
return result;
}
void SetNextResolution(const std::vector<int>& ports) {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetResponse(BuildFakeResults(ports));
}
void SetNextResolutionUponError(const std::vector<int>& ports) {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetReresolutionResponse(BuildFakeResults(ports));
}
void SetFailureOnReresolution() {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetFailureOnReresolution();
}
std::vector<int> GetServersPorts(size_t start_index = 0) {
std::vector<int> ports;
for (size_t i = start_index; i < servers_.size(); ++i) {
ports.push_back(servers_[i]->port_);
}
return ports;
}
std::unique_ptr<grpc::testing::EchoTestService::Stub> BuildStub(
const std::shared_ptr<Channel>& channel) {
return grpc::testing::EchoTestService::NewStub(channel);
}
std::shared_ptr<Channel> BuildChannel(
const grpc::string& lb_policy_name,
ChannelArguments args = ChannelArguments()) {
if (lb_policy_name.size() > 0) {
args.SetLoadBalancingPolicyName(lb_policy_name);
} // else, default to pick first
args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR,
response_generator_.get());
return ::grpc::CreateCustomChannel("fake:///", creds_, args);
}
bool SendRpc(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
EchoResponse* response = nullptr, int timeout_ms = 1000,
Status* result = nullptr, bool wait_for_ready = false) {
const bool local_response = (response == nullptr);
if (local_response) response = new EchoResponse;
EchoRequest request;
request.set_message(kRequestMessage_);
ClientContext context;
context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms));
if (wait_for_ready) context.set_wait_for_ready(true);
Status status = stub->Echo(&context, request, response);
if (result != nullptr) *result = status;
if (local_response) delete response;
return status.ok();
}
void CheckRpcSendOk(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
const grpc_core::DebugLocation& location, bool wait_for_ready = false) {
EchoResponse response;
Status status;
const bool success =
SendRpc(stub, &response, 2000, &status, wait_for_ready);
ASSERT_TRUE(success) << "From " << location.file() << ":" << location.line()
<< "\n"
<< "Error: " << status.error_message() << " "
<< status.error_details();
ASSERT_EQ(response.message(), kRequestMessage_)
<< "From " << location.file() << ":" << location.line();
if (!success) abort();
}
void CheckRpcSendFailure(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub) {
const bool success = SendRpc(stub);
EXPECT_FALSE(success);
}
struct ServerData {
int port_;
std::unique_ptr<Server> server_;
MyTestServiceImpl service_;
std::unique_ptr<std::thread> thread_;
bool server_ready_ = false;
bool started_ = false;
explicit ServerData(int port = 0) {
port_ = port > 0 ? port : grpc_pick_unused_port_or_die();
}
void Start(const grpc::string& server_host) {
gpr_log(GPR_INFO, "starting server on port %d", port_);
started_ = true;
grpc::internal::Mutex mu;
grpc::internal::MutexLock lock(&mu);
grpc::internal::CondVar cond;
thread_.reset(new std::thread(
std::bind(&ServerData::Serve, this, server_host, &mu, &cond)));
cond.WaitUntil(&mu, [this] { return server_ready_; });
server_ready_ = false;
gpr_log(GPR_INFO, "server startup complete");
}
void Serve(const grpc::string& server_host, grpc::internal::Mutex* mu,
grpc::internal::CondVar* cond) {
std::ostringstream server_address;
server_address << server_host << ":" << port_;
ServerBuilder builder;
std::shared_ptr<ServerCredentials> creds(new SecureServerCredentials(
grpc_fake_transport_security_server_credentials_create()));
builder.AddListeningPort(server_address.str(), std::move(creds));
builder.RegisterService(&service_);
server_ = builder.BuildAndStart();
grpc::internal::MutexLock lock(mu);
server_ready_ = true;
cond->Signal();
}
void Shutdown() {
if (!started_) return;
server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0));
thread_->join();
started_ = false;
}
void SetServingStatus(const grpc::string& service, bool serving) {
server_->GetHealthCheckService()->SetServingStatus(service, serving);
}
};
void ResetCounters() {
for (const auto& server : servers_) server->service_.ResetCounters();
}
void WaitForServer(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
size_t server_idx, const grpc_core::DebugLocation& location,
bool ignore_failure = false) {
do {
if (ignore_failure) {
SendRpc(stub);
} else {
CheckRpcSendOk(stub, location, true);
}
} while (servers_[server_idx]->service_.request_count() == 0);
ResetCounters();
}
bool WaitForChannelNotReady(Channel* channel, int timeout_seconds = 5) {
const gpr_timespec deadline =
grpc_timeout_seconds_to_deadline(timeout_seconds);
grpc_connectivity_state state;
while ((state = channel->GetState(false /* try_to_connect */)) ==
GRPC_CHANNEL_READY) {
if (!channel->WaitForStateChange(state, deadline)) return false;
}
return true;
}
bool WaitForChannelReady(Channel* channel, int timeout_seconds = 5) {
const gpr_timespec deadline =
grpc_timeout_seconds_to_deadline(timeout_seconds);
grpc_connectivity_state state;
while ((state = channel->GetState(true /* try_to_connect */)) !=
GRPC_CHANNEL_READY) {
if (!channel->WaitForStateChange(state, deadline)) return false;
}
return true;
}
bool SeenAllServers() {
for (const auto& server : servers_) {
if (server->service_.request_count() == 0) return false;
}
return true;
}
// Updates \a connection_order by appending to it the index of the newly
// connected server. Must be called after every single RPC.
void UpdateConnectionOrder(
const std::vector<std::unique_ptr<ServerData>>& servers,
std::vector<int>* connection_order) {
for (size_t i = 0; i < servers.size(); ++i) {
if (servers[i]->service_.request_count() == 1) {
// Was the server index known? If not, update connection_order.
const auto it =
std::find(connection_order->begin(), connection_order->end(), i);
if (it == connection_order->end()) {
connection_order->push_back(i);
return;
}
}
}
}
const grpc::string server_host_;
std::unique_ptr<grpc::testing::EchoTestService::Stub> stub_;
std::vector<std::unique_ptr<ServerData>> servers_;
grpc_core::RefCountedPtr<grpc_core::FakeResolverResponseGenerator>
response_generator_;
const grpc::string kRequestMessage_;
std::shared_ptr<ChannelCredentials> creds_;
};
TEST_F(ClientLbEnd2endTest, ChannelStateConnectingWhenResolving) {
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("");
auto stub = BuildStub(channel);
// Initial state should be IDLE.
EXPECT_EQ(channel->GetState(false /* try_to_connect */), GRPC_CHANNEL_IDLE);
// Tell the channel to try to connect.
// Note that this call also returns IDLE, since the state change has
// not yet occurred; it just gets triggered by this call.
EXPECT_EQ(channel->GetState(true /* try_to_connect */), GRPC_CHANNEL_IDLE);
// Now that the channel is trying to connect, we should be in state
// CONNECTING.
EXPECT_EQ(channel->GetState(false /* try_to_connect */),
GRPC_CHANNEL_CONNECTING);
// Return a resolver result, which allows the connection attempt to proceed.
SetNextResolution(GetServersPorts());
// We should eventually transition into state READY.
EXPECT_TRUE(WaitForChannelReady(channel.get()));
}
TEST_F(ClientLbEnd2endTest, PickFirst) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel(""); // test that pick first is the default.
auto stub = BuildStub(channel);
SetNextResolution(GetServersPorts());
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// All requests should have gone to a single server.
bool found = false;
for (size_t i = 0; i < servers_.size(); ++i) {
const int request_count = servers_[i]->service_.request_count();
if (request_count == kNumServers) {
found = true;
} else {
EXPECT_EQ(0, request_count);
}
}
EXPECT_TRUE(found);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, PickFirstProcessPending) {
StartServers(1); // Single server
auto channel = BuildChannel(""); // test that pick first is the default.
auto stub = BuildStub(channel);
SetNextResolution({servers_[0]->port_});
WaitForServer(stub, 0, DEBUG_LOCATION);
// Create a new channel and its corresponding PF LB policy, which will pick
// the subchannels in READY state from the previous RPC against the same
// target (even if it happened over a different channel, because subchannels
// are globally reused). Progress should happen without any transition from
// this READY state.
auto second_channel = BuildChannel("");
auto second_stub = BuildStub(second_channel);
SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(second_stub, DEBUG_LOCATION);
}
TEST_F(ClientLbEnd2endTest, PickFirstSelectsReadyAtStartup) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 5000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
// Create 2 servers, but start only the second one.
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
CreateServers(2, ports);
StartServer(1);
auto channel1 = BuildChannel("pick_first", args);
auto stub1 = BuildStub(channel1);
SetNextResolution(ports);
// Wait for second server to be ready.
WaitForServer(stub1, 1, DEBUG_LOCATION);
// Create a second channel with the same addresses. Its PF instance
// should immediately pick the second subchannel, since it's already
// in READY state.
auto channel2 = BuildChannel("pick_first", args);
SetNextResolution(ports);
// Check that the channel reports READY without waiting for the
// initial backoff.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1 /* timeout_seconds */));
}
TEST_F(ClientLbEnd2endTest, PickFirstBackOffInitialReconnect) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 100;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
auto channel = BuildChannel("pick_first", args);
auto stub = BuildStub(channel);
SetNextResolution(ports);
// The channel won't become connected (there's no server).
ASSERT_FALSE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 2)));
// Bring up a server on the chosen port.
StartServers(1, ports);
// Now it will.
ASSERT_TRUE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 2)));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_millis waited_ms = gpr_time_to_millis(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited_ms);
// We should have waited at least kInitialBackOffMs. We substract one to
// account for test and precision accuracy drift.
EXPECT_GE(waited_ms, kInitialBackOffMs - 1);
// But not much more.
EXPECT_GT(
gpr_time_cmp(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 1.10), t1),
0);
}
TEST_F(ClientLbEnd2endTest, PickFirstBackOffMinReconnect) {
ChannelArguments args;
constexpr int kMinReconnectBackOffMs = 1000;
args.SetInt(GRPC_ARG_MIN_RECONNECT_BACKOFF_MS, kMinReconnectBackOffMs);
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
auto channel = BuildChannel("pick_first", args);
auto stub = BuildStub(channel);
SetNextResolution(ports);
// Make connection delay a 10% longer than it's willing to in order to make
// sure we are hitting the codepath that waits for the min reconnect backoff.
gpr_atm_rel_store(&g_connection_delay_ms, kMinReconnectBackOffMs * 1.10);
default_client_impl = grpc_tcp_client_impl;
grpc_set_tcp_client_impl(&delayed_connect);
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kMinReconnectBackOffMs * 2));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_millis waited_ms = gpr_time_to_millis(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " ms", waited_ms);
// We should have waited at least kMinReconnectBackOffMs. We substract one to
// account for test and precision accuracy drift.
EXPECT_GE(waited_ms, kMinReconnectBackOffMs - 1);
gpr_atm_rel_store(&g_connection_delay_ms, 0);
}
TEST_F(ClientLbEnd2endTest, PickFirstResetConnectionBackoff) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 1000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
auto channel = BuildChannel("pick_first", args);
auto stub = BuildStub(channel);
SetNextResolution(ports);
// The channel won't become connected (there's no server).
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Bring up a server on the chosen port.
StartServers(1, ports);
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
// Wait for connect, but not long enough. This proves that we're
// being throttled by initial backoff.
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Reset connection backoff.
experimental::ChannelResetConnectionBackoff(channel.get());
// Wait for connect. Should happen ~immediately.
EXPECT_TRUE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_millis waited_ms = gpr_time_to_millis(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited_ms);
// We should have waited less than kInitialBackOffMs.
EXPECT_LT(waited_ms, kInitialBackOffMs);
}
TEST_F(ClientLbEnd2endTest,
PickFirstResetConnectionBackoffNextAttemptStartsImmediately) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 1000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS, kInitialBackOffMs);
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
auto channel = BuildChannel("pick_first", args);
auto stub = BuildStub(channel);
SetNextResolution(ports);
// Wait for connect, which should fail ~immediately, because the server
// is not up.
gpr_log(GPR_INFO, "=== INITIAL CONNECTION ATTEMPT");
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Reset connection backoff.
// Note that the time at which the third attempt will be started is
// actually computed at this point, so we record the start time here.
gpr_log(GPR_INFO, "=== RESETTING BACKOFF");
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
experimental::ChannelResetConnectionBackoff(channel.get());
// Trigger a second connection attempt. This should also fail
// ~immediately, but the retry should be scheduled for
// kInitialBackOffMs instead of applying the multiplier.
gpr_log(GPR_INFO, "=== POLLING FOR SECOND CONNECTION ATTEMPT");
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Bring up a server on the chosen port.
gpr_log(GPR_INFO, "=== STARTING BACKEND");
StartServers(1, ports);
// Wait for connect. Should happen within kInitialBackOffMs.
// Give an extra 100ms to account for the time spent in the second and
// third connection attempts themselves (since what we really want to
// measure is the time between the two). As long as this is less than
// the 1.6x increase we would see if the backoff state was not reset
// properly, the test is still proving that the backoff was reset.
constexpr int kWaitMs = kInitialBackOffMs + 100;
gpr_log(GPR_INFO, "=== POLLING FOR THIRD CONNECTION ATTEMPT");
EXPECT_TRUE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kWaitMs)));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_millis waited_ms = gpr_time_to_millis(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited_ms);
EXPECT_LT(waited_ms, kWaitMs);
}
TEST_F(ClientLbEnd2endTest, PickFirstUpdates) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("pick_first");
auto stub = BuildStub(channel);
std::vector<int> ports;
// Perform one RPC against the first server.
ports.emplace_back(servers_[0]->port_);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
// An empty update will result in the channel going into TRANSIENT_FAILURE.
ports.clear();
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET none *******");
grpc_connectivity_state channel_state;
do {
channel_state = channel->GetState(true /* try to connect */);
} while (channel_state == GRPC_CHANNEL_READY);
ASSERT_NE(channel_state, GRPC_CHANNEL_READY);
servers_[0]->service_.ResetCounters();
// Next update introduces servers_[1], making the channel recover.
ports.clear();
ports.emplace_back(servers_[1]->port_);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [1] *******");
WaitForServer(stub, 1, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 0);
// And again for servers_[2]
ports.clear();
ports.emplace_back(servers_[2]->port_);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [2] *******");
WaitForServer(stub, 2, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 0);
EXPECT_EQ(servers_[1]->service_.request_count(), 0);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, PickFirstUpdateSuperset) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("pick_first");
auto stub = BuildStub(channel);
std::vector<int> ports;
// Perform one RPC against the first server.
ports.emplace_back(servers_[0]->port_);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
servers_[0]->service_.ResetCounters();
// Send and superset update
ports.clear();
ports.emplace_back(servers_[1]->port_);
ports.emplace_back(servers_[0]->port_);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET superset *******");
CheckRpcSendOk(stub, DEBUG_LOCATION);
// We stick to the previously connected server.
WaitForServer(stub, 0, DEBUG_LOCATION);
EXPECT_EQ(0, servers_[1]->service_.request_count());
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, PickFirstGlobalSubchannelPool) {
// Start one server.
const int kNumServers = 1;
StartServers(kNumServers);
std::vector<int> ports = GetServersPorts();
// Create two channels that (by default) use the global subchannel pool.
auto channel1 = BuildChannel("pick_first");
auto stub1 = BuildStub(channel1);
SetNextResolution(ports);
auto channel2 = BuildChannel("pick_first");
auto stub2 = BuildStub(channel2);
SetNextResolution(ports);
WaitForServer(stub1, 0, DEBUG_LOCATION);
// Send one RPC on each channel.
CheckRpcSendOk(stub1, DEBUG_LOCATION);
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// The server receives two requests.
EXPECT_EQ(2, servers_[0]->service_.request_count());
// The two requests are from the same client port, because the two channels
// share subchannels via the global subchannel pool.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
}
TEST_F(ClientLbEnd2endTest, PickFirstLocalSubchannelPool) {
// Start one server.
const int kNumServers = 1;
StartServers(kNumServers);
std::vector<int> ports = GetServersPorts();
// Create two channels that use local subchannel pool.
ChannelArguments args;
args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, 1);
auto channel1 = BuildChannel("pick_first", args);
auto stub1 = BuildStub(channel1);
SetNextResolution(ports);
auto channel2 = BuildChannel("pick_first", args);
auto stub2 = BuildStub(channel2);
SetNextResolution(ports);
WaitForServer(stub1, 0, DEBUG_LOCATION);
// Send one RPC on each channel.
CheckRpcSendOk(stub1, DEBUG_LOCATION);
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// The server receives two requests.
EXPECT_EQ(2, servers_[0]->service_.request_count());
// The two requests are from two client ports, because the two channels didn't
// share subchannels with each other.
EXPECT_EQ(2UL, servers_[0]->service_.clients().size());
}
TEST_F(ClientLbEnd2endTest, PickFirstManyUpdates) {
const int kNumUpdates = 1000;
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("pick_first");
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
for (size_t i = 0; i < kNumUpdates; ++i) {
std::shuffle(ports.begin(), ports.end(),
std::mt19937(std::random_device()()));
SetNextResolution(ports);
// We should re-enter core at the end of the loop to give the resolution
// setting closure a chance to run.
if ((i + 1) % 10 == 0) CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, PickFirstReresolutionNoSelected) {
// Prepare the ports for up servers and down servers.
const int kNumServers = 3;
const int kNumAliveServers = 1;
StartServers(kNumAliveServers);
std::vector<int> alive_ports, dead_ports;
for (size_t i = 0; i < kNumServers; ++i) {
if (i < kNumAliveServers) {
alive_ports.emplace_back(servers_[i]->port_);
} else {
dead_ports.emplace_back(grpc_pick_unused_port_or_die());
}
}
auto channel = BuildChannel("pick_first");
auto stub = BuildStub(channel);
// The initial resolution only contains dead ports. There won't be any
// selected subchannel. Re-resolution will return the same result.
SetNextResolution(dead_ports);
gpr_log(GPR_INFO, "****** INITIAL RESOLUTION SET *******");
for (size_t i = 0; i < 10; ++i) CheckRpcSendFailure(stub);
// Set a re-resolution result that contains reachable ports, so that the
// pick_first LB policy can recover soon.
SetNextResolutionUponError(alive_ports);
gpr_log(GPR_INFO, "****** RE-RESOLUTION SET *******");
WaitForServer(stub, 0, DEBUG_LOCATION, true /* ignore_failure */);
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, PickFirstReconnectWithoutNewResolverResult) {
std::vector<int> ports = {grpc_pick_unused_port_or_die()};
StartServers(1, ports);
auto channel = BuildChannel("pick_first");
auto stub = BuildStub(channel);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** INITIAL CONNECTION *******");
WaitForServer(stub, 0, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** STOPPING SERVER ******");
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
gpr_log(GPR_INFO, "****** RESTARTING SERVER ******");
StartServers(1, ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
}
TEST_F(ClientLbEnd2endTest,
PickFirstReconnectWithoutNewResolverResultStartsFromTopOfList) {
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
CreateServers(2, ports);
StartServer(1);
auto channel = BuildChannel("pick_first");
auto stub = BuildStub(channel);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** INITIAL CONNECTION *******");
WaitForServer(stub, 1, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** STOPPING SERVER ******");
servers_[1]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
gpr_log(GPR_INFO, "****** STARTING BOTH SERVERS ******");
StartServers(2, ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
}
TEST_F(ClientLbEnd2endTest, PickFirstCheckStateBeforeStartWatch) {
std::vector<int> ports = {grpc_pick_unused_port_or_die()};
StartServers(1, ports);
auto channel_1 = BuildChannel("pick_first");
auto stub_1 = BuildStub(channel_1);
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** RESOLUTION SET FOR CHANNEL 1 *******");
WaitForServer(stub_1, 0, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** CHANNEL 1 CONNECTED *******");
servers_[0]->Shutdown();
// Channel 1 will receive a re-resolution containing the same server. It will
// create a new subchannel and hold a ref to it.
StartServers(1, ports);
gpr_log(GPR_INFO, "****** SERVER RESTARTED *******");
auto channel_2 = BuildChannel("pick_first");
auto stub_2 = BuildStub(channel_2);
// TODO(juanlishen): This resolution result will only be visible to channel 2
// since the response generator is only associated with channel 2 now. We
// should change the response generator to be able to deliver updates to
// multiple channels at once.
SetNextResolution(ports);
gpr_log(GPR_INFO, "****** RESOLUTION SET FOR CHANNEL 2 *******");
WaitForServer(stub_2, 0, DEBUG_LOCATION, true);
gpr_log(GPR_INFO, "****** CHANNEL 2 CONNECTED *******");
servers_[0]->Shutdown();
// Wait until the disconnection has triggered the connectivity notification.
// Otherwise, the subchannel may be picked for next call but will fail soon.
EXPECT_TRUE(WaitForChannelNotReady(channel_2.get()));
// Channel 2 will also receive a re-resolution containing the same server.
// Both channels will ref the same subchannel that failed.
StartServers(1, ports);
gpr_log(GPR_INFO, "****** SERVER RESTARTED AGAIN *******");
gpr_log(GPR_INFO, "****** CHANNEL 2 STARTING A CALL *******");
// The first call after the server restart will succeed.
CheckRpcSendOk(stub_2, DEBUG_LOCATION);
gpr_log(GPR_INFO, "****** CHANNEL 2 FINISHED A CALL *******");
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel_1->GetLoadBalancingPolicyName());
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel_2->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, PickFirstIdleOnDisconnect) {
// Start server, send RPC, and make sure channel is READY.
const int kNumServers = 1;
StartServers(kNumServers);
auto channel = BuildChannel(""); // pick_first is the default.
auto stub = BuildStub(channel);
SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Stop server. Channel should go into state IDLE.
SetFailureOnReresolution();
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
servers_.clear();
}
TEST_F(ClientLbEnd2endTest, PickFirstPendingUpdateAndSelectedSubchannelFails) {
auto channel = BuildChannel(""); // pick_first is the default.
auto stub = BuildStub(channel);
// Create a number of servers, but only start 1 of them.
CreateServers(10);
StartServer(0);
// Initially resolve to first server and make sure it connects.
gpr_log(GPR_INFO, "Phase 1: Connect to first server.");
SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(stub, DEBUG_LOCATION, true /* wait_for_ready */);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Send a resolution update with the remaining servers, none of which are
// running yet, so the update will stay pending. Note that it's important
// to have multiple servers here, or else the test will be flaky; with only
// one server, the pending subchannel list has already gone into
// TRANSIENT_FAILURE due to hitting the end of the list by the time we
// check the state.
gpr_log(GPR_INFO,
"Phase 2: Resolver update pointing to remaining "
"(not started) servers.");
SetNextResolution(GetServersPorts(1 /* start_index */));
// RPCs will continue to be sent to the first server.
CheckRpcSendOk(stub, DEBUG_LOCATION);
// Now stop the first server, so that the current subchannel list
// fails. This should cause us to immediately swap over to the
// pending list, even though it's not yet connected. The state should
// be set to CONNECTING, since that's what the pending subchannel list
// was doing when we swapped over.
gpr_log(GPR_INFO, "Phase 3: Stopping first server.");
servers_[0]->Shutdown();
WaitForChannelNotReady(channel.get());
// TODO(roth): This should always return CONNECTING, but it's flaky
// between that and TRANSIENT_FAILURE. I suspect that this problem
// will go away once we move the backoff code out of the subchannel
// and into the LB policies.
EXPECT_THAT(channel->GetState(false),
::testing::AnyOf(GRPC_CHANNEL_CONNECTING,
GRPC_CHANNEL_TRANSIENT_FAILURE));
// Now start the second server.
gpr_log(GPR_INFO, "Phase 4: Starting second server.");
StartServer(1);
// The channel should go to READY state and RPCs should go to the
// second server.
WaitForChannelReady(channel.get());
WaitForServer(stub, 1, DEBUG_LOCATION, true /* ignore_failure */);
}
TEST_F(ClientLbEnd2endTest, PickFirstStaysIdleUponEmptyUpdate) {
// Start server, send RPC, and make sure channel is READY.
const int kNumServers = 1;
StartServers(kNumServers);
auto channel = BuildChannel(""); // pick_first is the default.
auto stub = BuildStub(channel);
SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Stop server. Channel should go into state IDLE.
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
// Now send resolver update that includes no addresses. Channel
// should stay in state IDLE.
SetNextResolution({});
EXPECT_FALSE(channel->WaitForStateChange(
GRPC_CHANNEL_IDLE, grpc_timeout_seconds_to_deadline(3)));
// Now bring the backend back up and send a non-empty resolver update,
// and then try to send an RPC. Channel should go back into state READY.
StartServer(0);
SetNextResolution(GetServersPorts());
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
}
TEST_F(ClientLbEnd2endTest, RoundRobin) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("round_robin");
auto stub = BuildStub(channel);
SetNextResolution(GetServersPorts());
// Wait until all backends are ready.
do {
CheckRpcSendOk(stub, DEBUG_LOCATION);
} while (!SeenAllServers());
ResetCounters();
// "Sync" to the end of the list. Next sequence of picks will start at the
// first server (index 0).
WaitForServer(stub, servers_.size() - 1, DEBUG_LOCATION);
std::vector<int> connection_order;
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
UpdateConnectionOrder(servers_, &connection_order);
}
// Backends should be iterated over in the order in which the addresses were
// given.
const auto expected = std::vector<int>{0, 1, 2};
EXPECT_EQ(expected, connection_order);
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, RoundRobinProcessPending) {
StartServers(1); // Single server
auto channel = BuildChannel("round_robin");
auto stub = BuildStub(channel);
SetNextResolution({servers_[0]->port_});
WaitForServer(stub, 0, DEBUG_LOCATION);
// Create a new channel and its corresponding RR LB policy, which will pick
// the subchannels in READY state from the previous RPC against the same
// target (even if it happened over a different channel, because subchannels
// are globally reused). Progress should happen without any transition from
// this READY state.
auto second_channel = BuildChannel("round_robin");
auto second_stub = BuildStub(second_channel);
SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(second_stub, DEBUG_LOCATION);
}
TEST_F(ClientLbEnd2endTest, RoundRobinUpdates) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("round_robin");
auto stub = BuildStub(channel);
std::vector<int> ports;
// Start with a single server.
gpr_log(GPR_INFO, "*** FIRST BACKEND ***");
ports.emplace_back(servers_[0]->port_);
SetNextResolution(ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
// Send RPCs. They should all go servers_[0]
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
servers_[0]->service_.ResetCounters();
// And now for the second server.
gpr_log(GPR_INFO, "*** SECOND BACKEND ***");
ports.clear();
ports.emplace_back(servers_[1]->port_);
SetNextResolution(ports);
// Wait until update has been processed, as signaled by the second backend
// receiving a request.
EXPECT_EQ(0, servers_[1]->service_.request_count());
WaitForServer(stub, 1, DEBUG_LOCATION);
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(0, servers_[0]->service_.request_count());
EXPECT_EQ(10, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
servers_[1]->service_.ResetCounters();
// ... and for the last server.
gpr_log(GPR_INFO, "*** THIRD BACKEND ***");
ports.clear();
ports.emplace_back(servers_[2]->port_);
SetNextResolution(ports);
WaitForServer(stub, 2, DEBUG_LOCATION);
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(0, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(10, servers_[2]->service_.request_count());
servers_[2]->service_.ResetCounters();
// Back to all servers.
gpr_log(GPR_INFO, "*** ALL BACKENDS ***");
ports.clear();
ports.emplace_back(servers_[0]->port_);
ports.emplace_back(servers_[1]->port_);
ports.emplace_back(servers_[2]->port_);
SetNextResolution(ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
WaitForServer(stub, 1, DEBUG_LOCATION);
WaitForServer(stub, 2, DEBUG_LOCATION);
// Send three RPCs, one per server.
for (size_t i = 0; i < 3; ++i) CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(1, servers_[0]->service_.request_count());
EXPECT_EQ(1, servers_[1]->service_.request_count());
EXPECT_EQ(1, servers_[2]->service_.request_count());
// An empty update will result in the channel going into TRANSIENT_FAILURE.
gpr_log(GPR_INFO, "*** NO BACKENDS ***");
ports.clear();
SetNextResolution(ports);
grpc_connectivity_state channel_state;
do {
channel_state = channel->GetState(true /* try to connect */);
} while (channel_state == GRPC_CHANNEL_READY);
ASSERT_NE(channel_state, GRPC_CHANNEL_READY);
servers_[0]->service_.ResetCounters();
// Next update introduces servers_[1], making the channel recover.
gpr_log(GPR_INFO, "*** BACK TO SECOND BACKEND ***");
ports.clear();
ports.emplace_back(servers_[1]->port_);
SetNextResolution(ports);
WaitForServer(stub, 1, DEBUG_LOCATION);
channel_state = channel->GetState(false /* try to connect */);
ASSERT_EQ(channel_state, GRPC_CHANNEL_READY);
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, RoundRobinUpdateInError) {
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("round_robin");
auto stub = BuildStub(channel);
std::vector<int> ports;
// Start with a single server.
ports.emplace_back(servers_[0]->port_);
SetNextResolution(ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
// Send RPCs. They should all go to servers_[0]
for (size_t i = 0; i < 10; ++i) SendRpc(stub);
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
servers_[0]->service_.ResetCounters();
// Shutdown one of the servers to be sent in the update.
servers_[1]->Shutdown();
ports.emplace_back(servers_[1]->port_);
ports.emplace_back(servers_[2]->port_);
SetNextResolution(ports);
WaitForServer(stub, 0, DEBUG_LOCATION);
WaitForServer(stub, 2, DEBUG_LOCATION);
// Send three RPCs, one per server.
for (size_t i = 0; i < kNumServers; ++i) SendRpc(stub);
// The server in shutdown shouldn't receive any.
EXPECT_EQ(0, servers_[1]->service_.request_count());
}
TEST_F(ClientLbEnd2endTest, RoundRobinManyUpdates) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto channel = BuildChannel("round_robin");
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
for (size_t i = 0; i < 1000; ++i) {
std::shuffle(ports.begin(), ports.end(),
std::mt19937(std::random_device()()));
SetNextResolution(ports);
if (i % 10 == 0) CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(ClientLbEnd2endTest, RoundRobinConcurrentUpdates) {
// TODO(dgq): replicate the way internal testing exercises the concurrent
// update provisions of RR.
}
TEST_F(ClientLbEnd2endTest, RoundRobinReresolve) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
std::vector<int> first_ports;
std::vector<int> second_ports;
first_ports.reserve(kNumServers);
for (int i = 0; i < kNumServers; ++i) {
first_ports.push_back(grpc_pick_unused_port_or_die());
}
second_ports.reserve(kNumServers);
for (int i = 0; i < kNumServers; ++i) {
second_ports.push_back(grpc_pick_unused_port_or_die());
}
StartServers(kNumServers, first_ports);
auto channel = BuildChannel("round_robin");
auto stub = BuildStub(channel);
SetNextResolution(first_ports);
// Send a number of RPCs, which succeed.
for (size_t i = 0; i < 100; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Kill all servers
gpr_log(GPR_INFO, "****** ABOUT TO KILL SERVERS *******");
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
gpr_log(GPR_INFO, "****** SERVERS KILLED *******");
gpr_log(GPR_INFO, "****** SENDING DOOMED REQUESTS *******");
// Client requests should fail. Send enough to tickle all subchannels.
for (size_t i = 0; i < servers_.size(); ++i) CheckRpcSendFailure(stub);
gpr_log(GPR_INFO, "****** DOOMED REQUESTS SENT *******");
// Bring servers back up on a different set of ports. We need to do this to be
// sure that the eventual success is *not* due to subchannel reconnection
// attempts and that an actual re-resolution has happened as a result of the
// RR policy going into transient failure when all its subchannels become
// unavailable (in transient failure as well).
gpr_log(GPR_INFO, "****** RESTARTING SERVERS *******");
StartServers(kNumServers, second_ports);
// Don't notify of the update. Wait for the LB policy's re-resolution to
// "pull" the new ports.
SetNextResolutionUponError(second_ports);
gpr_log(GPR_INFO, "****** SERVERS RESTARTED *******");
gpr_log(GPR_INFO, "****** SENDING REQUEST TO SUCCEED *******");
// Client request should eventually (but still fairly soon) succeed.
const gpr_timespec deadline = grpc_timeout_seconds_to_deadline(5);
gpr_timespec now = gpr_now(GPR_CLOCK_MONOTONIC);
while (gpr_time_cmp(deadline, now) > 0) {
if (SendRpc(stub)) break;
now = gpr_now(GPR_CLOCK_MONOTONIC);
}
ASSERT_GT(gpr_time_cmp(deadline, now), 0);
}
TEST_F(ClientLbEnd2endTest, RoundRobinSingleReconnect) {
const int kNumServers = 3;
StartServers(kNumServers);
const auto ports = GetServersPorts();
auto channel = BuildChannel("round_robin");
auto stub = BuildStub(channel);
SetNextResolution(ports);
for (size_t i = 0; i < kNumServers; ++i) {
WaitForServer(stub, i, DEBUG_LOCATION);
}
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
EXPECT_EQ(1, servers_[i]->service_.request_count()) << "for backend #" << i;
}
// One request should have gone to each server.
for (size_t i = 0; i < servers_.size(); ++i) {
EXPECT_EQ(1, servers_[i]->service_.request_count());
}
const auto pre_death = servers_[0]->service_.request_count();
// Kill the first server.
servers_[0]->Shutdown();
// Client request still succeed. May need retrying if RR had returned a pick
// before noticing the change in the server's connectivity.
while (!SendRpc(stub)) {
} // Retry until success.
// Send a bunch of RPCs that should succeed.
for (int i = 0; i < 10 * kNumServers; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
const auto post_death = servers_[0]->service_.request_count();
// No requests have gone to the deceased server.
EXPECT_EQ(pre_death, post_death);
// Bring the first server back up.
StartServer(0);
// Requests should start arriving at the first server either right away (if
// the server managed to start before the RR policy retried the subchannel) or
// after the subchannel retry delay otherwise (RR's subchannel retried before
// the server was fully back up).
WaitForServer(stub, 0, DEBUG_LOCATION);
}
// If health checking is required by client but health checking service
// is not running on the server, the channel should be treated as healthy.
TEST_F(ClientLbEnd2endTest,
RoundRobinServersHealthCheckingUnimplementedTreatedAsHealthy) {
StartServers(1); // Single server
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto channel = BuildChannel("round_robin", args);
auto stub = BuildStub(channel);
SetNextResolution({servers_[0]->port_});
EXPECT_TRUE(WaitForChannelReady(channel.get()));
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
TEST_F(ClientLbEnd2endTest, RoundRobinWithHealthChecking) {
EnableDefaultHealthCheckService(true);
// Start servers.
const int kNumServers = 3;
StartServers(kNumServers);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto channel = BuildChannel("round_robin", args);
auto stub = BuildStub(channel);
SetNextResolution(GetServersPorts());
// Channel should not become READY, because health checks should be failing.
gpr_log(GPR_INFO,
"*** initial state: unknown health check service name for "
"all servers");
EXPECT_FALSE(WaitForChannelReady(channel.get(), 1));
// Now set one of the servers to be healthy.
// The channel should become healthy and all requests should go to
// the healthy server.
gpr_log(GPR_INFO, "*** server 0 healthy");
servers_[0]->SetServingStatus("health_check_service_name", true);
EXPECT_TRUE(WaitForChannelReady(channel.get()));
for (int i = 0; i < 10; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
// Now set a second server to be healthy.
gpr_log(GPR_INFO, "*** server 2 healthy");
servers_[2]->SetServingStatus("health_check_service_name", true);
WaitForServer(stub, 2, DEBUG_LOCATION);
for (int i = 0; i < 10; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
EXPECT_EQ(5, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(5, servers_[2]->service_.request_count());
// Now set the remaining server to be healthy.
gpr_log(GPR_INFO, "*** server 1 healthy");
servers_[1]->SetServingStatus("health_check_service_name", true);
WaitForServer(stub, 1, DEBUG_LOCATION);
for (int i = 0; i < 9; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
EXPECT_EQ(3, servers_[0]->service_.request_count());
EXPECT_EQ(3, servers_[1]->service_.request_count());
EXPECT_EQ(3, servers_[2]->service_.request_count());
// Now set one server to be unhealthy again. Then wait until the
// unhealthiness has hit the client. We know that the client will see
// this when we send kNumServers requests and one of the remaining servers
// sees two of the requests.
gpr_log(GPR_INFO, "*** server 0 unhealthy");
servers_[0]->SetServingStatus("health_check_service_name", false);
do {
ResetCounters();
for (int i = 0; i < kNumServers; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
} while (servers_[1]->service_.request_count() != 2 &&
servers_[2]->service_.request_count() != 2);
// Now set the remaining two servers to be unhealthy. Make sure the
// channel leaves READY state and that RPCs fail.
gpr_log(GPR_INFO, "*** all servers unhealthy");
servers_[1]->SetServingStatus("health_check_service_name", false);
servers_[2]->SetServingStatus("health_check_service_name", false);
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
CheckRpcSendFailure(stub);
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(ClientLbEnd2endTest, RoundRobinWithHealthCheckingInhibitPerChannel) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto channel1 = BuildChannel("round_robin", args);
auto stub1 = BuildStub(channel1);
std::vector<int> ports = GetServersPorts();
SetNextResolution(ports);
// Create a channel with health checking enabled but inhibited.
args.SetInt(GRPC_ARG_INHIBIT_HEALTH_CHECKING, 1);
auto channel2 = BuildChannel("round_robin", args);
auto stub2 = BuildStub(channel2);
SetNextResolution(ports);
// First channel should not become READY, because health checks should be
// failing.
EXPECT_FALSE(WaitForChannelReady(channel1.get(), 1));
CheckRpcSendFailure(stub1);
// Second channel should be READY.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1));
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// Enable health checks on the backend and wait for channel 1 to succeed.
servers_[0]->SetServingStatus("health_check_service_name", true);
CheckRpcSendOk(stub1, DEBUG_LOCATION, true /* wait_for_ready */);
// Check that we created only one subchannel to the backend.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(ClientLbEnd2endTest, RoundRobinWithHealthCheckingServiceNamePerChannel) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto channel1 = BuildChannel("round_robin", args);
auto stub1 = BuildStub(channel1);
std::vector<int> ports = GetServersPorts();
SetNextResolution(ports);
// Create a channel with health-checking enabled with a different
// service name.
ChannelArguments args2;
args2.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name2\"}}");
auto channel2 = BuildChannel("round_robin", args2);
auto stub2 = BuildStub(channel2);
SetNextResolution(ports);
// Allow health checks from channel 2 to succeed.
servers_[0]->SetServingStatus("health_check_service_name2", true);
// First channel should not become READY, because health checks should be
// failing.
EXPECT_FALSE(WaitForChannelReady(channel1.get(), 1));
CheckRpcSendFailure(stub1);
// Second channel should be READY.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1));
CheckRpcSendOk(stub2, DEBUG_LOCATION);
// Enable health checks for channel 1 and wait for it to succeed.
servers_[0]->SetServingStatus("health_check_service_name", true);
CheckRpcSendOk(stub1, DEBUG_LOCATION, true /* wait_for_ready */);
// Check that we created only one subchannel to the backend.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
// Clean up.
EnableDefaultHealthCheckService(false);
}
class ClientLbInterceptTrailingMetadataTest : public ClientLbEnd2endTest {
protected:
void SetUp() override {
ClientLbEnd2endTest::SetUp();
grpc_core::RegisterInterceptRecvTrailingMetadataLoadBalancingPolicy(
ReportTrailerIntercepted, this);
}
void TearDown() override { ClientLbEnd2endTest::TearDown(); }
int trailers_intercepted() {
grpc::internal::MutexLock lock(&mu_);
return trailers_intercepted_;
}
private:
static void ReportTrailerIntercepted(void* arg) {
ClientLbInterceptTrailingMetadataTest* self =
static_cast<ClientLbInterceptTrailingMetadataTest*>(arg);
grpc::internal::MutexLock lock(&self->mu_);
self->trailers_intercepted_++;
}
grpc::internal::Mutex mu_;
int trailers_intercepted_ = 0;
};
TEST_F(ClientLbInterceptTrailingMetadataTest, InterceptsRetriesDisabled) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
auto channel = BuildChannel("intercept_trailing_metadata_lb");
auto stub = BuildStub(channel);
SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, trailers_intercepted());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, InterceptsRetriesEnabled) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\n"
" \"methodConfig\": [ {\n"
" \"name\": [\n"
" { \"service\": \"grpc.testing.EchoTestService\" }\n"
" ],\n"
" \"retryPolicy\": {\n"
" \"maxAttempts\": 3,\n"
" \"initialBackoff\": \"1s\",\n"
" \"maxBackoff\": \"120s\",\n"
" \"backoffMultiplier\": 1.6,\n"
" \"retryableStatusCodes\": [ \"ABORTED\" ]\n"
" }\n"
" } ]\n"
"}");
auto channel = BuildChannel("intercept_trailing_metadata_lb", args);
auto stub = BuildStub(channel);
SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(stub, DEBUG_LOCATION);
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, trailers_intercepted());
}
} // namespace
} // namespace testing
} // namespace grpc
int main(int argc, char** argv) {
// Make the backup poller poll very frequently in order to pick up
// updates from all the subchannels's FDs.
GPR_GLOBAL_CONFIG_SET(grpc_client_channel_backup_poll_interval_ms, 1);
::testing::InitGoogleTest(&argc, argv);
grpc::testing::TestEnvironment env(argc, argv);
const auto result = RUN_ALL_TESTS();
return result;
}