mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
260 lines
8.3 KiB
260 lines
8.3 KiB
#!/usr/bin/env python3 |
|
# |
|
# Copyright 2017 gRPC authors. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
""" Computes the diff between two bm runs and outputs significant results """ |
|
|
|
import argparse |
|
import collections |
|
import json |
|
import os |
|
import subprocess |
|
import sys |
|
|
|
sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), '..')) |
|
|
|
import bm_constants |
|
import bm_json |
|
import bm_speedup |
|
import tabulate |
|
|
|
verbose = False |
|
|
|
|
|
def _median(ary): |
|
assert (len(ary)) |
|
ary = sorted(ary) |
|
n = len(ary) |
|
if n % 2 == 0: |
|
return (ary[(n - 1) // 2] + ary[(n - 1) // 2 + 1]) / 2.0 |
|
else: |
|
return ary[n // 2] |
|
|
|
|
|
def _args(): |
|
argp = argparse.ArgumentParser( |
|
description='Perform diff on microbenchmarks') |
|
argp.add_argument('-t', |
|
'--track', |
|
choices=sorted(bm_constants._INTERESTING), |
|
nargs='+', |
|
default=sorted(bm_constants._INTERESTING), |
|
help='Which metrics to track') |
|
argp.add_argument('-b', |
|
'--benchmarks', |
|
nargs='+', |
|
choices=bm_constants._AVAILABLE_BENCHMARK_TESTS, |
|
default=bm_constants._AVAILABLE_BENCHMARK_TESTS, |
|
help='Which benchmarks to run') |
|
argp.add_argument( |
|
'-l', |
|
'--loops', |
|
type=int, |
|
default=20, |
|
help= |
|
'Number of times to loops the benchmarks. Must match what was passed to bm_run.py' |
|
) |
|
argp.add_argument('-r', |
|
'--regex', |
|
type=str, |
|
default="", |
|
help='Regex to filter benchmarks run') |
|
argp.add_argument('-n', '--new', type=str, help='New benchmark name') |
|
argp.add_argument('-o', '--old', type=str, help='Old benchmark name') |
|
argp.add_argument('-v', |
|
'--verbose', |
|
type=bool, |
|
help='Print details of before/after') |
|
args = argp.parse_args() |
|
global verbose |
|
if args.verbose: |
|
verbose = True |
|
assert args.new |
|
assert args.old |
|
return args |
|
|
|
|
|
def _maybe_print(str): |
|
if verbose: |
|
print(str) |
|
|
|
|
|
class Benchmark: |
|
|
|
def __init__(self): |
|
self.samples = { |
|
True: collections.defaultdict(list), |
|
False: collections.defaultdict(list) |
|
} |
|
self.final = {} |
|
self.speedup = {} |
|
|
|
def add_sample(self, track, data, new): |
|
for f in track: |
|
if f in data: |
|
self.samples[new][f].append(float(data[f])) |
|
|
|
def process(self, track, new_name, old_name): |
|
for f in sorted(track): |
|
new = self.samples[True][f] |
|
old = self.samples[False][f] |
|
if not new or not old: |
|
continue |
|
mdn_diff = abs(_median(new) - _median(old)) |
|
_maybe_print('%s: %s=%r %s=%r mdn_diff=%r' % |
|
(f, new_name, new, old_name, old, mdn_diff)) |
|
s = bm_speedup.speedup(new, old, 1e-5) |
|
self.speedup[f] = s |
|
if abs(s) > 3: |
|
if mdn_diff > 0.5: |
|
self.final[f] = '%+d%%' % s |
|
return self.final.keys() |
|
|
|
def skip(self): |
|
return not self.final |
|
|
|
def row(self, flds): |
|
return [self.final[f] if f in self.final else '' for f in flds] |
|
|
|
def speedup(self, name): |
|
if name in self.speedup: |
|
return self.speedup[name] |
|
return None |
|
|
|
|
|
def _read_json(filename, badjson_files, nonexistant_files): |
|
stripped = ".".join(filename.split(".")[:-2]) |
|
try: |
|
with open(filename) as f: |
|
r = f.read() |
|
return json.loads(r) |
|
except IOError as e: |
|
if stripped in nonexistant_files: |
|
nonexistant_files[stripped] += 1 |
|
else: |
|
nonexistant_files[stripped] = 1 |
|
return None |
|
except ValueError as e: |
|
print(r) |
|
if stripped in badjson_files: |
|
badjson_files[stripped] += 1 |
|
else: |
|
badjson_files[stripped] = 1 |
|
return None |
|
|
|
|
|
def fmt_dict(d): |
|
return ''.join([" " + k + ": " + str(d[k]) + "\n" for k in d]) |
|
|
|
|
|
def diff(bms, loops, regex, track, old, new): |
|
benchmarks = collections.defaultdict(Benchmark) |
|
|
|
badjson_files = {} |
|
nonexistant_files = {} |
|
for bm in bms: |
|
for loop in range(0, loops): |
|
for line in subprocess.check_output([ |
|
'bm_diff_%s/opt/%s' % (old, bm), '--benchmark_list_tests', |
|
'--benchmark_filter=%s' % regex |
|
]).splitlines(): |
|
line = line.decode('UTF-8') |
|
stripped_line = line.strip().replace("/", "_").replace( |
|
"<", "_").replace(">", "_").replace(", ", "_") |
|
js_new_opt = _read_json( |
|
'%s.%s.opt.%s.%d.json' % (bm, stripped_line, new, loop), |
|
badjson_files, nonexistant_files) |
|
js_old_opt = _read_json( |
|
'%s.%s.opt.%s.%d.json' % (bm, stripped_line, old, loop), |
|
badjson_files, nonexistant_files) |
|
for row in bm_json.expand_json(js_new_opt): |
|
name = row['cpp_name'] |
|
if name.endswith('_mean') or name.endswith('_stddev'): |
|
continue |
|
benchmarks[name].add_sample(track, row, True) |
|
for row in bm_json.expand_json(js_old_opt): |
|
name = row['cpp_name'] |
|
if name.endswith('_mean') or name.endswith('_stddev'): |
|
continue |
|
benchmarks[name].add_sample(track, row, False) |
|
|
|
really_interesting = set() |
|
for name, bm in benchmarks.items(): |
|
_maybe_print(name) |
|
really_interesting.update(bm.process(track, new, old)) |
|
fields = [f for f in track if f in really_interesting] |
|
|
|
# figure out the significance of the changes... right now we take the 95%-ile |
|
# benchmark delta %-age, and then apply some hand chosen thresholds |
|
histogram = [] |
|
_NOISY = ["BM_WellFlushed"] |
|
for name, bm in benchmarks.items(): |
|
if name in _NOISY: |
|
print("skipping noisy benchmark '%s' for labelling evaluation" % |
|
name) |
|
if bm.skip(): |
|
continue |
|
d = bm.speedup['cpu_time'] |
|
if d is None: |
|
continue |
|
histogram.append(d) |
|
histogram.sort() |
|
print("histogram of speedups: ", histogram) |
|
if len(histogram) == 0: |
|
significance = 0 |
|
else: |
|
delta = histogram[int(len(histogram) * 0.95)] |
|
mul = 1 |
|
if delta < 0: |
|
delta = -delta |
|
mul = -1 |
|
if delta < 2: |
|
significance = 0 |
|
elif delta < 5: |
|
significance = 1 |
|
elif delta < 10: |
|
significance = 2 |
|
else: |
|
significance = 3 |
|
significance *= mul |
|
|
|
headers = ['Benchmark'] + fields |
|
rows = [] |
|
for name in sorted(benchmarks.keys()): |
|
if benchmarks[name].skip(): |
|
continue |
|
rows.append([name] + benchmarks[name].row(fields)) |
|
note = None |
|
if len(badjson_files): |
|
note = 'Corrupt JSON data (indicates timeout or crash): \n%s' % fmt_dict( |
|
badjson_files) |
|
if len(nonexistant_files): |
|
if note: |
|
note += '\n\nMissing files (indicates new benchmark): \n%s' % fmt_dict( |
|
nonexistant_files) |
|
else: |
|
note = '\n\nMissing files (indicates new benchmark): \n%s' % fmt_dict( |
|
nonexistant_files) |
|
if rows: |
|
return tabulate.tabulate(rows, headers=headers, |
|
floatfmt='+.2f'), note, significance |
|
else: |
|
return None, note, 0 |
|
|
|
|
|
if __name__ == '__main__': |
|
args = _args() |
|
diff, note = diff(args.benchmarks, args.loops, args.regex, args.track, |
|
args.old, args.new, args.counters) |
|
print('%s\n%s' % (note, diff if diff else "No performance differences"))
|
|
|