The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

756 lines
28 KiB

/*
*
* Copyright 2017, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <memory>
#include <mutex>
#include <sstream>
#include <thread>
#include <grpc++/channel.h>
#include <grpc++/client_context.h>
#include <grpc++/create_channel.h>
#include <grpc++/server.h>
#include <grpc++/server_builder.h>
#include <grpc/grpc.h>
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpc/support/string_util.h>
#include <grpc/support/thd.h>
#include <grpc/support/time.h>
#include <gtest/gtest.h>
extern "C" {
#include "src/core/lib/iomgr/sockaddr.h"
#include "test/core/end2end/fake_resolver.h"
}
#include "test/core/util/port.h"
#include "test/core/util/test_config.h"
#include "test/cpp/end2end/test_service_impl.h"
#include "src/proto/grpc/lb/v1/load_balancer.grpc.pb.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
// TODO(dgq): Other scenarios in need of testing:
// - Send a serverlist with faulty ip:port addresses (port > 2^16, etc).
// - Test reception of invalid serverlist
// - Test pinging
// - Test against a non-LB server.
// - Random LB server closing the stream unexpectedly.
// - Test using DNS-resolvable names (localhost?)
// - Test handling of creation of faulty RR instance by having the LB return a
// serverlist with non-existent backends after having initially returned a
// valid one.
//
// Findings from end to end testing to be covered here:
// - Handling of LB servers restart, including reconnection after backing-off
// retries.
// - Destruction of load balanced channel (and therefore of grpclb instance)
// while:
// 1) the internal LB call is still active. This should work by virtue
// of the weak reference the LB call holds. The call should be terminated as
// part of the grpclb shutdown process.
// 2) the retry timer is active. Again, the weak reference it holds should
// prevent a premature call to \a glb_destroy.
// - Restart of backend servers with no changes to serverlist. This exercises
// the RR handover mechanism.
using std::chrono::system_clock;
using grpc::lb::v1::LoadBalanceResponse;
using grpc::lb::v1::LoadBalanceRequest;
using grpc::lb::v1::LoadBalancer;
namespace grpc {
namespace testing {
namespace {
template <typename ServiceType>
class CountedService : public ServiceType {
public:
size_t request_count() {
std::unique_lock<std::mutex> lock(mu_);
return request_count_;
}
size_t response_count() {
std::unique_lock<std::mutex> lock(mu_);
return response_count_;
}
void IncreaseResponseCount() {
std::unique_lock<std::mutex> lock(mu_);
++response_count_;
}
void IncreaseRequestCount() {
std::unique_lock<std::mutex> lock(mu_);
++request_count_;
}
protected:
std::mutex mu_;
private:
size_t request_count_ = 0;
size_t response_count_ = 0;
};
using BackendService = CountedService<TestServiceImpl>;
using BalancerService = CountedService<LoadBalancer::Service>;
class BackendServiceImpl : public BackendService {
public:
BackendServiceImpl() {}
Status Echo(ServerContext* context, const EchoRequest* request,
EchoResponse* response) override {
IncreaseRequestCount();
const auto status = TestServiceImpl::Echo(context, request, response);
IncreaseResponseCount();
return status;
}
};
grpc::string Ip4ToPackedString(const char* ip_str) {
struct in_addr ip4;
GPR_ASSERT(inet_pton(AF_INET, ip_str, &ip4) == 1);
return grpc::string(reinterpret_cast<const char*>(&ip4), sizeof(ip4));
}
struct ClientStats {
size_t num_calls_started = 0;
size_t num_calls_finished = 0;
size_t num_calls_finished_with_drop_for_rate_limiting = 0;
size_t num_calls_finished_with_drop_for_load_balancing = 0;
size_t num_calls_finished_with_client_failed_to_send = 0;
size_t num_calls_finished_known_received = 0;
ClientStats& operator+=(const ClientStats& other) {
num_calls_started += other.num_calls_started;
num_calls_finished += other.num_calls_finished;
num_calls_finished_with_drop_for_rate_limiting +=
other.num_calls_finished_with_drop_for_rate_limiting;
num_calls_finished_with_drop_for_load_balancing +=
other.num_calls_finished_with_drop_for_load_balancing;
num_calls_finished_with_client_failed_to_send +=
other.num_calls_finished_with_client_failed_to_send;
num_calls_finished_known_received +=
other.num_calls_finished_known_received;
return *this;
}
};
class BalancerServiceImpl : public BalancerService {
public:
using Stream = ServerReaderWriter<LoadBalanceResponse, LoadBalanceRequest>;
using ResponseDelayPair = std::pair<LoadBalanceResponse, int>;
explicit BalancerServiceImpl(int client_load_reporting_interval_seconds)
: client_load_reporting_interval_seconds_(
client_load_reporting_interval_seconds),
shutdown_(false) {}
Status BalanceLoad(ServerContext* context, Stream* stream) override {
LoadBalanceRequest request;
stream->Read(&request);
IncreaseRequestCount();
gpr_log(GPR_INFO, "LB: recv msg '%s'", request.DebugString().c_str());
if (client_load_reporting_interval_seconds_ > 0) {
LoadBalanceResponse initial_response;
initial_response.mutable_initial_response()
->mutable_client_stats_report_interval()
->set_seconds(client_load_reporting_interval_seconds_);
stream->Write(initial_response);
}
std::vector<ResponseDelayPair> responses_and_delays;
{
std::unique_lock<std::mutex> lock(mu_);
responses_and_delays = responses_and_delays_;
}
for (const auto& response_and_delay : responses_and_delays) {
if (shutdown_) break;
SendResponse(stream, response_and_delay.first, response_and_delay.second);
}
if (client_load_reporting_interval_seconds_ > 0) {
request.Clear();
stream->Read(&request);
gpr_log(GPR_INFO, "LB: recv client load report msg: '%s'",
request.DebugString().c_str());
GPR_ASSERT(request.has_client_stats());
client_stats_.num_calls_started +=
request.client_stats().num_calls_started();
client_stats_.num_calls_finished +=
request.client_stats().num_calls_finished();
client_stats_.num_calls_finished_with_drop_for_rate_limiting +=
request.client_stats()
.num_calls_finished_with_drop_for_rate_limiting();
client_stats_.num_calls_finished_with_drop_for_load_balancing +=
request.client_stats()
.num_calls_finished_with_drop_for_load_balancing();
client_stats_.num_calls_finished_with_client_failed_to_send +=
request.client_stats()
.num_calls_finished_with_client_failed_to_send();
client_stats_.num_calls_finished_known_received +=
request.client_stats().num_calls_finished_known_received();
std::lock_guard<std::mutex> lock(mu_);
cond_.notify_one();
}
return Status::OK;
}
void add_response(const LoadBalanceResponse& response, int send_after_ms) {
std::unique_lock<std::mutex> lock(mu_);
responses_and_delays_.push_back(std::make_pair(response, send_after_ms));
}
void Shutdown() {
std::unique_lock<std::mutex> lock(mu_);
shutdown_ = true;
}
static LoadBalanceResponse BuildResponseForBackends(
const std::vector<int>& backend_ports, int num_drops_for_rate_limiting,
int num_drops_for_load_balancing) {
LoadBalanceResponse response;
for (int i = 0; i < num_drops_for_rate_limiting; ++i) {
auto* server = response.mutable_server_list()->add_servers();
server->set_drop_for_rate_limiting(true);
}
for (int i = 0; i < num_drops_for_load_balancing; ++i) {
auto* server = response.mutable_server_list()->add_servers();
server->set_drop_for_load_balancing(true);
}
for (const int& backend_port : backend_ports) {
auto* server = response.mutable_server_list()->add_servers();
server->set_ip_address(Ip4ToPackedString("127.0.0.1"));
server->set_port(backend_port);
}
return response;
}
const ClientStats& WaitForLoadReport() {
std::unique_lock<std::mutex> lock(mu_);
cond_.wait(lock);
return client_stats_;
}
private:
void SendResponse(Stream* stream, const LoadBalanceResponse& response,
int delay_ms) {
gpr_log(GPR_INFO, "LB: sleeping for %d ms...", delay_ms);
gpr_sleep_until(gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_millis(delay_ms, GPR_TIMESPAN)));
gpr_log(GPR_INFO, "LB: Woke up! Sending response '%s'",
response.DebugString().c_str());
stream->Write(response);
IncreaseResponseCount();
}
const int client_load_reporting_interval_seconds_;
std::vector<ResponseDelayPair> responses_and_delays_;
std::mutex mu_;
std::condition_variable cond_;
ClientStats client_stats_;
bool shutdown_;
};
class GrpclbEnd2endTest : public ::testing::Test {
protected:
GrpclbEnd2endTest(int num_backends, int num_balancers,
int client_load_reporting_interval_seconds)
: server_host_("localhost"),
num_backends_(num_backends),
num_balancers_(num_balancers),
client_load_reporting_interval_seconds_(
client_load_reporting_interval_seconds) {}
void SetUp() override {
response_generator_ = grpc_fake_resolver_response_generator_create();
// Start the backends.
for (size_t i = 0; i < num_backends_; ++i) {
backends_.emplace_back(new BackendServiceImpl());
backend_servers_.emplace_back(ServerThread<BackendService>(
"backend", server_host_, backends_.back().get()));
}
// Start the load balancers.
for (size_t i = 0; i < num_balancers_; ++i) {
balancers_.emplace_back(
new BalancerServiceImpl(client_load_reporting_interval_seconds_));
balancer_servers_.emplace_back(ServerThread<BalancerService>(
"balancer", server_host_, balancers_.back().get()));
}
ResetStub();
std::vector<AddressData> addresses;
for (size_t i = 0; i < balancer_servers_.size(); ++i) {
addresses.emplace_back(AddressData{balancer_servers_[i].port_, true, ""});
}
SetNextResolution(addresses);
}
void TearDown() override {
for (size_t i = 0; i < backends_.size(); ++i) {
backend_servers_[i].Shutdown();
}
for (size_t i = 0; i < balancers_.size(); ++i) {
balancers_[i]->Shutdown();
balancer_servers_[i].Shutdown();
}
grpc_fake_resolver_response_generator_unref(response_generator_);
}
void ResetStub() {
ChannelArguments args;
args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR,
response_generator_);
channel_ = CreateCustomChannel("test:///not_used",
InsecureChannelCredentials(), args);
stub_ = grpc::testing::EchoTestService::NewStub(channel_);
}
ClientStats WaitForLoadReports() {
ClientStats client_stats;
for (const auto& balancer : balancers_) {
client_stats += balancer->WaitForLoadReport();
}
return client_stats;
}
struct AddressData {
int port;
bool is_balancer;
grpc::string balancer_name;
};
void SetNextResolution(const std::vector<AddressData>& address_data) {
grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT;
grpc_lb_addresses* addresses =
grpc_lb_addresses_create(address_data.size(), nullptr);
for (size_t i = 0; i < address_data.size(); ++i) {
char* lb_uri_str;
gpr_asprintf(&lb_uri_str, "ipv4:127.0.0.1:%d", address_data[i].port);
grpc_uri* lb_uri = grpc_uri_parse(&exec_ctx, lb_uri_str, true);
GPR_ASSERT(lb_uri != nullptr);
grpc_lb_addresses_set_address_from_uri(
addresses, i, lb_uri, address_data[i].is_balancer,
address_data[i].balancer_name.c_str(), nullptr);
grpc_uri_destroy(lb_uri);
gpr_free(lb_uri_str);
}
grpc_arg fake_addresses = grpc_lb_addresses_create_channel_arg(addresses);
grpc_channel_args fake_result = {1, &fake_addresses};
grpc_fake_resolver_response_generator_set_response(
&exec_ctx, response_generator_, &fake_result);
grpc_lb_addresses_destroy(&exec_ctx, addresses);
grpc_exec_ctx_finish(&exec_ctx);
}
const std::vector<int> GetBackendPorts() const {
std::vector<int> backend_ports;
for (const auto& bs : backend_servers_) {
backend_ports.push_back(bs.port_);
}
return backend_ports;
}
void ScheduleResponseForBalancer(size_t i,
const LoadBalanceResponse& response,
int delay_ms) {
balancers_.at(i)->add_response(response, delay_ms);
}
std::vector<std::pair<Status, EchoResponse>> SendRpc(const string& message,
int num_rpcs,
int timeout_ms = 1000) {
std::vector<std::pair<Status, EchoResponse>> results;
EchoRequest request;
EchoResponse response;
request.set_message(message);
for (int i = 0; i < num_rpcs; i++) {
ClientContext context;
context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms));
Status status = stub_->Echo(&context, request, &response);
results.push_back(std::make_pair(status, response));
}
return results;
}
template <typename T>
struct ServerThread {
explicit ServerThread(const grpc::string& type,
const grpc::string& server_host, T* service)
: type_(type), service_(service) {
port_ = grpc_pick_unused_port_or_die();
gpr_log(GPR_INFO, "starting %s server on port %d", type_.c_str(), port_);
std::mutex mu;
std::condition_variable cond;
thread_.reset(new std::thread(
std::bind(&ServerThread::Start, this, server_host, &mu, &cond)));
std::unique_lock<std::mutex> lock(mu);
cond.wait(lock);
gpr_log(GPR_INFO, "%s server startup complete", type_.c_str());
}
void Start(const grpc::string& server_host, std::mutex* mu,
std::condition_variable* cond) {
std::ostringstream server_address;
server_address << server_host << ":" << port_;
ServerBuilder builder;
builder.AddListeningPort(server_address.str(),
InsecureServerCredentials());
builder.RegisterService(service_);
server_ = builder.BuildAndStart();
std::lock_guard<std::mutex> lock(*mu);
cond->notify_one();
}
void Shutdown() {
gpr_log(GPR_INFO, "%s about to shutdown", type_.c_str());
server_->Shutdown();
thread_->join();
gpr_log(GPR_INFO, "%s shutdown completed", type_.c_str());
}
int port_;
grpc::string type_;
std::unique_ptr<Server> server_;
T* service_;
std::unique_ptr<std::thread> thread_;
};
const grpc::string kMessage_ = "Live long and prosper.";
const grpc::string server_host_;
const size_t num_backends_;
const size_t num_balancers_;
const int client_load_reporting_interval_seconds_;
std::shared_ptr<Channel> channel_;
std::unique_ptr<grpc::testing::EchoTestService::Stub> stub_;
std::vector<std::unique_ptr<BackendServiceImpl>> backends_;
std::vector<std::unique_ptr<BalancerServiceImpl>> balancers_;
std::vector<ServerThread<BackendService>> backend_servers_;
std::vector<ServerThread<BalancerService>> balancer_servers_;
grpc_fake_resolver_response_generator* response_generator_;
};
class SingleBalancerTest : public GrpclbEnd2endTest {
public:
SingleBalancerTest() : GrpclbEnd2endTest(4, 1, 0) {}
};
TEST_F(SingleBalancerTest, Vanilla) {
const size_t kNumRpcsPerAddress = 100;
ScheduleResponseForBalancer(
0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), 0, 0),
0);
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// Send 100 RPCs per server.
const auto& statuses_and_responses =
SendRpc(kMessage_, kNumRpcsPerAddress * num_backends_);
for (const auto& status_and_response : statuses_and_responses) {
const Status& status = status_and_response.first;
const EchoResponse& response = status_and_response.second;
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kMessage_);
}
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress,
backend_servers_[i].service_->request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_servers_[0].service_->request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_servers_[0].service_->response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, InitiallyEmptyServerlist) {
const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor();
const int kCallDeadlineMs = 1000 * grpc_test_slowdown_factor();
// First response is an empty serverlist, sent right away.
ScheduleResponseForBalancer(0, LoadBalanceResponse(), 0);
// Send non-empty serverlist only after kServerlistDelayMs
ScheduleResponseForBalancer(
0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), 0, 0),
kServerlistDelayMs);
const auto t0 = system_clock::now();
// Client will block: LB will initially send empty serverlist.
const auto& statuses_and_responses =
SendRpc(kMessage_, num_backends_, kCallDeadlineMs);
const auto ellapsed_ms =
std::chrono::duration_cast<std::chrono::milliseconds>(
system_clock::now() - t0);
// but eventually, the LB sends a serverlist update that allows the call to
// proceed. The call delay must be larger than the delay in sending the
// populated serverlist but under the call's deadline.
EXPECT_GT(ellapsed_ms.count(), kServerlistDelayMs);
EXPECT_LT(ellapsed_ms.count(), kCallDeadlineMs);
// Each backend should have gotten 1 request.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(1U, backend_servers_[i].service_->request_count());
}
for (const auto& status_and_response : statuses_and_responses) {
const Status& status = status_and_response.first;
const EchoResponse& response = status_and_response.second;
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kMessage_);
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_servers_[0].service_->request_count());
// and sent two responses.
EXPECT_EQ(2U, balancer_servers_[0].service_->response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, RepeatedServerlist) {
constexpr int kServerlistDelayMs = 100;
// Send a serverlist right away.
ScheduleResponseForBalancer(
0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), 0, 0),
0);
// ... and the same one a bit later.
ScheduleResponseForBalancer(
0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), 0, 0),
kServerlistDelayMs);
// Send num_backends/2 requests.
auto statuses_and_responses = SendRpc(kMessage_, num_backends_ / 2);
// only the first half of the backends will receive them.
for (size_t i = 0; i < backends_.size(); ++i) {
if (i < backends_.size() / 2)
EXPECT_EQ(1U, backend_servers_[i].service_->request_count())
<< "for backend #" << i;
else
EXPECT_EQ(0U, backend_servers_[i].service_->request_count())
<< "for backend #" << i;
}
EXPECT_EQ(statuses_and_responses.size(), num_backends_ / 2);
for (const auto& status_and_response : statuses_and_responses) {
const Status& status = status_and_response.first;
const EchoResponse& response = status_and_response.second;
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kMessage_);
}
// Wait for the (duplicated) serverlist update.
gpr_sleep_until(gpr_time_add(
gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_millis(kServerlistDelayMs * 1.1, GPR_TIMESPAN)));
// Verify the LB has sent two responses.
EXPECT_EQ(2U, balancer_servers_[0].service_->response_count());
// Some more calls to complete the total number of backends.
statuses_and_responses = SendRpc(
kMessage_,
num_backends_ / 2 + (num_backends_ & 0x1) /* extra one if num_bes odd */);
// Because a duplicated serverlist should have no effect, all backends must
// have been hit once now.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(1U, backend_servers_[i].service_->request_count());
}
EXPECT_EQ(statuses_and_responses.size(), num_backends_ / 2);
for (const auto& status_and_response : statuses_and_responses) {
const Status& status = status_and_response.first;
const EchoResponse& response = status_and_response.second;
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kMessage_);
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_servers_[0].service_->request_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, Drop) {
const size_t kNumRpcsPerAddress = 100;
ScheduleResponseForBalancer(
0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), 1, 2),
0);
// Send 100 RPCs for each server and drop address.
const auto& statuses_and_responses =
SendRpc(kMessage_, kNumRpcsPerAddress * (num_backends_ + 3));
size_t num_drops = 0;
for (const auto& status_and_response : statuses_and_responses) {
const Status& status = status_and_response.first;
const EchoResponse& response = status_and_response.second;
if (!status.ok() &&
status.error_message() == "Call dropped by load balancing policy") {
++num_drops;
} else {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kMessage_);
}
}
EXPECT_EQ(kNumRpcsPerAddress * 3, num_drops);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress,
backend_servers_[i].service_->request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_servers_[0].service_->request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_servers_[0].service_->response_count());
}
class SingleBalancerWithClientLoadReportingTest : public GrpclbEnd2endTest {
public:
SingleBalancerWithClientLoadReportingTest() : GrpclbEnd2endTest(4, 1, 2) {}
};
TEST_F(SingleBalancerWithClientLoadReportingTest, Vanilla) {
const size_t kNumRpcsPerAddress = 100;
ScheduleResponseForBalancer(
0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), 0, 0),
0);
// Send 100 RPCs per server.
const auto& statuses_and_responses =
SendRpc(kMessage_, kNumRpcsPerAddress * num_backends_);
for (const auto& status_and_response : statuses_and_responses) {
const Status& status = status_and_response.first;
const EchoResponse& response = status_and_response.second;
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kMessage_);
}
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress,
backend_servers_[i].service_->request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_servers_[0].service_->request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_servers_[0].service_->response_count());
const ClientStats client_stats = WaitForLoadReports();
EXPECT_EQ(kNumRpcsPerAddress * num_backends_, client_stats.num_calls_started);
EXPECT_EQ(kNumRpcsPerAddress * num_backends_,
client_stats.num_calls_finished);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_drop_for_rate_limiting);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_drop_for_load_balancing);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumRpcsPerAddress * num_backends_,
client_stats.num_calls_finished_known_received);
}
TEST_F(SingleBalancerWithClientLoadReportingTest, Drop) {
const size_t kNumRpcsPerAddress = 3;
ScheduleResponseForBalancer(
0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), 2, 1),
0);
// Send 100 RPCs for each server and drop address.
const auto& statuses_and_responses =
SendRpc(kMessage_, kNumRpcsPerAddress * (num_backends_ + 3));
size_t num_drops = 0;
for (const auto& status_and_response : statuses_and_responses) {
const Status& status = status_and_response.first;
const EchoResponse& response = status_and_response.second;
if (!status.ok() &&
status.error_message() == "Call dropped by load balancing policy") {
++num_drops;
} else {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kMessage_);
}
}
EXPECT_EQ(kNumRpcsPerAddress * 3, num_drops);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress,
backend_servers_[i].service_->request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancer_servers_[0].service_->request_count());
// and sent a single response.
EXPECT_EQ(1U, balancer_servers_[0].service_->response_count());
const ClientStats client_stats = WaitForLoadReports();
EXPECT_EQ(kNumRpcsPerAddress * (num_backends_ + 3),
client_stats.num_calls_started);
EXPECT_EQ(kNumRpcsPerAddress * (num_backends_ + 3),
client_stats.num_calls_finished);
EXPECT_EQ(kNumRpcsPerAddress * 2,
client_stats.num_calls_finished_with_drop_for_rate_limiting);
EXPECT_EQ(kNumRpcsPerAddress,
client_stats.num_calls_finished_with_drop_for_load_balancing);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumRpcsPerAddress * num_backends_,
client_stats.num_calls_finished_known_received);
}
} // namespace
} // namespace testing
} // namespace grpc
int main(int argc, char** argv) {
grpc_init();
grpc_test_init(argc, argv);
grpc_fake_resolver_init();
::testing::InitGoogleTest(&argc, argv);
const auto result = RUN_ALL_TESTS();
grpc_shutdown();
return result;
}