The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

480 lines
15 KiB

//
//
// Copyright 2015 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// Test of gpr synchronization support.
#include <stdint.h>
#include <stdio.h>
#include <memory>
#include "gtest/gtest.h"
#include <grpc/support/alloc.h>
#include <grpc/support/sync.h>
#include <grpc/support/time.h>
#include "src/core/lib/gprpp/thd.h"
#include "test/core/util/test_config.h"
// ==================Example use of interface===================
// A producer-consumer queue of up to N integers,
// illustrating the use of the calls in this interface.
#define N 4
typedef struct queue {
gpr_cv non_empty; // Signalled when length becomes non-zero.
gpr_cv non_full; // Signalled when length becomes non-N.
gpr_mu mu; // Protects all fields below.
// (That is, except during initialization or
// destruction, the fields below should be accessed
// only by a thread that holds mu.)
int head; // Index of head of queue 0..N-1.
int length; // Number of valid elements in queue 0..N.
int elem[N]; // elem[head .. head+length-1] are queue elements.
} queue;
// Initialize *q.
void queue_init(queue* q) {
gpr_mu_init(&q->mu);
gpr_cv_init(&q->non_empty);
gpr_cv_init(&q->non_full);
q->head = 0;
q->length = 0;
}
// Free storage associated with *q.
void queue_destroy(queue* q) {
gpr_mu_destroy(&q->mu);
gpr_cv_destroy(&q->non_empty);
gpr_cv_destroy(&q->non_full);
}
// Wait until there is room in *q, then append x to *q.
void queue_append(queue* q, int x) {
gpr_mu_lock(&q->mu);
// To wait for a predicate without a deadline, loop on the negation of the
// predicate, and use gpr_cv_wait(..., gpr_inf_future(GPR_CLOCK_REALTIME))
// inside the loop
// to release the lock, wait, and reacquire on each iteration. Code that
// makes the condition true should use gpr_cv_broadcast() on the
// corresponding condition variable. The predicate must be on state
// protected by the lock.
while (q->length == N) {
gpr_cv_wait(&q->non_full, &q->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
if (q->length == 0) { // Wake threads blocked in queue_remove().
// It's normal to use gpr_cv_broadcast() or gpr_signal() while
// holding the lock.
gpr_cv_broadcast(&q->non_empty);
}
q->elem[(q->head + q->length) % N] = x;
q->length++;
gpr_mu_unlock(&q->mu);
}
// If it can be done without blocking, append x to *q and return non-zero.
// Otherwise return 0.
int queue_try_append(queue* q, int x) {
int result = 0;
if (gpr_mu_trylock(&q->mu)) {
if (q->length != N) {
if (q->length == 0) { // Wake threads blocked in queue_remove().
gpr_cv_broadcast(&q->non_empty);
}
q->elem[(q->head + q->length) % N] = x;
q->length++;
result = 1;
}
gpr_mu_unlock(&q->mu);
}
return result;
}
// Wait until the *q is non-empty or deadline abs_deadline passes. If the
// queue is non-empty, remove its head entry, place it in *head, and return
// non-zero. Otherwise return 0.
int queue_remove(queue* q, int* head, gpr_timespec abs_deadline) {
int result = 0;
gpr_mu_lock(&q->mu);
// To wait for a predicate with a deadline, loop on the negation of the
// predicate or until gpr_cv_wait() returns true. Code that makes
// the condition true should use gpr_cv_broadcast() on the corresponding
// condition variable. The predicate must be on state protected by the
// lock.
while (q->length == 0 && !gpr_cv_wait(&q->non_empty, &q->mu, abs_deadline)) {
}
if (q->length != 0) { // Queue is non-empty.
result = 1;
if (q->length == N) { // Wake threads blocked in queue_append().
gpr_cv_broadcast(&q->non_full);
}
*head = q->elem[q->head];
q->head = (q->head + 1) % N;
q->length--;
} // else deadline exceeded
gpr_mu_unlock(&q->mu);
return result;
}
// -------------------------------------------------
// Tests for gpr_mu and gpr_cv, and the queue example.
struct test {
int nthreads; // number of threads
grpc_core::Thread* threads;
int64_t iterations; // number of iterations per thread
int64_t counter;
int thread_count; // used to allocate thread ids
int done; // threads not yet completed
int incr_step; // how much to increment/decrement refcount each time
gpr_mu mu; // protects iterations, counter, thread_count, done
gpr_cv cv; // signalling depends on test
gpr_cv done_cv; // signalled when done == 0
queue q;
gpr_stats_counter stats_counter;
gpr_refcount refcount;
gpr_refcount thread_refcount;
gpr_event event;
};
// Return pointer to a new struct test.
static struct test* test_new(int nthreads, int64_t iterations, int incr_step) {
struct test* m = static_cast<struct test*>(gpr_malloc(sizeof(*m)));
m->nthreads = nthreads;
m->threads = static_cast<grpc_core::Thread*>(
gpr_malloc(sizeof(*m->threads) * nthreads));
m->iterations = iterations;
m->counter = 0;
m->thread_count = 0;
m->done = nthreads;
m->incr_step = incr_step;
gpr_mu_init(&m->mu);
gpr_cv_init(&m->cv);
gpr_cv_init(&m->done_cv);
queue_init(&m->q);
gpr_stats_init(&m->stats_counter, 0);
gpr_ref_init(&m->refcount, 0);
gpr_ref_init(&m->thread_refcount, nthreads);
gpr_event_init(&m->event);
return m;
}
// Return pointer to a new struct test.
static void test_destroy(struct test* m) {
gpr_mu_destroy(&m->mu);
gpr_cv_destroy(&m->cv);
gpr_cv_destroy(&m->done_cv);
queue_destroy(&m->q);
gpr_free(m->threads);
gpr_free(m);
}
// Create m->nthreads threads, each running (*body)(m)
static void test_create_threads(struct test* m, void (*body)(void* arg)) {
int i;
for (i = 0; i != m->nthreads; i++) {
m->threads[i] = grpc_core::Thread("grpc_create_threads", body, m);
m->threads[i].Start();
}
}
// Wait until all threads report done.
static void test_wait(struct test* m) {
gpr_mu_lock(&m->mu);
while (m->done != 0) {
gpr_cv_wait(&m->done_cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
gpr_mu_unlock(&m->mu);
for (int i = 0; i != m->nthreads; i++) {
m->threads[i].Join();
}
}
// Get an integer thread id in the raneg 0..nthreads-1
static int thread_id(struct test* m) {
int id;
gpr_mu_lock(&m->mu);
id = m->thread_count++;
gpr_mu_unlock(&m->mu);
return id;
}
// Indicate that a thread is done, by decrementing m->done
// and signalling done_cv if m->done==0.
static void mark_thread_done(struct test* m) {
gpr_mu_lock(&m->mu);
ASSERT_NE(m->done, 0);
m->done--;
if (m->done == 0) {
gpr_cv_signal(&m->done_cv);
}
gpr_mu_unlock(&m->mu);
}
// Test several threads running (*body)(struct test *m) for increasing settings
// of m->iterations, until about timeout_s to 2*timeout_s seconds have elapsed.
// If extra!=NULL, run (*extra)(m) in an additional thread.
// incr_step controls by how much m->refcount should be incremented/decremented
// (if at all) each time in the tests.
//
static void test(const char* name, void (*body)(void* m),
void (*extra)(void* m), int timeout_s, int incr_step) {
int64_t iterations = 8;
struct test* m;
gpr_timespec start = gpr_now(GPR_CLOCK_REALTIME);
gpr_timespec time_taken;
gpr_timespec deadline = gpr_time_add(
start, gpr_time_from_micros(static_cast<int64_t>(timeout_s) * 1000000,
GPR_TIMESPAN));
fprintf(stderr, "%s:", name);
fflush(stderr);
while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0) {
fprintf(stderr, " %ld", static_cast<long>(iterations));
fflush(stderr);
m = test_new(10, iterations, incr_step);
grpc_core::Thread extra_thd;
if (extra != nullptr) {
extra_thd = grpc_core::Thread(name, extra, m);
extra_thd.Start();
m->done++; // one more thread to wait for
}
test_create_threads(m, body);
test_wait(m);
if (extra != nullptr) {
extra_thd.Join();
}
if (m->counter != m->nthreads * m->iterations * m->incr_step) {
fprintf(stderr, "counter %ld threads %d iterations %ld\n",
static_cast<long>(m->counter), m->nthreads,
static_cast<long>(m->iterations));
fflush(stderr);
ASSERT_TRUE(0);
}
test_destroy(m);
iterations <<= 1;
}
time_taken = gpr_time_sub(gpr_now(GPR_CLOCK_REALTIME), start);
fprintf(stderr, " done %lld.%09d s\n",
static_cast<long long>(time_taken.tv_sec),
static_cast<int>(time_taken.tv_nsec));
fflush(stderr);
}
// Increment m->counter on each iteration; then mark thread as done.
static void inc(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_mu_lock(&m->mu);
m->counter++;
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
// Increment m->counter under lock acquired with trylock, m->iterations times;
// then mark thread as done.
static void inctry(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations;) {
if (gpr_mu_trylock(&m->mu)) {
m->counter++;
gpr_mu_unlock(&m->mu);
i++;
}
}
mark_thread_done(m);
}
// Increment counter only when (m->counter%m->nthreads)==m->thread_id; then mark
// thread as done.
static void inc_by_turns(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
int id = thread_id(m);
for (i = 0; i != m->iterations; i++) {
gpr_mu_lock(&m->mu);
while ((m->counter % m->nthreads) != id) {
gpr_cv_wait(&m->cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
m->counter++;
gpr_cv_broadcast(&m->cv);
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
// Wait a millisecond and increment counter on each iteration;
// then mark thread as done.
static void inc_with_1ms_delay(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_timespec deadline;
gpr_mu_lock(&m->mu);
deadline = gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
gpr_time_from_micros(1000, GPR_TIMESPAN));
while (!gpr_cv_wait(&m->cv, &m->mu, deadline)) {
}
m->counter++;
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
// Wait a millisecond and increment counter on each iteration, using an event
// for timing; then mark thread as done.
static void inc_with_1ms_delay_event(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_timespec deadline;
deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_micros(1000, GPR_TIMESPAN));
ASSERT_EQ(gpr_event_wait(&m->event, deadline), nullptr);
gpr_mu_lock(&m->mu);
m->counter++;
gpr_mu_unlock(&m->mu);
}
mark_thread_done(m);
}
// Produce m->iterations elements on queue m->q, then mark thread as done.
// Even threads use queue_append(), and odd threads use queue_try_append()
// until it succeeds.
static void many_producers(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
int x = thread_id(m);
if ((x & 1) == 0) {
for (i = 0; i != m->iterations; i++) {
queue_append(&m->q, 1);
}
} else {
for (i = 0; i != m->iterations; i++) {
while (!queue_try_append(&m->q, 1)) {
}
}
}
mark_thread_done(m);
}
// Consume elements from m->q until m->nthreads*m->iterations are seen,
// wait an extra second to confirm that no more elements are arriving,
// then mark thread as done.
static void consumer(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t n = m->iterations * m->nthreads;
int64_t i;
int value;
for (i = 0; i != n; i++) {
queue_remove(&m->q, &value, gpr_inf_future(GPR_CLOCK_MONOTONIC));
}
gpr_mu_lock(&m->mu);
m->counter = n;
gpr_mu_unlock(&m->mu);
ASSERT_TRUE(
!queue_remove(&m->q, &value,
gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
gpr_time_from_micros(1000000, GPR_TIMESPAN))));
mark_thread_done(m);
}
// Increment m->stats_counter m->iterations times, transfer counter value to
// m->counter, then mark thread as done.
static void statsinc(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
gpr_stats_inc(&m->stats_counter, 1);
}
gpr_mu_lock(&m->mu);
m->counter = gpr_stats_read(&m->stats_counter);
gpr_mu_unlock(&m->mu);
mark_thread_done(m);
}
// Increment m->refcount by m->incr_step for m->iterations times. Decrement
// m->thread_refcount once, and if it reaches zero, set m->event to (void*)1;
// then mark thread as done.
static void refinc(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t i;
for (i = 0; i != m->iterations; i++) {
if (m->incr_step == 1) {
gpr_ref(&m->refcount);
} else {
gpr_refn(&m->refcount, m->incr_step);
}
}
if (gpr_unref(&m->thread_refcount)) {
gpr_event_set(&m->event, reinterpret_cast<void*>(1));
}
mark_thread_done(m);
}
// Wait until m->event is set to (void *)1, then decrement m->refcount by 1
// (m->nthreads * m->iterations * m->incr_step) times, and ensure that the last
// decrement caused the counter to reach zero, then mark thread as done.
static void refcheck(void* v /*=m*/) {
struct test* m = static_cast<struct test*>(v);
int64_t n = m->iterations * m->nthreads * m->incr_step;
int64_t i;
ASSERT_EQ(gpr_event_wait(&m->event, gpr_inf_future(GPR_CLOCK_REALTIME)),
(void*)1);
ASSERT_EQ(gpr_event_get(&m->event), (void*)1);
for (i = 1; i != n; i++) {
ASSERT_FALSE(gpr_unref(&m->refcount));
m->counter++;
}
ASSERT_TRUE(gpr_unref(&m->refcount));
m->counter++;
mark_thread_done(m);
}
// -------------------------------------------------
TEST(SyncTest, MainTest) {
test("mutex", &inc, nullptr, 1, 1);
test("mutex try", &inctry, nullptr, 1, 1);
test("cv", &inc_by_turns, nullptr, 1, 1);
test("timedcv", &inc_with_1ms_delay, nullptr, 1, 1);
test("queue", &many_producers, &consumer, 10, 1);
test("stats_counter", &statsinc, nullptr, 1, 1);
test("refcount by 1", &refinc, &refcheck, 1, 1);
test("refcount by 3", &refinc, &refcheck, 1, 3); // incr_step of 3 is an
// arbitrary choice. Any
// number > 1 is okay here
test("timedevent", &inc_with_1ms_delay_event, nullptr, 1, 1);
}
int main(int argc, char** argv) {
grpc::testing::TestEnvironment env(&argc, argv);
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}