The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1786 lines
70 KiB

//
// Copyright 2017 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <gmock/gmock.h>
#include <grpc/credentials.h>
#include <grpc/grpc.h>
#include <grpc/support/alloc.h>
#include <grpc/support/time.h>
#include <grpcpp/channel.h>
#include <grpcpp/client_context.h>
#include <grpcpp/create_channel.h>
#include <grpcpp/server.h>
#include <grpcpp/server_builder.h>
#include <gtest/gtest.h>
#include <deque>
#include <memory>
#include <mutex>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include "absl/cleanup/cleanup.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/synchronization/notification.h"
#include "absl/types/span.h"
#include "src/core/client_channel/backup_poller.h"
#include "src/core/lib/address_utils/parse_address.h"
#include "src/core/lib/channel/channel_args.h"
#include "src/core/lib/config/config_vars.h"
#include "src/core/lib/iomgr/sockaddr.h"
#include "src/core/lib/security/credentials/fake/fake_credentials.h"
#include "src/core/load_balancing/grpclb/grpclb.h"
#include "src/core/load_balancing/grpclb/grpclb_balancer_addresses.h"
#include "src/core/resolver/endpoint_addresses.h"
#include "src/core/resolver/fake/fake_resolver.h"
#include "src/core/service_config/service_config_impl.h"
#include "src/core/util/crash.h"
#include "src/core/util/debug_location.h"
#include "src/core/util/env.h"
#include "src/core/util/ref_counted_ptr.h"
#include "src/core/util/sync.h"
#include "src/cpp/server/secure_server_credentials.h"
#include "src/proto/grpc/lb/v1/load_balancer.grpc.pb.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
#include "test/core/test_util/port.h"
#include "test/core/test_util/resolve_localhost_ip46.h"
#include "test/core/test_util/test_config.h"
#include "test/cpp/end2end/counted_service.h"
#include "test/cpp/end2end/test_service_impl.h"
#include "test/cpp/util/credentials.h"
#include "test/cpp/util/test_config.h"
// TODO(dgq): Other scenarios in need of testing:
// - Send a serverlist with faulty ip:port addresses (port > 2^16, etc).
// - Test reception of invalid serverlist
// - Test against a non-LB server.
// - Random LB server closing the stream unexpectedly.
//
// Findings from end to end testing to be covered here:
// - Handling of LB servers restart, including reconnection after backing-off
// retries.
// - Destruction of load balanced channel (and therefore of grpclb instance)
// while:
// 1) the internal LB call is still active. This should work by virtue
// of the weak reference the LB call holds. The call should be terminated as
// part of the grpclb shutdown process.
// 2) the retry timer is active. Again, the weak reference it holds should
// prevent a premature call to \a glb_destroy.
using grpc::lb::v1::LoadBalancer;
using grpc::lb::v1::LoadBalanceRequest;
using grpc::lb::v1::LoadBalanceResponse;
using grpc_core::SourceLocation;
namespace grpc {
namespace testing {
namespace {
constexpr char kDefaultServiceConfig[] =
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{} }\n"
" ]\n"
"}";
using BackendService = CountedService<TestServiceImpl>;
using BalancerService = CountedService<LoadBalancer::Service>;
const char kCallCredsMdKey[] = "call-creds";
const char kCallCredsMdValue[] = "should not be received by balancer";
const char kRequestMessage[] = "Live long and prosper.";
const absl::string_view kApplicationTargetName = "application_target_name";
// A test user agent string sent by the client only to the grpclb loadbalancer.
// The backend should not see this user-agent string.
constexpr char kGrpclbSpecificUserAgentString[] = "grpc-grpclb-test-user-agent";
class BackendServiceImpl : public BackendService {
public:
BackendServiceImpl() {}
Status Echo(ServerContext* context, const EchoRequest* request,
EchoResponse* response) override {
// The backend should not see a test user agent configured at the client
// using GRPC_ARG_GRPCLB_CHANNEL_ARGS.
auto it = context->client_metadata().find("user-agent");
if (it != context->client_metadata().end()) {
EXPECT_FALSE(it->second.starts_with(kGrpclbSpecificUserAgentString));
}
// Backend should receive the call credentials metadata.
auto call_credentials_entry =
context->client_metadata().find(kCallCredsMdKey);
EXPECT_NE(call_credentials_entry, context->client_metadata().end());
if (call_credentials_entry != context->client_metadata().end()) {
EXPECT_EQ(call_credentials_entry->second, kCallCredsMdValue);
}
IncreaseRequestCount();
const auto status = TestServiceImpl::Echo(context, request, response);
IncreaseResponseCount();
AddClient(context->peer());
return status;
}
void Start() {}
void Shutdown() {}
std::set<std::string> clients() {
grpc_core::MutexLock lock(&clients_mu_);
return clients_;
}
private:
void AddClient(const std::string& client) {
grpc_core::MutexLock lock(&clients_mu_);
clients_.insert(client);
}
grpc_core::Mutex clients_mu_;
std::set<std::string> clients_ ABSL_GUARDED_BY(&clients_mu_);
};
std::string Ip4ToPackedString(const char* ip_str) {
struct in_addr ip4;
CHECK_EQ(inet_pton(AF_INET, ip_str, &ip4), 1);
return std::string(reinterpret_cast<const char*>(&ip4), sizeof(ip4));
}
std::string Ip6ToPackedString(const char* ip_str) {
struct in6_addr ip6;
CHECK_EQ(inet_pton(AF_INET6, ip_str, &ip6), 1);
return std::string(reinterpret_cast<const char*>(&ip6), sizeof(ip6));
}
struct ClientStats {
size_t num_calls_started = 0;
size_t num_calls_finished = 0;
size_t num_calls_finished_with_client_failed_to_send = 0;
size_t num_calls_finished_known_received = 0;
std::map<std::string, size_t> drop_token_counts;
ClientStats& operator+=(const ClientStats& other) {
num_calls_started += other.num_calls_started;
num_calls_finished += other.num_calls_finished;
num_calls_finished_with_client_failed_to_send +=
other.num_calls_finished_with_client_failed_to_send;
num_calls_finished_known_received +=
other.num_calls_finished_known_received;
for (const auto& p : other.drop_token_counts) {
drop_token_counts[p.first] += p.second;
}
return *this;
}
void Reset() {
num_calls_started = 0;
num_calls_finished = 0;
num_calls_finished_with_client_failed_to_send = 0;
num_calls_finished_known_received = 0;
drop_token_counts.clear();
}
};
class BalancerServiceImpl : public BalancerService {
public:
using Stream = ServerReaderWriter<LoadBalanceResponse, LoadBalanceRequest>;
void Start() {
{
grpc_core::MutexLock lock(&mu_);
shutdown_ = false;
response_queue_.clear();
}
{
grpc_core::MutexLock lock(&load_report_mu_);
load_report_queue_.clear();
}
}
void Shutdown() {
{
grpc_core::MutexLock lock(&mu_);
shutdown_ = true;
}
ShutdownStream();
LOG(INFO) << "LB[" << this << "]: shut down";
}
void set_client_load_reporting_interval_seconds(int seconds) {
client_load_reporting_interval_seconds_ = seconds;
}
void SendResponse(LoadBalanceResponse response) {
grpc_core::MutexLock lock(&mu_);
response_queue_.emplace_back(std::move(response));
if (response_cond_ != nullptr) response_cond_->SignalAll();
}
void ShutdownStream() {
grpc_core::MutexLock lock(&mu_);
response_queue_.emplace_back(absl::nullopt);
if (response_cond_ != nullptr) response_cond_->SignalAll();
}
absl::optional<ClientStats> WaitForLoadReport(absl::Duration timeout) {
grpc_core::MutexLock lock(&load_report_mu_);
if (load_report_queue_.empty()) {
grpc_core::CondVar condition;
load_report_cond_ = &condition;
condition.WaitWithTimeout(&load_report_mu_,
timeout * grpc_test_slowdown_factor());
load_report_cond_ = nullptr;
}
if (load_report_queue_.empty()) return absl::nullopt;
ClientStats load_report = std::move(load_report_queue_.front());
load_report_queue_.pop_front();
return load_report;
}
bool WaitForNewStream(size_t prev_seen_count,
absl::Duration timeout = absl::Seconds(5)) {
grpc_core::MutexLock lock(&stream_count_mu_);
if (stream_count_ == prev_seen_count) {
grpc_core::CondVar condition;
stream_count_cond_ = &condition;
condition.WaitWithTimeout(&stream_count_mu_,
timeout * grpc_test_slowdown_factor());
stream_count_cond_ = nullptr;
}
return stream_count_ > prev_seen_count;
}
std::vector<std::string> service_names() {
grpc_core::MutexLock lock(&mu_);
return service_names_;
}
std::set<std::string> clients() {
grpc_core::MutexLock lock(&clients_mu_);
return clients_;
}
private:
// Request handler.
Status BalanceLoad(ServerContext* context, Stream* stream) override {
LOG(INFO) << "LB[" << this << "]: BalanceLoad";
{
grpc_core::MutexLock lock(&mu_);
if (shutdown_) {
LOG(INFO) << "LB[" << this << "]: shutdown at stream start";
return Status::OK;
}
}
IncrementStreamCount();
AddClient(context->peer());
// The loadbalancer should see a test user agent because it was
// specifically configured at the client using
// GRPC_ARG_GRPCLB_CHANNEL_ARGS
auto it = context->client_metadata().find("user-agent");
EXPECT_TRUE(it != context->client_metadata().end());
if (it != context->client_metadata().end()) {
EXPECT_THAT(std::string(it->second.data(), it->second.length()),
::testing::StartsWith(kGrpclbSpecificUserAgentString));
}
// Balancer shouldn't receive the call credentials metadata.
EXPECT_EQ(context->client_metadata().find(kCallCredsMdKey),
context->client_metadata().end());
// Read initial request.
LoadBalanceRequest request;
if (!stream->Read(&request)) {
LOG(INFO) << "LB[" << this << "]: stream read returned false";
return Status::OK;
}
EXPECT_TRUE(request.has_initial_request());
{
grpc_core::MutexLock lock(&mu_);
service_names_.push_back(request.initial_request().name());
}
IncreaseRequestCount();
LOG(INFO) << "LB[" << this << "]: received initial message '"
<< request.DebugString() << "'";
// Send initial response.
LoadBalanceResponse response;
auto* initial_response = response.mutable_initial_response();
if (client_load_reporting_interval_seconds_ > 0) {
initial_response->mutable_client_stats_report_interval()->set_seconds(
client_load_reporting_interval_seconds_);
}
stream->Write(response);
// Spawn a separate thread to read requests from the client.
absl::Notification reader_shutdown;
std::thread reader(std::bind(&BalancerServiceImpl::ReadThread, this, stream,
&reader_shutdown));
auto thread_cleanup = absl::MakeCleanup([&]() {
LOG(INFO) << "shutting down reader thread";
reader_shutdown.Notify();
LOG(INFO) << "joining reader thread";
reader.join();
LOG(INFO) << "joining reader thread complete";
});
// Send responses as instructed by the test.
while (true) {
auto response = GetNextResponse();
if (!response.has_value()) {
context->TryCancel();
break;
}
LOG(INFO) << "LB[" << this
<< "]: Sending response: " << response->DebugString();
IncreaseResponseCount();
stream->Write(*response);
}
LOG(INFO) << "LB[" << this << "]: done";
return Status::OK;
}
// Reader thread spawned by request handler.
void ReadThread(Stream* stream, absl::Notification* shutdown) {
LoadBalanceRequest request;
while (!shutdown->HasBeenNotified() && stream->Read(&request)) {
LOG(INFO) << "LB[" << this << "]: received client load report message '"
<< request.DebugString() << "'";
EXPECT_GT(client_load_reporting_interval_seconds_, 0);
EXPECT_TRUE(request.has_client_stats());
ClientStats load_report;
load_report.num_calls_started =
request.client_stats().num_calls_started();
load_report.num_calls_finished =
request.client_stats().num_calls_finished();
load_report.num_calls_finished_with_client_failed_to_send =
request.client_stats()
.num_calls_finished_with_client_failed_to_send();
load_report.num_calls_finished_known_received =
request.client_stats().num_calls_finished_known_received();
for (const auto& drop_token_count :
request.client_stats().calls_finished_with_drop()) {
load_report.drop_token_counts[drop_token_count.load_balance_token()] =
drop_token_count.num_calls();
}
// We need to acquire the lock here in order to prevent the notify_one
// below from firing before its corresponding wait is executed.
grpc_core::MutexLock lock(&load_report_mu_);
load_report_queue_.emplace_back(std::move(load_report));
if (load_report_cond_ != nullptr) load_report_cond_->Signal();
}
}
// Helper for request handler thread to get the next response to be
// sent on the stream. Returns nullopt when the test has requested
// stream shutdown.
absl::optional<LoadBalanceResponse> GetNextResponse() {
grpc_core::MutexLock lock(&mu_);
if (response_queue_.empty()) {
grpc_core::CondVar condition;
response_cond_ = &condition;
condition.Wait(&mu_);
response_cond_ = nullptr;
}
auto response = std::move(response_queue_.front());
response_queue_.pop_front();
return response;
}
void AddClient(const std::string& client) {
grpc_core::MutexLock lock(&clients_mu_);
clients_.insert(client);
}
void IncrementStreamCount() {
grpc_core::MutexLock lock(&stream_count_mu_);
++stream_count_;
if (stream_count_cond_ != nullptr) stream_count_cond_->Signal();
}
int client_load_reporting_interval_seconds_ = 0;
grpc_core::Mutex mu_;
bool shutdown_ ABSL_GUARDED_BY(&mu_) = false;
std::vector<std::string> service_names_ ABSL_GUARDED_BY(mu_);
std::deque<absl::optional<LoadBalanceResponse>> response_queue_
ABSL_GUARDED_BY(mu_);
grpc_core::CondVar* response_cond_ ABSL_GUARDED_BY(mu_) = nullptr;
grpc_core::Mutex load_report_mu_;
grpc_core::CondVar* load_report_cond_ ABSL_GUARDED_BY(load_report_mu_) =
nullptr;
std::deque<ClientStats> load_report_queue_ ABSL_GUARDED_BY(load_report_mu_);
grpc_core::Mutex clients_mu_;
std::set<std::string> clients_ ABSL_GUARDED_BY(&clients_mu_);
grpc_core::Mutex stream_count_mu_;
grpc_core::CondVar* stream_count_cond_ ABSL_GUARDED_BY(&stream_count_mu_) =
nullptr;
size_t stream_count_ ABSL_GUARDED_BY(&stream_count_mu_) = 0;
};
class GrpclbEnd2endTest : public ::testing::Test {
protected:
template <typename T>
class ServerThread {
public:
template <typename... Args>
explicit ServerThread(const std::string& type, Args&&... args)
: port_(grpc_pick_unused_port_or_die()),
type_(type),
service_(std::forward<Args>(args)...) {}
~ServerThread() { Shutdown(); }
void Start() {
LOG(INFO) << "starting " << type_ << " server on port " << port_;
CHECK(!running_);
running_ = true;
service_.Start();
grpc_core::Mutex mu;
// We need to acquire the lock here in order to prevent the notify_one
// by ServerThread::Serve from firing before the wait below is hit.
grpc_core::MutexLock lock(&mu);
grpc_core::CondVar cond;
thread_ = std::make_unique<std::thread>(
std::bind(&ServerThread::Serve, this, &mu, &cond));
cond.Wait(&mu);
LOG(INFO) << type_ << " server startup complete";
}
void Serve(grpc_core::Mutex* mu, grpc_core::CondVar* cond) {
// We need to acquire the lock here in order to prevent the notify_one
// below from firing before its corresponding wait is executed.
grpc_core::MutexLock lock(mu);
ServerBuilder builder;
std::shared_ptr<ServerCredentials> creds(new SecureServerCredentials(
grpc_fake_transport_security_server_credentials_create()));
builder.AddListeningPort(grpc_core::LocalIpAndPort(port_), creds);
builder.RegisterService(&service_);
server_ = builder.BuildAndStart();
cond->Signal();
}
void Shutdown() {
if (!running_) return;
LOG(INFO) << type_ << " about to shutdown";
service_.Shutdown();
server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0));
thread_->join();
LOG(INFO) << type_ << " shutdown completed";
running_ = false;
}
int port() const { return port_; }
T& service() { return service_; }
private:
const int port_;
std::string type_;
T service_;
std::unique_ptr<Server> server_;
std::unique_ptr<std::thread> thread_;
bool running_ = false;
};
static void SetUpTestSuite() {
// Make the backup poller poll very frequently in order to pick up
// updates from all the subchannels's FDs.
grpc_core::ConfigVars::Overrides overrides;
overrides.client_channel_backup_poll_interval_ms = 1;
grpc_core::ConfigVars::SetOverrides(overrides);
#if TARGET_OS_IPHONE
// Workaround Apple CFStream bug
grpc_core::SetEnv("grpc_cfstream", "0");
#endif
grpc_init();
}
static void TearDownTestSuite() { grpc_shutdown(); }
void SetUp() override {
response_generator_ =
grpc_core::MakeRefCounted<grpc_core::FakeResolverResponseGenerator>();
balancer_ = CreateAndStartBalancer();
ResetStub();
}
void TearDown() override {
ShutdownAllBackends();
balancer_->Shutdown();
}
void CreateBackends(size_t num_backends) {
for (size_t i = 0; i < num_backends; ++i) {
backends_.emplace_back(
std::make_unique<ServerThread<BackendServiceImpl>>("backend"));
backends_.back()->Start();
}
}
void StartAllBackends() {
for (auto& backend : backends_) backend->Start();
}
void StartBackend(size_t index) { backends_[index]->Start(); }
void ShutdownAllBackends() {
for (auto& backend : backends_) backend->Shutdown();
}
void ShutdownBackend(size_t index) { backends_[index]->Shutdown(); }
std::unique_ptr<ServerThread<BalancerServiceImpl>> CreateAndStartBalancer() {
auto balancer =
std::make_unique<ServerThread<BalancerServiceImpl>>("balancer");
balancer->Start();
return balancer;
}
void ResetStub(int fallback_timeout_ms = 0,
const std::string& expected_targets = "",
int subchannel_cache_delay_ms = 0) {
// Send a separate user agent string for the grpclb load balancer alone.
grpc_core::ChannelArgs grpclb_channel_args;
// Set a special user agent string for the grpclb load balancer. It
// will be verified at the load balancer.
grpclb_channel_args = grpclb_channel_args.Set(
GRPC_ARG_PRIMARY_USER_AGENT_STRING, kGrpclbSpecificUserAgentString);
ChannelArguments args;
if (fallback_timeout_ms > 0) {
args.SetGrpclbFallbackTimeout(fallback_timeout_ms *
grpc_test_slowdown_factor());
}
args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR,
response_generator_.get());
if (!expected_targets.empty()) {
args.SetString(GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets);
grpclb_channel_args = grpclb_channel_args.Set(
GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets);
}
if (subchannel_cache_delay_ms > 0) {
args.SetInt(GRPC_ARG_GRPCLB_SUBCHANNEL_CACHE_INTERVAL_MS,
subchannel_cache_delay_ms * grpc_test_slowdown_factor());
}
static const grpc_arg_pointer_vtable channel_args_vtable = {
// copy
[](void* p) -> void* {
return grpc_channel_args_copy(static_cast<grpc_channel_args*>(p));
},
// destroy
[](void* p) {
grpc_channel_args_destroy(static_cast<grpc_channel_args*>(p));
},
// compare
[](void* p1, void* p2) {
return grpc_channel_args_compare(static_cast<grpc_channel_args*>(p1),
static_cast<grpc_channel_args*>(p2));
},
};
// Specify channel args for the channel to the load balancer.
args.SetPointerWithVtable(
GRPC_ARG_EXPERIMENTAL_GRPCLB_CHANNEL_ARGS,
const_cast<grpc_channel_args*>(grpclb_channel_args.ToC().get()),
&channel_args_vtable);
// TODO(dgq): templatize tests to run everything using both secure and
// insecure channel credentials.
grpc_channel_credentials* channel_creds =
grpc_fake_transport_security_credentials_create();
grpc_call_credentials* call_creds = grpc_md_only_test_credentials_create(
kCallCredsMdKey, kCallCredsMdValue);
auto creds = std::make_shared<TestCompositeChannelCredentials>(
channel_creds, call_creds);
call_creds->Unref();
channel_creds->Unref();
channel_ = grpc::CreateCustomChannel(
absl::StrCat("fake:", kApplicationTargetName), creds, args);
stub_ = grpc::testing::EchoTestService::NewStub(channel_);
}
void ResetBackendCounters() {
for (auto& backend : backends_) backend->service().ResetCounters();
}
absl::optional<ClientStats> WaitForLoadReports(
absl::Duration timeout = absl::Seconds(5)) {
return balancer_->service().WaitForLoadReport(timeout);
}
bool SeenAllBackends(size_t start_index = 0, size_t stop_index = 0) {
if (stop_index == 0) stop_index = backends_.size();
for (size_t i = start_index; i < stop_index; ++i) {
if (backends_[i]->service().request_count() == 0) return false;
}
return true;
}
void SendRpcAndCount(int* num_total, int* num_ok, int* num_failure,
int* num_drops) {
const Status status = SendRpc();
if (status.ok()) {
++*num_ok;
} else {
if (status.error_message() == "drop directed by grpclb balancer") {
++*num_drops;
} else {
++*num_failure;
}
}
++*num_total;
}
struct WaitForBackendOptions {
int timeout_seconds = 10;
int num_requests_multiple_of = 1;
WaitForBackendOptions() {}
WaitForBackendOptions& SetTimeoutSeconds(int seconds) {
timeout_seconds = seconds;
return *this;
}
WaitForBackendOptions& SetNumRequestsMultipleOf(int multiple) {
num_requests_multiple_of = multiple;
return *this;
}
};
std::tuple<int, int, int> WaitForAllBackends(
size_t start_index = 0, size_t stop_index = 0,
WaitForBackendOptions options = WaitForBackendOptions(),
SourceLocation location = SourceLocation()) {
LOG(INFO) << "Waiting for backends [" << start_index << ", " << stop_index
<< ")";
const absl::Time deadline =
absl::Now() +
absl::Seconds(options.timeout_seconds * grpc_test_slowdown_factor());
int num_ok = 0;
int num_failure = 0;
int num_drops = 0;
int num_total = 0;
while (!SeenAllBackends(start_index, stop_index)) {
absl::Time now = absl::Now();
EXPECT_LT(now, deadline) << location.file() << ":" << location.line();
if (now > deadline) break;
SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops);
}
while (num_total % options.num_requests_multiple_of != 0) {
absl::Time now = absl::Now();
EXPECT_LT(now, deadline) << location.file() << ":" << location.line();
if (now > deadline) break;
SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops);
}
ResetBackendCounters();
LOG(INFO) << "Performed " << num_total
<< " warm up requests (a multiple of "
<< options.num_requests_multiple_of << ") against the backends. "
<< num_ok << " succeeded, " << num_failure << " failed, "
<< num_drops << " dropped.";
return std::make_tuple(num_ok, num_failure, num_drops);
}
void WaitForBackend(size_t backend_idx,
WaitForBackendOptions options = WaitForBackendOptions(),
SourceLocation location = SourceLocation()) {
WaitForAllBackends(backend_idx, backend_idx + 1, options, location);
}
grpc_core::EndpointAddressesList CreateAddressListFromPorts(
const absl::Span<const int> ports, absl::string_view balancer_name = "") {
grpc_core::EndpointAddressesList addresses;
for (int port : ports) {
absl::StatusOr<grpc_core::URI> lb_uri =
grpc_core::URI::Parse(grpc_core::LocalIpUri(port));
CHECK_OK(lb_uri);
grpc_resolved_address address;
CHECK(grpc_parse_uri(*lb_uri, &address));
grpc_core::ChannelArgs args;
if (!balancer_name.empty()) {
args = args.Set(GRPC_ARG_DEFAULT_AUTHORITY, balancer_name);
}
addresses.emplace_back(address, args);
}
return addresses;
}
void SetNextResolutionFromEndpoints(
grpc_core::EndpointAddressesList balancers,
grpc_core::EndpointAddressesList backends = {},
const char* service_config_json = kDefaultServiceConfig) {
grpc_core::ExecCtx exec_ctx;
grpc_core::Resolver::Result result;
result.addresses = std::move(backends);
result.service_config = grpc_core::ServiceConfigImpl::Create(
grpc_core::ChannelArgs(), service_config_json);
CHECK_OK(result.service_config);
result.args = grpc_core::SetGrpcLbBalancerAddresses(
grpc_core::ChannelArgs(), std::move(balancers));
response_generator_->SetResponseSynchronously(std::move(result));
}
void SetNextResolution(
const absl::Span<const int> balancer_ports,
const absl::Span<const int> backend_ports = {},
const char* service_config_json = kDefaultServiceConfig) {
SetNextResolutionFromEndpoints(CreateAddressListFromPorts(balancer_ports),
CreateAddressListFromPorts(backend_ports),
service_config_json);
}
void SetNextResolutionDefaultBalancer(
const char* service_config_json = kDefaultServiceConfig) {
SetNextResolution({balancer_->port()}, {}, service_config_json);
}
std::vector<int> GetBackendPorts(size_t start_index = 0,
size_t stop_index = 0) const {
if (stop_index == 0) stop_index = backends_.size();
std::vector<int> backend_ports;
for (size_t i = start_index; i < stop_index; ++i) {
backend_ports.push_back(backends_[i]->port());
}
return backend_ports;
}
void SendBalancerResponse(LoadBalanceResponse response) {
balancer_->service().SendResponse(std::move(response));
}
LoadBalanceResponse BuildResponseForBackends(
const std::vector<int>& backend_ports,
const std::map<std::string, size_t>& drop_token_counts) {
LoadBalanceResponse response;
for (const auto& drop_token_count : drop_token_counts) {
for (size_t i = 0; i < drop_token_count.second; ++i) {
auto* server = response.mutable_server_list()->add_servers();
server->set_drop(true);
server->set_load_balance_token(drop_token_count.first);
}
}
for (const int& backend_port : backend_ports) {
auto* server = response.mutable_server_list()->add_servers();
server->set_ip_address(grpc_core::RunningWithIPv6Only()
? Ip6ToPackedString("::1")
: Ip4ToPackedString("127.0.0.1"));
server->set_port(backend_port);
static int token_count = 0;
server->set_load_balance_token(
absl::StrFormat("token%03d", ++token_count));
}
return response;
}
Status SendRpc(EchoResponse* response = nullptr, int timeout_ms = 3000,
bool wait_for_ready = false,
const Status& expected_status = Status::OK) {
const bool local_response = (response == nullptr);
if (local_response) response = new EchoResponse;
EchoRequest request;
request.set_message(kRequestMessage);
if (!expected_status.ok()) {
auto* error = request.mutable_param()->mutable_expected_error();
error->set_code(expected_status.error_code());
error->set_error_message(expected_status.error_message());
}
ClientContext context;
context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms));
if (wait_for_ready) context.set_wait_for_ready(true);
Status status = stub_->Echo(&context, request, response);
if (local_response) delete response;
return status;
}
void CheckRpcSendOk(const size_t times = 1, const int timeout_ms = 3000,
bool wait_for_ready = false) {
for (size_t i = 0; i < times; ++i) {
EchoResponse response;
const Status status = SendRpc(&response, timeout_ms, wait_for_ready);
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kRequestMessage);
}
}
void CheckRpcSendFailure() {
const Status status = SendRpc();
EXPECT_FALSE(status.ok());
}
std::shared_ptr<Channel> channel_;
std::unique_ptr<grpc::testing::EchoTestService::Stub> stub_;
std::vector<std::unique_ptr<ServerThread<BackendServiceImpl>>> backends_;
std::unique_ptr<ServerThread<BalancerServiceImpl>> balancer_;
grpc_core::RefCountedPtr<grpc_core::FakeResolverResponseGenerator>
response_generator_;
};
TEST_F(GrpclbEnd2endTest, Vanilla) {
const size_t kNumBackends = 3;
const size_t kNumRpcsPerAddress = 100;
CreateBackends(kNumBackends);
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
SetNextResolutionDefaultBalancer();
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// We need to wait for all backends to come online.
WaitForAllBackends();
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * kNumBackends);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(GrpclbEnd2endTest, SubchannelCaching) {
CreateBackends(3);
ResetStub(/*fallback_timeout_ms=*/0, /*expected_targets=*/"",
/*subchannel_cache_delay_ms=*/1500);
SetNextResolutionDefaultBalancer();
// Initially send backends 0 and 1.
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(0, 2), {}));
WaitForAllBackends(0, 2);
// Now remove backends 0 and 1 and add backend 2.
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(2), {}));
WaitForBackend(2);
// Now re-add backend 1.
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(1), {}));
WaitForBackend(1);
// Backend 1 should never have lost its connection from the client.
EXPECT_EQ(1UL, backends_[1]->service().clients().size());
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// And sent 3 responses.
EXPECT_EQ(3U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest, ReturnServerStatus) {
CreateBackends(1);
SetNextResolutionDefaultBalancer();
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
// We need to wait for all backends to come online.
WaitForAllBackends();
// Send a request that the backend will fail, and make sure we get
// back the right status.
Status expected(StatusCode::INVALID_ARGUMENT, "He's dead, Jim!");
Status actual = SendRpc(/*response=*/nullptr, /*timeout_ms=*/3000,
/*wait_for_ready=*/false, expected);
EXPECT_EQ(actual.error_code(), expected.error_code());
EXPECT_EQ(actual.error_message(), expected.error_message());
}
TEST_F(GrpclbEnd2endTest, SelectGrpclbWithMigrationServiceConfig) {
CreateBackends(1);
SetNextResolutionDefaultBalancer(
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"does_not_exist\":{} },\n"
" { \"grpclb\":{} }\n"
" ]\n"
"}");
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
CheckRpcSendOk(1, 3000 /* timeout_ms */, true /* wait_for_ready */);
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(GrpclbEnd2endTest,
SelectGrpclbWithMigrationServiceConfigAndNoAddresses) {
const int kFallbackTimeoutMs = 200;
ResetStub(kFallbackTimeoutMs);
SetNextResolution({}, {},
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"does_not_exist\":{} },\n"
" { \"grpclb\":{} }\n"
" ]\n"
"}");
// Try to connect.
EXPECT_EQ(GRPC_CHANNEL_IDLE, channel_->GetState(true));
// Should go into state TRANSIENT_FAILURE when we enter fallback mode.
const gpr_timespec deadline = grpc_timeout_seconds_to_deadline(1);
grpc_connectivity_state state;
while ((state = channel_->GetState(false)) !=
GRPC_CHANNEL_TRANSIENT_FAILURE) {
ASSERT_TRUE(channel_->WaitForStateChange(state, deadline));
}
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(GrpclbEnd2endTest, UsePickFirstChildPolicy) {
const size_t kNumBackends = 2;
const size_t kNumRpcs = kNumBackends * 2;
CreateBackends(kNumBackends);
SetNextResolutionDefaultBalancer(
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{\n"
" \"childPolicy\":[\n"
" { \"pick_first\":{} }\n"
" ]\n"
" } }\n"
" ]\n"
"}");
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
CheckRpcSendOk(kNumRpcs, 3000 /* timeout_ms */, true /* wait_for_ready */);
// Check that all requests went to one backend. This verifies that we
// used pick_first instead of round_robin as the child policy.
bool found = false;
for (size_t i = 0; i < backends_.size(); ++i) {
if (backends_[i]->service().request_count() > 0) {
LOG(INFO) << "backend " << i << " saw traffic";
EXPECT_EQ(backends_[i]->service().request_count(), kNumRpcs)
<< "backend " << i;
EXPECT_FALSE(found) << "multiple backends saw traffic";
found = true;
}
}
EXPECT_TRUE(found) << "no backends saw traffic";
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(GrpclbEnd2endTest, SwapChildPolicy) {
const size_t kNumBackends = 2;
const size_t kNumRpcs = kNumBackends * 2;
CreateBackends(kNumBackends);
SetNextResolutionDefaultBalancer(
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{\n"
" \"childPolicy\":[\n"
" { \"pick_first\":{} }\n"
" ]\n"
" } }\n"
" ]\n"
"}");
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
CheckRpcSendOk(kNumRpcs, 3000 /* timeout_ms */, true /* wait_for_ready */);
// Check that all requests went to one backend. This verifies that we
// used pick_first instead of round_robin as the child policy.
bool found = false;
for (size_t i = 0; i < backends_.size(); ++i) {
if (backends_[i]->service().request_count() > 0) {
LOG(INFO) << "backend " << i << " saw traffic";
EXPECT_EQ(backends_[i]->service().request_count(), kNumRpcs)
<< "backend " << i;
EXPECT_FALSE(found) << "multiple backends saw traffic";
found = true;
}
}
EXPECT_TRUE(found) << "no backends saw traffic";
// Send new resolution that removes child policy from service config.
SetNextResolutionDefaultBalancer();
// We should now be using round_robin, which will send traffic to all
// backends.
WaitForAllBackends();
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(GrpclbEnd2endTest, SameBackendListedMultipleTimes) {
CreateBackends(1);
SetNextResolutionDefaultBalancer();
// Same backend listed twice.
std::vector<int> ports;
ports.push_back(backends_[0]->port());
ports.push_back(backends_[0]->port());
const size_t kNumRpcsPerAddress = 10;
SendBalancerResponse(BuildResponseForBackends(ports, {}));
// We need to wait for the backend to come online.
WaitForBackend(0);
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * ports.size());
// Backend should have gotten 20 requests.
EXPECT_EQ(kNumRpcsPerAddress * 2, backends_[0]->service().request_count());
// And they should have come from a single client port, because of
// subchannel sharing.
EXPECT_EQ(1UL, backends_[0]->service().clients().size());
}
TEST_F(GrpclbEnd2endTest, InitiallyEmptyServerlist) {
CreateBackends(1);
SetNextResolutionDefaultBalancer();
// First response is an empty serverlist. RPCs should fail.
SendBalancerResponse(LoadBalanceResponse());
CheckRpcSendFailure();
// Now send a non-empty serverlist.
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
CheckRpcSendOk(1, /*timeout_ms=*/3000, /*wait_for_ready=*/true);
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent two responses.
EXPECT_EQ(2U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest, AllServersUnreachableFailFast) {
SetNextResolutionDefaultBalancer();
const size_t kNumUnreachableServers = 5;
std::vector<int> ports;
for (size_t i = 0; i < kNumUnreachableServers; ++i) {
ports.push_back(grpc_pick_unused_port_or_die());
}
SendBalancerResponse(BuildResponseForBackends(ports, {}));
const Status status = SendRpc();
// The error shouldn't be DEADLINE_EXCEEDED.
EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code());
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest, Fallback) {
const size_t kNumBackends = 4;
const size_t kNumBackendsInResolution = kNumBackends / 2;
CreateBackends(kNumBackends);
// Inject resolver result that contains the fallback backends.
SetNextResolution({balancer_->port()},
GetBackendPorts(0, kNumBackendsInResolution));
// Balancer has not sent a serverlist, so we should use fallback.
// Wait until all the fallback backends are reachable.
WaitForAllBackends(0, kNumBackendsInResolution,
WaitForBackendOptions().SetTimeoutSeconds(20));
// Send serverlist.
SendBalancerResponse(BuildResponseForBackends(
GetBackendPorts(/*start_index=*/kNumBackendsInResolution), {}));
// Now we should be using the backends from the balancer.
WaitForAllBackends(kNumBackendsInResolution);
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest, FallbackUpdate) {
const size_t kNumBackends = 6;
const size_t kNumBackendsInResolution = kNumBackends / 3;
const size_t kNumBackendsInResolutionUpdate = kNumBackends / 3;
ResetStub(/*fallback_timeout_ms=*/500);
CreateBackends(kNumBackends);
// Inject resolver result with fallback addresses.
SetNextResolution({balancer_->port()},
GetBackendPorts(0, kNumBackendsInResolution));
// Balancer has not sent a serverlist, so we should use fallback.
// Wait until all the fallback backends are reachable.
WaitForAllBackends(0, kNumBackendsInResolution);
// Now send a resolver result with a different set of backend addresses.
SetNextResolution({balancer_->port()},
GetBackendPorts(kNumBackendsInResolution,
kNumBackendsInResolution +
kNumBackendsInResolutionUpdate));
// Wait until the new fallback backends are reachable.
WaitForAllBackends(kNumBackendsInResolution,
kNumBackendsInResolution + kNumBackendsInResolutionUpdate);
// Send non-empty serverlist.
SendBalancerResponse(
BuildResponseForBackends(GetBackendPorts(kNumBackendsInResolution +
kNumBackendsInResolutionUpdate),
{}));
// Wait for backends from balancer to be seen.
WaitForAllBackends(kNumBackendsInResolution + kNumBackendsInResolutionUpdate);
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest,
FallbackAfterStartupLoseContactWithBalancerThenBackends) {
// First two backends are fallback, last two are pointed to by balancer.
const size_t kNumBackends = 4;
const size_t kNumFallbackBackends = 2;
const size_t kNumBalancerBackends = kNumBackends - kNumFallbackBackends;
CreateBackends(kNumBackends);
SetNextResolution({balancer_->port()},
GetBackendPorts(0, kNumFallbackBackends));
SendBalancerResponse(
BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}));
// Try to connect.
WaitForAllBackends(kNumFallbackBackends /* start_index */);
// Stop balancer. RPCs should continue going to backends from balancer.
balancer_->Shutdown();
CheckRpcSendOk(100 * kNumBalancerBackends);
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
EXPECT_EQ(100UL, backends_[i]->service().request_count());
}
// Stop backends from balancer. This should put us in fallback mode.
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
ShutdownBackend(i);
}
WaitForAllBackends(0, kNumFallbackBackends);
// Restart the backends from the balancer. We should *not* start
// sending traffic back to them at this point.
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
StartBackend(i);
}
CheckRpcSendOk(100 * kNumBalancerBackends);
for (size_t i = 0; i < kNumFallbackBackends; ++i) {
EXPECT_EQ(100UL, backends_[i]->service().request_count());
}
// Now start the balancer again. This should cause us to exit
// fallback mode.
balancer_->Start();
SendBalancerResponse(
BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}));
WaitForAllBackends(kNumFallbackBackends);
}
TEST_F(GrpclbEnd2endTest,
FallbackAfterStartupLoseContactWithBackendsThenBalancer) {
// First two backends are fallback, last two are pointed to by balancer.
const size_t kNumBackends = 4;
const size_t kNumFallbackBackends = 2;
const size_t kNumBalancerBackends = kNumBackends - kNumFallbackBackends;
CreateBackends(kNumBackends);
SetNextResolution({balancer_->port()},
GetBackendPorts(0, kNumFallbackBackends));
SendBalancerResponse(
BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}));
// Try to connect.
WaitForAllBackends(kNumFallbackBackends);
// Stop backends from balancer. Since we are still in contact with
// the balancer at this point, RPCs should be failing.
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
ShutdownBackend(i);
}
CheckRpcSendFailure();
// Stop balancer. This should put us in fallback mode.
balancer_->Shutdown();
WaitForAllBackends(0, kNumFallbackBackends);
// Restart the backends from the balancer. We should *not* start
// sending traffic back to them at this point (although the behavior
// in xds may be different).
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
StartBackend(i);
}
CheckRpcSendOk(100 * kNumBalancerBackends);
for (size_t i = 0; i < kNumFallbackBackends; ++i) {
EXPECT_EQ(100UL, backends_[i]->service().request_count());
}
// Now start the balancer again. This should cause us to exit
// fallback mode.
balancer_->Start();
SendBalancerResponse(
BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}));
WaitForAllBackends(kNumFallbackBackends);
}
TEST_F(GrpclbEnd2endTest, FallbackEarlyWhenBalancerChannelFails) {
const int kFallbackTimeoutMs = 10000;
ResetStub(kFallbackTimeoutMs);
CreateBackends(1);
// Return an unreachable balancer and one fallback backend.
SetNextResolution({grpc_pick_unused_port_or_die()}, GetBackendPorts());
// Send RPC with deadline less than the fallback timeout and make sure it
// succeeds.
CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 3000,
/* wait_for_ready */ false);
}
TEST_F(GrpclbEnd2endTest, FallbackEarlyWhenBalancerCallFails) {
const int kFallbackTimeoutMs = 10000;
ResetStub(kFallbackTimeoutMs);
CreateBackends(1);
// Return one balancer and one fallback backend.
SetNextResolution({balancer_->port()}, GetBackendPorts());
// Balancer drops call without sending a serverlist.
balancer_->service().ShutdownStream();
// Send RPC with deadline less than the fallback timeout and make sure it
// succeeds.
CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 3000,
/* wait_for_ready */ false);
}
TEST_F(GrpclbEnd2endTest, FallbackControlledByBalancerBeforeFirstServerlist) {
const int kFallbackTimeoutMs = 10000;
ResetStub(kFallbackTimeoutMs);
CreateBackends(1);
// Return one balancer and one fallback backend.
SetNextResolution({balancer_->port()}, GetBackendPorts());
// Balancer explicitly tells client to fallback.
LoadBalanceResponse response;
response.mutable_fallback_response();
SendBalancerResponse(std::move(response));
// Send RPC with deadline less than the fallback timeout and make sure it
// succeeds.
CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 3000,
/* wait_for_ready */ false);
}
TEST_F(GrpclbEnd2endTest, FallbackControlledByBalancerAfterFirstServerlist) {
CreateBackends(2);
// Return one balancer and one fallback backend (backend 0).
SetNextResolution({balancer_->port()}, {backends_[0]->port()});
// Balancer sends a serverlist pointing to backend 1.
SendBalancerResponse(BuildResponseForBackends({backends_[1]->port()}, {}));
WaitForBackend(1);
// Balancer tells client to fall back.
LoadBalanceResponse fallback_response;
fallback_response.mutable_fallback_response();
SendBalancerResponse(std::move(fallback_response));
WaitForBackend(0);
// Balancer sends a new serverlist, so client exits fallback.
SendBalancerResponse(BuildResponseForBackends({backends_[1]->port()}, {}));
WaitForBackend(1);
}
TEST_F(GrpclbEnd2endTest, BackendsRestart) {
CreateBackends(2);
SetNextResolutionDefaultBalancer();
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
WaitForAllBackends();
// Stop backends. RPCs should fail.
ShutdownAllBackends();
CheckRpcSendFailure();
// Restart backends. RPCs should start succeeding again.
StartAllBackends();
CheckRpcSendOk(1 /* times */, 3000 /* timeout_ms */,
true /* wait_for_ready */);
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest, ServiceNameFromLbPolicyConfig) {
constexpr char kServiceConfigWithTarget[] =
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{\n"
" \"serviceName\":\"test_service\"\n"
" }}\n"
" ]\n"
"}";
SetNextResolutionDefaultBalancer(kServiceConfigWithTarget);
CreateBackends(1);
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
WaitForAllBackends();
EXPECT_EQ(balancer_->service().service_names().back(), "test_service");
}
TEST_F(GrpclbEnd2endTest,
NewBalancerAddressNotUsedIfOriginalStreamDoesNotFail) {
CreateBackends(3);
// Default balancer sends backend 0.
SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {}));
// Second balancer sends backend 1.
auto balancer2 = CreateAndStartBalancer();
balancer2->service().SendResponse(
BuildResponseForBackends({backends_[1]->port()}, {}));
// Initially, the channel uses the default balancer.
SetNextResolutionDefaultBalancer();
WaitForBackend(0);
// Send 10 requests.
LOG(INFO) << "========= BEFORE FIRST BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH FIRST BATCH ==========";
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service().request_count());
EXPECT_EQ(0U, backends_[1]->service().request_count());
EXPECT_EQ(0U, backends_[2]->service().request_count());
// Balancer 0 got a single request and sent a single response.
EXPECT_EQ(1U, balancer_->service().request_count());
EXPECT_EQ(1U, balancer_->service().response_count());
EXPECT_EQ(0U, balancer2->service().request_count());
EXPECT_EQ(0U, balancer2->service().response_count());
// Now tell the channel to use balancer 2. However, the stream to the
// default balancer is not terminated, so the client will continue to
// use it.
LOG(INFO) << "========= ABOUT TO UPDATE 1 ==========";
SetNextResolution({balancer2->port()});
LOG(INFO) << "========= UPDATE 1 DONE ==========";
// Now the default balancer sends backend 2.
SendBalancerResponse(BuildResponseForBackends({backends_[2]->port()}, {}));
WaitForBackend(2);
}
// Send an update with the same set of LBs as the previous one in order to
// verify that the LB channel inside grpclb keeps the initial connection (which
// by definition is also present in the update).
TEST_F(GrpclbEnd2endTest,
UpdatedBalancerAddressesWithSameAddressDoesNotBreakConnection) {
CreateBackends(2);
// Default balancer points to backend 0.
SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {}));
// Second balancer points to backend 1.
auto balancer2 = CreateAndStartBalancer();
balancer2->service().SendResponse(
BuildResponseForBackends({backends_[1]->port()}, {}));
// Send both balancer addresses.
SetNextResolution({balancer_->port(), balancer2->port()});
// Wait until the first backend is ready.
WaitForBackend(0);
// Send 10 requests.
LOG(INFO) << "========= BEFORE FIRST BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH FIRST BATCH ==========";
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service().request_count());
EXPECT_EQ(0U, backends_[1]->service().request_count());
// Balancer 0 got a single request and sent a single response.
EXPECT_EQ(1U, balancer_->service().request_count());
EXPECT_EQ(1U, balancer_->service().response_count());
EXPECT_EQ(0U, balancer2->service().request_count());
EXPECT_EQ(0U, balancer2->service().response_count());
// Send another address list with the same list of balancers.
LOG(INFO) << "========= ABOUT TO UPDATE 1 ==========";
SetNextResolution({balancer_->port(), balancer2->port()});
LOG(INFO) << "========= UPDATE 1 DONE ==========";
// Shut down the balancer stream to force the client to create a new one.
// The new stream should go to the default balancer, since the
// underlying connection should not have been broken.
LOG(INFO) << "========= SHUTTING DOWN BALANCER CALL ==========";
balancer_->service().ShutdownStream();
LOG(INFO) << "========= DONE SHUTTING DOWN BALANCER CALL ==========";
// Wait until client has created a new balancer stream.
EXPECT_TRUE(balancer_->service().WaitForNewStream(1));
// Make sure there was only one client connection seen by the balancer.
EXPECT_EQ(1UL, balancer_->service().clients().size());
}
TEST_F(GrpclbEnd2endTest, BalancerDiesThenSwitchToNewBalancer) {
CreateBackends(2);
// Default balancer sends backend 0.
SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {}));
// Balancer 2 sends backend 1.
auto balancer2 = CreateAndStartBalancer();
balancer2->service().SendResponse(
BuildResponseForBackends({backends_[1]->port()}, {}));
// Channel initially uses default balancer and therefore backend 0.
SetNextResolutionDefaultBalancer();
WaitForBackend(0);
// Default balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
EXPECT_EQ(1U, balancer_->service().response_count());
EXPECT_EQ(0U, balancer2->service().request_count());
EXPECT_EQ(0U, balancer2->service().response_count());
// Send 10 RPCs.
LOG(INFO) << "========= BEFORE FIRST BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH FIRST BATCH ==========";
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service().request_count());
EXPECT_EQ(0U, backends_[1]->service().request_count());
// Kill default balancer.
LOG(INFO) << "********** ABOUT TO KILL BALANCER *************";
balancer_->Shutdown();
LOG(INFO) << "********** KILLED BALANCER *************";
// Channel should continue using the last backend it saw from the
// balancer before the balancer died.
LOG(INFO) << "========= BEFORE SECOND BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH SECOND BATCH ==========";
// All 10 requests should again have gone to the first backend.
EXPECT_EQ(20U, backends_[0]->service().request_count());
EXPECT_EQ(0U, backends_[1]->service().request_count());
// Tell channel to start using balancer 2.
LOG(INFO) << "========= ABOUT TO UPDATE 1 ==========";
SetNextResolution({balancer2->port()});
LOG(INFO) << "========= UPDATE 1 DONE ==========";
// Channel should start using backend 1.
WaitForBackend(1);
// This is serviced by the updated RR policy
LOG(INFO) << "========= BEFORE THIRD BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH THIRD BATCH ==========";
// All 10 requests should have gone to the second backend.
EXPECT_EQ(0U, backends_[0]->service().request_count());
EXPECT_EQ(10U, backends_[1]->service().request_count());
// Both balancers should have gotten one request and sent one response.
EXPECT_EQ(1U, balancer_->service().request_count());
EXPECT_EQ(1U, balancer_->service().response_count());
EXPECT_EQ(1U, balancer2->service().request_count());
EXPECT_EQ(1U, balancer2->service().response_count());
}
TEST_F(GrpclbEnd2endTest, ReresolveDeadBackendWhileInFallback) {
ResetStub(/*fallback_timeout_ms=*/500);
CreateBackends(2);
// The first resolution contains the addresses of a balancer that never
// responds, and a fallback backend.
SetNextResolution({balancer_->port()}, {backends_[0]->port()});
// Start servers and send 10 RPCs per server.
LOG(INFO) << "========= BEFORE FIRST BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH FIRST BATCH ==========";
// All 10 requests should have gone to the fallback backend.
EXPECT_EQ(10U, backends_[0]->service().request_count());
// Kill backend 0.
LOG(INFO) << "********** ABOUT TO KILL BACKEND 0 *************";
backends_[0]->Shutdown();
LOG(INFO) << "********** KILLED BACKEND 0 *************";
// This should trigger re-resolution.
EXPECT_TRUE(response_generator_->WaitForReresolutionRequest(
absl::Seconds(5 * grpc_test_slowdown_factor())));
// The re-resolution result will contain the addresses of the same balancer
// and a new fallback backend.
SetNextResolution({balancer_->port()}, {backends_[1]->port()});
// Wait until re-resolution has been seen, as signaled by the second backend
// receiving a request.
WaitForBackend(1);
LOG(INFO) << "========= BEFORE SECOND BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH SECOND BATCH ==========";
// All 10 requests should have gone to the second backend.
EXPECT_EQ(10U, backends_[1]->service().request_count());
EXPECT_EQ(1U, balancer_->service().request_count());
EXPECT_EQ(0U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest, ReresolveWhenBalancerCallFails) {
CreateBackends(2);
// Default balancer sends backend 0.
SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {}));
// Balancer 2 sends backend 1.
auto balancer2 = CreateAndStartBalancer();
balancer2->service().SendResponse(
BuildResponseForBackends({backends_[1]->port()}, {}));
// Channel initially uses default balancer and therefore backend 0.
SetNextResolutionDefaultBalancer();
WaitForBackend(0);
// Send 10 RPCs.
LOG(INFO) << "========= BEFORE FIRST BATCH ==========";
CheckRpcSendOk(10);
LOG(INFO) << "========= DONE WITH FIRST BATCH ==========";
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service().request_count());
// Balancer 0 got a single request and sent a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
EXPECT_EQ(1U, balancer_->service().response_count());
EXPECT_EQ(0U, balancer2->service().request_count());
EXPECT_EQ(0U, balancer2->service().response_count());
// Kill balancer 0.
LOG(INFO) << "********** ABOUT TO KILL BALANCER 0 *************";
balancer_->Shutdown();
LOG(INFO) << "********** KILLED BALANCER 0 *************";
// This should trigger a re-resolution.
EXPECT_TRUE(response_generator_->WaitForReresolutionRequest(
absl::Seconds(5 * grpc_test_slowdown_factor())));
LOG(INFO) << "********** SAW RE-RESOLUTION REQUEST *************";
// Re-resolution result switches to balancer 2.
SetNextResolution({balancer2->port()});
// Client should start using backend 1.
WaitForBackend(1);
// Both balancers should each have handled one request and sent one response.
EXPECT_EQ(1U, balancer_->service().request_count());
EXPECT_EQ(1U, balancer_->service().response_count());
EXPECT_EQ(1U, balancer2->service().request_count());
EXPECT_EQ(1U, balancer2->service().response_count());
}
TEST_F(GrpclbEnd2endTest, Drop) {
const size_t kNumRpcsPerAddress = 100;
const size_t kNumBackends = 2;
const int kNumDropRateLimiting = 1;
const int kNumDropLoadBalancing = 2;
const int kNumDropTotal = kNumDropRateLimiting + kNumDropLoadBalancing;
const int kNumAddressesTotal = kNumBackends + kNumDropTotal;
SetNextResolutionDefaultBalancer();
CreateBackends(kNumBackends);
SendBalancerResponse(BuildResponseForBackends(
GetBackendPorts(), {{"rate_limiting", kNumDropRateLimiting},
{"load_balancing", kNumDropLoadBalancing}}));
// Wait until all backends are ready.
WaitForAllBackends();
// Send kNumRpcsPerAddress RPCs for each server and drop address.
size_t num_drops = 0;
for (size_t i = 0; i < kNumRpcsPerAddress * kNumAddressesTotal; ++i) {
EchoResponse response;
const Status status = SendRpc(&response);
if (!status.ok() &&
status.error_message() == "drop directed by grpclb balancer") {
++num_drops;
} else {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kRequestMessage);
}
}
EXPECT_EQ(kNumRpcsPerAddress * kNumDropTotal, num_drops);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
}
TEST_F(GrpclbEnd2endTest, DropAllFirst) {
SetNextResolutionDefaultBalancer();
// All registered addresses are marked as "drop".
const int kNumDropRateLimiting = 1;
const int kNumDropLoadBalancing = 1;
SendBalancerResponse(BuildResponseForBackends(
{}, {{"rate_limiting", kNumDropRateLimiting},
{"load_balancing", kNumDropLoadBalancing}}));
const Status status = SendRpc(nullptr, 3000, true);
EXPECT_FALSE(status.ok());
EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer");
}
TEST_F(GrpclbEnd2endTest, DropAll) {
CreateBackends(1);
SetNextResolutionDefaultBalancer();
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
CheckRpcSendOk();
SendBalancerResponse(BuildResponseForBackends(
{}, {{"rate_limiting", 1}, {"load_balancing", 1}}));
// Eventually, the update with only dropped servers is processed, and calls
// fail.
Status status;
do {
status = SendRpc(nullptr, 3000, true);
} while (status.ok());
EXPECT_FALSE(status.ok());
EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer");
}
TEST_F(GrpclbEnd2endTest, ClientLoadReporting) {
const size_t kNumBackends = 3;
CreateBackends(kNumBackends);
balancer_->service().set_client_load_reporting_interval_seconds(3);
SetNextResolutionDefaultBalancer();
const size_t kNumRpcsPerAddress = 100;
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
// Wait until all backends are ready.
int num_ok = 0;
int num_failure = 0;
int num_drops = 0;
std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends();
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * kNumBackends);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
ClientStats client_stats;
do {
auto stats = WaitForLoadReports();
ASSERT_TRUE(stats.has_value());
client_stats += *stats;
} while (client_stats.num_calls_finished !=
kNumRpcsPerAddress * kNumBackends + num_ok);
EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + num_ok,
client_stats.num_calls_started);
EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + num_ok,
client_stats.num_calls_finished);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + (num_ok + num_drops),
client_stats.num_calls_finished_known_received);
EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre());
}
TEST_F(GrpclbEnd2endTest, LoadReportingWithBalancerRestart) {
const size_t kNumBackends = 4;
const size_t kNumBackendsFirstPass = 2;
const size_t kNumBackendsSecondPass = kNumBackends - kNumBackendsFirstPass;
CreateBackends(kNumBackends);
balancer_->service().set_client_load_reporting_interval_seconds(3);
SetNextResolutionDefaultBalancer();
// Balancer returns backends starting at index 1.
SendBalancerResponse(
BuildResponseForBackends(GetBackendPorts(0, kNumBackendsFirstPass), {}));
// Wait until all backends returned by the balancer are ready.
int num_ok = 0;
int num_failure = 0;
int num_drops = 0;
std::tie(num_ok, num_failure, num_drops) =
WaitForAllBackends(0, kNumBackendsFirstPass);
auto client_stats = WaitForLoadReports();
ASSERT_TRUE(client_stats.has_value());
EXPECT_EQ(static_cast<size_t>(num_ok), client_stats->num_calls_started);
EXPECT_EQ(static_cast<size_t>(num_ok), client_stats->num_calls_finished);
EXPECT_EQ(0U, client_stats->num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(static_cast<size_t>(num_ok),
client_stats->num_calls_finished_known_received);
EXPECT_THAT(client_stats->drop_token_counts, ::testing::ElementsAre());
// Shut down the balancer.
balancer_->Shutdown();
// Send 10 more requests per backend. This will continue using the
// last serverlist we received from the balancer before it was shut down.
ResetBackendCounters();
CheckRpcSendOk(kNumBackendsFirstPass);
// Each backend should have gotten 1 request.
for (size_t i = 0; i < kNumBackendsFirstPass; ++i) {
EXPECT_EQ(1UL, backends_[i]->service().request_count());
}
// Now restart the balancer, this time pointing to all backends.
balancer_->Start();
SendBalancerResponse(
BuildResponseForBackends(GetBackendPorts(kNumBackendsFirstPass), {}));
// Wait for queries to start going to one of the new backends.
// This tells us that we're now using the new serverlist.
do {
CheckRpcSendOk();
} while (backends_[2]->service().request_count() == 0 &&
backends_[3]->service().request_count() == 0);
// Send one RPC per backend.
CheckRpcSendOk(kNumBackendsSecondPass);
// Check client stats.
client_stats = WaitForLoadReports();
ASSERT_TRUE(client_stats.has_value());
EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats->num_calls_started);
EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats->num_calls_finished);
EXPECT_EQ(0U, client_stats->num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumBackendsSecondPass + 1,
client_stats->num_calls_finished_known_received);
EXPECT_THAT(client_stats->drop_token_counts, ::testing::ElementsAre());
}
TEST_F(GrpclbEnd2endTest, LoadReportingWithDrops) {
const size_t kNumBackends = 3;
const size_t kNumRpcsPerAddress = 3;
const int kNumDropRateLimiting = 2;
const int kNumDropLoadBalancing = 1;
const int kNumDropTotal = kNumDropRateLimiting + kNumDropLoadBalancing;
const int kNumAddressesTotal = kNumBackends + kNumDropTotal;
CreateBackends(kNumBackends);
balancer_->service().set_client_load_reporting_interval_seconds(3);
SetNextResolutionDefaultBalancer();
SendBalancerResponse(BuildResponseForBackends(
GetBackendPorts(), {{"rate_limiting", kNumDropRateLimiting},
{"load_balancing", kNumDropLoadBalancing}}));
// Wait until all backends are ready.
int num_warmup_ok = 0;
int num_warmup_failure = 0;
int num_warmup_drops = 0;
std::tie(num_warmup_ok, num_warmup_failure, num_warmup_drops) =
WaitForAllBackends(
0, kNumBackends,
WaitForBackendOptions().SetNumRequestsMultipleOf(kNumAddressesTotal));
const int num_total_warmup_requests =
num_warmup_ok + num_warmup_failure + num_warmup_drops;
size_t num_drops = 0;
for (size_t i = 0; i < kNumRpcsPerAddress * kNumAddressesTotal; ++i) {
EchoResponse response;
const Status status = SendRpc(&response);
if (!status.ok() &&
status.error_message() == "drop directed by grpclb balancer") {
++num_drops;
} else {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kRequestMessage);
}
}
EXPECT_EQ(kNumRpcsPerAddress * kNumDropTotal, num_drops);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
// Get load reports.
auto client_stats = WaitForLoadReports();
ASSERT_TRUE(client_stats.has_value());
EXPECT_EQ(kNumRpcsPerAddress * kNumAddressesTotal + num_total_warmup_requests,
client_stats->num_calls_started);
EXPECT_EQ(kNumRpcsPerAddress * kNumAddressesTotal + num_total_warmup_requests,
client_stats->num_calls_finished);
EXPECT_EQ(0U, client_stats->num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + num_warmup_ok,
client_stats->num_calls_finished_known_received);
// The number of warmup request is a multiple of the number of addresses.
// Therefore, all addresses in the scheduled balancer response are hit the
// same number of times.
const int num_times_drop_addresses_hit = num_warmup_drops / kNumDropTotal;
EXPECT_THAT(
client_stats->drop_token_counts,
::testing::ElementsAre(
::testing::Pair("load_balancing",
(kNumRpcsPerAddress + num_times_drop_addresses_hit)),
::testing::Pair(
"rate_limiting",
(kNumRpcsPerAddress + num_times_drop_addresses_hit) * 2)));
}
TEST_F(GrpclbEnd2endTest, SecureNaming) {
CreateBackends(1);
ResetStub(/*fallback_timeout_ms=*/0,
absl::StrCat(kApplicationTargetName, ";lb"));
SetNextResolutionFromEndpoints(
CreateAddressListFromPorts({balancer_->port()}, "lb"));
SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {}));
// We need to wait for all backends to come online.
WaitForAllBackends();
// The balancer got a single request.
EXPECT_EQ(1U, balancer_->service().request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_->service().response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
// This death test is kept separate from the rest to ensure that it's run before
// any others. See https://github.com/grpc/grpc/pull/32269 for details.
using SingleBalancerDeathTest = GrpclbEnd2endTest;
TEST_F(SingleBalancerDeathTest, SecureNaming) {
GTEST_FLAG_SET(death_test_style, "threadsafe");
// Make sure that we blow up (via abort() from the security connector) when
// the name from the balancer doesn't match expectations.
ASSERT_DEATH_IF_SUPPORTED(
{
ResetStub(/*fallback_timeout_ms=*/0,
absl::StrCat(kApplicationTargetName, ";lb"));
SetNextResolutionFromEndpoints(
CreateAddressListFromPorts({balancer_->port()}, "woops"));
channel_->WaitForConnected(grpc_timeout_seconds_to_deadline(1));
},
"");
}
} // namespace
} // namespace testing
} // namespace grpc
int main(int argc, char** argv) {
grpc::testing::TestEnvironment env(&argc, argv);
::testing::InitGoogleTest(&argc, argv);
const auto result = RUN_ALL_TESTS();
return result;
}