The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

326 lines
10 KiB

/*
*
* Copyright 2015, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef TEST_QPS_CLIENT_H
#define TEST_QPS_CLIENT_H
#include <condition_variable>
#include <mutex>
#include "test/cpp/qps/histogram.h"
#include "test/cpp/qps/interarrival.h"
#include "test/cpp/qps/timer.h"
#include "test/cpp/util/create_test_channel.h"
#include "test/proto/benchmarks/payloads.grpc.pb.h"
#include "test/proto/benchmarks/services.grpc.pb.h"
namespace grpc {
#if defined(__APPLE__)
// Specialize Timepoint for high res clock as we need that
template <>
class TimePoint<std::chrono::high_resolution_clock::time_point> {
public:
TimePoint(const std::chrono::high_resolution_clock::time_point& time) {
TimepointHR2Timespec(time, &time_);
}
gpr_timespec raw_time() const { return time_; }
private:
gpr_timespec time_;
};
#endif
namespace testing {
typedef std::chrono::high_resolution_clock grpc_time_source;
typedef std::chrono::time_point<grpc_time_source> grpc_time;
class Client {
public:
explicit Client(const ClientConfig& config)
: channels_(config.client_channels()),
timer_(new Timer),
interarrival_timer_() {
for (int i = 0; i < config.client_channels(); i++) {
channels_[i].init(config.server_targets(i % config.server_targets_size()),
config);
}
if (config.payload_config().has_bytebuf_params()) {
GPR_ASSERT(false); // not yet implemented
} else if (config.payload_config().has_simple_params()) {
request_.set_response_type(grpc::testing::PayloadType::COMPRESSABLE);
request_.set_response_size(
config.payload_config().simple_params().resp_size());
request_.mutable_payload()->set_type(
grpc::testing::PayloadType::COMPRESSABLE);
int size = config.payload_config().simple_params().req_size();
std::unique_ptr<char[]> body(new char[size]);
request_.mutable_payload()->set_body(body.get(), size);
} else if (config.payload_config().has_complex_params()) {
GPR_ASSERT(false); // not yet implemented
} else {
// default should be simple proto without payloads
request_.set_response_type(grpc::testing::PayloadType::COMPRESSABLE);
request_.set_response_size(0);
request_.mutable_payload()->set_type(
grpc::testing::PayloadType::COMPRESSABLE);
}
}
virtual ~Client() {}
ClientStats Mark(bool reset) {
Histogram latencies;
Timer::Result timer_result;
// avoid std::vector for old compilers that expect a copy constructor
if (reset) {
Histogram* to_merge = new Histogram[threads_.size()];
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->BeginSwap(&to_merge[i]);
}
std::unique_ptr<Timer> timer(new Timer);
timer_.swap(timer);
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->EndSwap();
latencies.Merge(to_merge[i]);
}
delete[] to_merge;
timer_result = timer->Mark();
} else {
// merge snapshots of each thread histogram
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->MergeStatsInto(&latencies);
}
timer_result = timer_->Mark();
}
ClientStats stats;
latencies.FillProto(stats.mutable_latencies());
stats.set_time_elapsed(timer_result.wall);
stats.set_time_system(timer_result.system);
stats.set_time_user(timer_result.user);
return stats;
}
protected:
SimpleRequest request_;
bool closed_loop_;
class ClientChannelInfo {
public:
ClientChannelInfo() {}
ClientChannelInfo(const ClientChannelInfo& i) {
// The copy constructor is to satisfy old compilers
// that need it for using std::vector . It is only ever
// used for empty entries
GPR_ASSERT(!i.channel_ && !i.stub_);
}
void init(const grpc::string& target, const ClientConfig& config) {
// We have to use a 2-phase init like this with a default
// constructor followed by an initializer function to make
// old compilers happy with using this in std::vector
channel_ = CreateTestChannel(
target, config.security_params().server_host_override(),
config.has_security_params(),
!config.security_params().use_test_ca());
stub_ = BenchmarkService::NewStub(channel_);
}
Channel* get_channel() { return channel_.get(); }
BenchmarkService::Stub* get_stub() { return stub_.get(); }
private:
std::shared_ptr<Channel> channel_;
std::unique_ptr<BenchmarkService::Stub> stub_;
};
std::vector<ClientChannelInfo> channels_;
void StartThreads(size_t num_threads) {
for (size_t i = 0; i < num_threads; i++) {
threads_.emplace_back(new Thread(this, i));
}
}
void EndThreads() { threads_.clear(); }
virtual bool ThreadFunc(Histogram* histogram, size_t thread_idx) = 0;
void SetupLoadTest(const ClientConfig& config, size_t num_threads) {
// Set up the load distribution based on the number of threads
const auto& load = config.load_params();
std::unique_ptr<RandomDist> random_dist;
switch (load.load_case()) {
case LoadParams::kClosedLoop:
// Closed-loop doesn't use random dist at all
break;
case LoadParams::kPoisson:
random_dist.reset(
new ExpDist(load.poisson().offered_load() / num_threads));
break;
case LoadParams::kUniform:
random_dist.reset(
new UniformDist(load.uniform().interarrival_lo() * num_threads,
load.uniform().interarrival_hi() * num_threads));
break;
case LoadParams::kDeterm:
random_dist.reset(
new DetDist(num_threads / load.determ().offered_load()));
break;
case LoadParams::kPareto:
random_dist.reset(
new ParetoDist(load.pareto().interarrival_base() * num_threads,
load.pareto().alpha()));
break;
default:
GPR_ASSERT(false);
}
// Set closed_loop_ based on whether or not random_dist is set
if (!random_dist) {
closed_loop_ = true;
} else {
closed_loop_ = false;
// set up interarrival timer according to random dist
interarrival_timer_.init(*random_dist, num_threads);
for (size_t i = 0; i < num_threads; i++) {
next_time_.push_back(
grpc_time_source::now() +
std::chrono::duration_cast<grpc_time_source::duration>(
interarrival_timer_(i)));
}
}
}
bool NextIssueTime(int thread_idx, grpc_time* time_delay) {
if (closed_loop_) {
return false;
} else {
*time_delay = next_time_[thread_idx];
next_time_[thread_idx] +=
std::chrono::duration_cast<grpc_time_source::duration>(
interarrival_timer_(thread_idx));
return true;
}
}
private:
class Thread {
public:
Thread(Client* client, size_t idx)
: done_(false),
new_stats_(nullptr),
client_(client),
idx_(idx),
impl_(&Thread::ThreadFunc, this) {}
~Thread() {
{
std::lock_guard<std::mutex> g(mu_);
done_ = true;
}
impl_.join();
}
void BeginSwap(Histogram* n) {
std::lock_guard<std::mutex> g(mu_);
new_stats_ = n;
}
void EndSwap() {
std::unique_lock<std::mutex> g(mu_);
while (new_stats_ != nullptr) {
cv_.wait(g);
};
}
void MergeStatsInto(Histogram* hist) {
std::unique_lock<std::mutex> g(mu_);
hist->Merge(histogram_);
}
private:
Thread(const Thread&);
Thread& operator=(const Thread&);
void ThreadFunc() {
for (;;) {
// run the loop body
const bool thread_still_ok = client_->ThreadFunc(&histogram_, idx_);
// lock, see if we're done
std::lock_guard<std::mutex> g(mu_);
if (!thread_still_ok) {
gpr_log(GPR_ERROR, "Finishing client thread due to RPC error");
done_ = true;
}
if (done_) {
return;
}
// check if we're resetting stats, swap out the histogram if so
if (new_stats_) {
new_stats_->Swap(&histogram_);
new_stats_ = nullptr;
cv_.notify_one();
}
}
}
BenchmarkService::Stub* stub_;
ClientConfig config_;
std::mutex mu_;
std::condition_variable cv_;
bool done_;
Histogram* new_stats_;
Histogram histogram_;
Client* client_;
size_t idx_;
std::thread impl_;
};
std::vector<std::unique_ptr<Thread>> threads_;
std::unique_ptr<Timer> timer_;
InterarrivalTimer interarrival_timer_;
std::vector<grpc_time> next_time_;
};
std::unique_ptr<Client> CreateSynchronousUnaryClient(const ClientConfig& args);
std::unique_ptr<Client> CreateSynchronousStreamingClient(
const ClientConfig& args);
std::unique_ptr<Client> CreateAsyncUnaryClient(const ClientConfig& args);
std::unique_ptr<Client> CreateAsyncStreamingClient(const ClientConfig& args);
} // namespace testing
} // namespace grpc
#endif