mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
9.1 KiB
261 lines
9.1 KiB
#!/usr/bin/env python |
|
# Copyright 2017 gRPC authors. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import cgi |
|
import multiprocessing |
|
import os |
|
import subprocess |
|
import sys |
|
import argparse |
|
|
|
import python_utils.jobset as jobset |
|
import python_utils.start_port_server as start_port_server |
|
|
|
sys.path.append( |
|
os.path.join(os.path.dirname(sys.argv[0]), '..', 'profiling', |
|
'microbenchmarks', 'bm_diff')) |
|
import bm_constants |
|
|
|
flamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph') |
|
|
|
os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..')) |
|
if not os.path.exists('reports'): |
|
os.makedirs('reports') |
|
|
|
start_port_server.start_port_server() |
|
|
|
|
|
def fnize(s): |
|
out = '' |
|
for c in s: |
|
if c in '<>, /': |
|
if len(out) and out[-1] == '_': continue |
|
out += '_' |
|
else: |
|
out += c |
|
return out |
|
|
|
|
|
# index html |
|
index_html = """ |
|
<html> |
|
<head> |
|
<title>Microbenchmark Results</title> |
|
</head> |
|
<body> |
|
""" |
|
|
|
|
|
def heading(name): |
|
global index_html |
|
index_html += "<h1>%s</h1>\n" % name |
|
|
|
|
|
def link(txt, tgt): |
|
global index_html |
|
index_html += "<p><a href=\"%s\">%s</a></p>\n" % (cgi.escape( |
|
tgt, quote=True), cgi.escape(txt)) |
|
|
|
|
|
def text(txt): |
|
global index_html |
|
index_html += "<p><pre>%s</pre></p>\n" % cgi.escape(txt) |
|
|
|
|
|
def collect_latency(bm_name, args): |
|
"""generate latency profiles""" |
|
benchmarks = [] |
|
profile_analysis = [] |
|
cleanup = [] |
|
|
|
heading('Latency Profiles: %s' % bm_name) |
|
subprocess.check_call([ |
|
'make', bm_name, 'CONFIG=basicprof', '-j', |
|
'%d' % multiprocessing.cpu_count() |
|
]) |
|
for line in subprocess.check_output( |
|
['bins/basicprof/%s' % bm_name, '--benchmark_list_tests']).splitlines(): |
|
link(line, '%s.txt' % fnize(line)) |
|
benchmarks.append( |
|
jobset.JobSpec([ |
|
'bins/basicprof/%s' % bm_name, |
|
'--benchmark_filter=^%s$' % line, '--benchmark_min_time=0.05' |
|
], |
|
environ={ |
|
'GRPC_LATENCY_TRACE': '%s.trace' % fnize(line) |
|
}, |
|
shortname='profile-%s' % fnize(line))) |
|
profile_analysis.append( |
|
jobset.JobSpec([ |
|
sys.executable, |
|
'tools/profiling/latency_profile/profile_analyzer.py', |
|
'--source', |
|
'%s.trace' % fnize(line), '--fmt', 'simple', '--out', |
|
'reports/%s.txt' % fnize(line) |
|
], |
|
timeout_seconds=20 * 60, |
|
shortname='analyze-%s' % fnize(line))) |
|
cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)])) |
|
# periodically flush out the list of jobs: profile_analysis jobs at least |
|
# consume upwards of five gigabytes of ram in some cases, and so analysing |
|
# hundreds of them at once is impractical -- but we want at least some |
|
# concurrency or the work takes too long |
|
if len(benchmarks) >= min(16, multiprocessing.cpu_count()): |
|
# run up to half the cpu count: each benchmark can use up to two cores |
|
# (one for the microbenchmark, one for the data flush) |
|
jobset.run(benchmarks, |
|
maxjobs=max(1, |
|
multiprocessing.cpu_count() / 2)) |
|
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) |
|
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) |
|
benchmarks = [] |
|
profile_analysis = [] |
|
cleanup = [] |
|
# run the remaining benchmarks that weren't flushed |
|
if len(benchmarks): |
|
jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count() / 2)) |
|
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) |
|
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) |
|
|
|
|
|
def collect_perf(bm_name, args): |
|
"""generate flamegraphs""" |
|
heading('Flamegraphs: %s' % bm_name) |
|
subprocess.check_call([ |
|
'make', bm_name, 'CONFIG=mutrace', '-j', |
|
'%d' % multiprocessing.cpu_count() |
|
]) |
|
benchmarks = [] |
|
profile_analysis = [] |
|
cleanup = [] |
|
for line in subprocess.check_output( |
|
['bins/mutrace/%s' % bm_name, '--benchmark_list_tests']).splitlines(): |
|
link(line, '%s.svg' % fnize(line)) |
|
benchmarks.append( |
|
jobset.JobSpec([ |
|
'perf', 'record', '-o', |
|
'%s-perf.data' % fnize(line), '-g', '-F', '997', |
|
'bins/mutrace/%s' % bm_name, |
|
'--benchmark_filter=^%s$' % line, '--benchmark_min_time=10' |
|
], |
|
shortname='perf-%s' % fnize(line))) |
|
profile_analysis.append( |
|
jobset.JobSpec( |
|
[ |
|
'tools/run_tests/performance/process_local_perf_flamegraphs.sh' |
|
], |
|
environ={ |
|
'PERF_BASE_NAME': fnize(line), |
|
'OUTPUT_DIR': 'reports', |
|
'OUTPUT_FILENAME': fnize(line), |
|
}, |
|
shortname='flame-%s' % fnize(line))) |
|
cleanup.append(jobset.JobSpec(['rm', '%s-perf.data' % fnize(line)])) |
|
cleanup.append(jobset.JobSpec(['rm', '%s-out.perf' % fnize(line)])) |
|
# periodically flush out the list of jobs: temporary space required for this |
|
# processing is large |
|
if len(benchmarks) >= 20: |
|
# run up to half the cpu count: each benchmark can use up to two cores |
|
# (one for the microbenchmark, one for the data flush) |
|
jobset.run(benchmarks, maxjobs=1) |
|
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) |
|
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) |
|
benchmarks = [] |
|
profile_analysis = [] |
|
cleanup = [] |
|
# run the remaining benchmarks that weren't flushed |
|
if len(benchmarks): |
|
jobset.run(benchmarks, maxjobs=1) |
|
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) |
|
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) |
|
|
|
|
|
def run_summary(bm_name, cfg, base_json_name): |
|
subprocess.check_call([ |
|
'make', bm_name, |
|
'CONFIG=%s' % cfg, '-j', |
|
'%d' % multiprocessing.cpu_count() |
|
]) |
|
cmd = [ |
|
'bins/%s/%s' % (cfg, bm_name), |
|
'--benchmark_out=%s.%s.json' % (base_json_name, cfg), |
|
'--benchmark_out_format=json' |
|
] |
|
if args.summary_time is not None: |
|
cmd += ['--benchmark_min_time=%d' % args.summary_time] |
|
return subprocess.check_output(cmd) |
|
|
|
|
|
def collect_summary(bm_name, args): |
|
heading('Summary: %s [no counters]' % bm_name) |
|
text(run_summary(bm_name, 'opt', bm_name)) |
|
heading('Summary: %s [with counters]' % bm_name) |
|
text(run_summary(bm_name, 'counters', bm_name)) |
|
if args.bigquery_upload: |
|
with open('%s.csv' % bm_name, 'w') as f: |
|
f.write( |
|
subprocess.check_output([ |
|
'tools/profiling/microbenchmarks/bm2bq.py', |
|
'%s.counters.json' % bm_name, |
|
'%s.opt.json' % bm_name |
|
])) |
|
subprocess.check_call([ |
|
'bq', 'load', 'microbenchmarks.microbenchmarks', |
|
'%s.csv' % bm_name |
|
]) |
|
|
|
|
|
collectors = { |
|
'latency': collect_latency, |
|
'perf': collect_perf, |
|
'summary': collect_summary, |
|
} |
|
|
|
argp = argparse.ArgumentParser(description='Collect data from microbenchmarks') |
|
argp.add_argument('-c', |
|
'--collect', |
|
choices=sorted(collectors.keys()), |
|
nargs='*', |
|
default=sorted(collectors.keys()), |
|
help='Which collectors should be run against each benchmark') |
|
argp.add_argument('-b', |
|
'--benchmarks', |
|
choices=bm_constants._AVAILABLE_BENCHMARK_TESTS, |
|
default=bm_constants._AVAILABLE_BENCHMARK_TESTS, |
|
nargs='+', |
|
type=str, |
|
help='Which microbenchmarks should be run') |
|
argp.add_argument('--bigquery_upload', |
|
default=False, |
|
action='store_const', |
|
const=True, |
|
help='Upload results from summary collection to bigquery') |
|
argp.add_argument( |
|
'--summary_time', |
|
default=None, |
|
type=int, |
|
help='Minimum time to run benchmarks for the summary collection') |
|
args = argp.parse_args() |
|
|
|
try: |
|
for collect in args.collect: |
|
for bm_name in args.benchmarks: |
|
collectors[collect](bm_name, args) |
|
finally: |
|
if not os.path.exists('reports'): |
|
os.makedirs('reports') |
|
index_html += "</body>\n</html>\n" |
|
with open('reports/index.html', 'w') as f: |
|
f.write(index_html)
|
|
|