The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3288 lines
132 KiB

// Copyright 2016 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <deque>
#include <memory>
#include <mutex>
#include <random>
#include <set>
#include <string>
#include <thread>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/string_view.h"
#include <grpc/event_engine/endpoint_config.h>
#include <grpc/grpc.h>
#include <grpc/support/alloc.h>
#include <grpc/support/atm.h>
#include <grpc/support/log.h>
#include <grpc/support/time.h>
#include <grpcpp/channel.h>
#include <grpcpp/client_context.h>
#include <grpcpp/create_channel.h>
#include <grpcpp/ext/call_metric_recorder.h>
#include <grpcpp/ext/orca_service.h>
#include <grpcpp/ext/server_metric_recorder.h>
#include <grpcpp/health_check_service_interface.h>
#include <grpcpp/impl/sync.h>
#include <grpcpp/server.h>
#include <grpcpp/server_builder.h>
#include "src/core/ext/filters/client_channel/backup_poller.h"
#include "src/core/ext/filters/client_channel/config_selector.h"
#include "src/core/ext/filters/client_channel/global_subchannel_pool.h"
#include "src/core/ext/filters/client_channel/resolver/fake/fake_resolver.h"
#include "src/core/lib/address_utils/parse_address.h"
#include "src/core/lib/address_utils/sockaddr_utils.h"
#include "src/core/lib/backoff/backoff.h"
#include "src/core/lib/channel/channel_args.h"
#include "src/core/lib/config/config_vars.h"
#include "src/core/lib/gprpp/crash.h"
#include "src/core/lib/gprpp/debug_location.h"
#include "src/core/lib/gprpp/env.h"
#include "src/core/lib/gprpp/ref_counted_ptr.h"
#include "src/core/lib/gprpp/time.h"
#include "src/core/lib/iomgr/tcp_client.h"
#include "src/core/lib/resolver/server_address.h"
#include "src/core/lib/security/credentials/fake/fake_credentials.h"
#include "src/core/lib/service_config/service_config.h"
#include "src/core/lib/service_config/service_config_impl.h"
#include "src/core/lib/surface/server.h"
#include "src/core/lib/transport/connectivity_state.h"
#include "src/cpp/client/secure_credentials.h"
#include "src/cpp/server/secure_server_credentials.h"
#include "src/proto/grpc/health/v1/health.grpc.pb.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
#include "src/proto/grpc/testing/xds/v3/orca_load_report.pb.h"
#include "test/core/util/port.h"
#include "test/core/util/resolve_localhost_ip46.h"
#include "test/core/util/test_config.h"
#include "test/core/util/test_lb_policies.h"
#include "test/cpp/end2end/connection_attempt_injector.h"
#include "test/cpp/end2end/test_service_impl.h"
namespace grpc {
namespace testing {
namespace {
using xds::data::orca::v3::OrcaLoadReport;
constexpr char kRequestMessage[] = "Live long and prosper.";
// A noop health check service that just terminates the call and returns OK
// status in its methods. This is used to test the retry mechanism in
// SubchannelStreamClient.
class NoopHealthCheckServiceImpl : public health::v1::Health::Service {
public:
~NoopHealthCheckServiceImpl() override = default;
Status Check(ServerContext*, const health::v1::HealthCheckRequest*,
health::v1::HealthCheckResponse*) override {
return Status::OK;
}
Status Watch(ServerContext*, const health::v1::HealthCheckRequest*,
ServerWriter<health::v1::HealthCheckResponse>*) override {
grpc_core::MutexLock lock(&mu_);
request_count_++;
return Status::OK;
}
int request_count() {
grpc_core::MutexLock lock(&mu_);
return request_count_;
}
private:
grpc_core::Mutex mu_;
int request_count_ ABSL_GUARDED_BY(&mu_) = 0;
};
// Subclass of TestServiceImpl that increments a request counter for
// every call to the Echo RPC.
class MyTestServiceImpl : public TestServiceImpl {
public:
Status Echo(ServerContext* context, const EchoRequest* request,
EchoResponse* response) override {
{
grpc_core::MutexLock lock(&mu_);
++request_count_;
}
AddClient(context->peer());
if (request->has_param() && request->param().has_backend_metrics()) {
const auto& request_metrics = request->param().backend_metrics();
auto* recorder = context->ExperimentalGetCallMetricRecorder();
EXPECT_NE(recorder, nullptr);
// Do not record when zero since it indicates no test per-call report.
if (request_metrics.cpu_utilization() > 0) {
recorder->RecordCpuUtilizationMetric(request_metrics.cpu_utilization());
}
if (request_metrics.mem_utilization() > 0) {
recorder->RecordMemoryUtilizationMetric(
request_metrics.mem_utilization());
}
if (request_metrics.rps_fractional() > 0) {
recorder->RecordQpsMetric(request_metrics.rps_fractional());
}
if (request_metrics.eps() > 0) {
recorder->RecordEpsMetric(request_metrics.eps());
}
for (const auto& p : request_metrics.request_cost()) {
char* key = static_cast<char*>(
grpc_call_arena_alloc(context->c_call(), p.first.size() + 1));
strncpy(key, p.first.data(), p.first.size());
key[p.first.size()] = '\0';
recorder->RecordRequestCostMetric(key, p.second);
}
for (const auto& p : request_metrics.utilization()) {
char* key = static_cast<char*>(
grpc_call_arena_alloc(context->c_call(), p.first.size() + 1));
strncpy(key, p.first.data(), p.first.size());
key[p.first.size()] = '\0';
recorder->RecordUtilizationMetric(key, p.second);
}
for (const auto& p : request_metrics.named_metrics()) {
char* key = static_cast<char*>(
grpc_call_arena_alloc(context->c_call(), p.first.size() + 1));
strncpy(key, p.first.data(), p.first.size());
key[p.first.size()] = '\0';
recorder->RecordNamedMetric(key, p.second);
}
}
return TestServiceImpl::Echo(context, request, response);
}
size_t request_count() {
grpc_core::MutexLock lock(&mu_);
return request_count_;
}
void ResetCounters() {
grpc_core::MutexLock lock(&mu_);
request_count_ = 0;
}
std::set<std::string> clients() {
grpc_core::MutexLock lock(&clients_mu_);
return clients_;
}
private:
void AddClient(const std::string& client) {
grpc_core::MutexLock lock(&clients_mu_);
clients_.insert(client);
}
grpc_core::Mutex mu_;
size_t request_count_ ABSL_GUARDED_BY(&mu_) = 0;
grpc_core::Mutex clients_mu_;
std::set<std::string> clients_ ABSL_GUARDED_BY(&clients_mu_);
};
class FakeResolverResponseGeneratorWrapper {
public:
explicit FakeResolverResponseGeneratorWrapper(bool ipv6_only)
: ipv6_only_(ipv6_only),
response_generator_(grpc_core::MakeRefCounted<
grpc_core::FakeResolverResponseGenerator>()) {}
FakeResolverResponseGeneratorWrapper(
FakeResolverResponseGeneratorWrapper&& other) noexcept {
ipv6_only_ = other.ipv6_only_;
response_generator_ = std::move(other.response_generator_);
}
void SetNextResolution(
const std::vector<int>& ports, const char* service_config_json = nullptr,
const char* attribute_key = nullptr,
std::unique_ptr<grpc_core::ServerAddress::AttributeInterface> attribute =
nullptr,
const grpc_core::ChannelArgs& per_address_args =
grpc_core::ChannelArgs()) {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetResponse(
BuildFakeResults(ipv6_only_, ports, service_config_json, attribute_key,
std::move(attribute), per_address_args));
}
void SetNextResolutionUponError(const std::vector<int>& ports) {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetReresolutionResponse(
BuildFakeResults(ipv6_only_, ports));
}
void SetFailureOnReresolution() {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetFailureOnReresolution();
}
void SetResponse(grpc_core::Resolver::Result result) {
grpc_core::ExecCtx exec_ctx;
response_generator_->SetResponse(std::move(result));
}
grpc_core::FakeResolverResponseGenerator* Get() const {
return response_generator_.get();
}
private:
static grpc_core::Resolver::Result BuildFakeResults(
bool ipv6_only, const std::vector<int>& ports,
const char* service_config_json = nullptr,
const char* attribute_key = nullptr,
std::unique_ptr<grpc_core::ServerAddress::AttributeInterface> attribute =
nullptr,
const grpc_core::ChannelArgs& per_address_args =
grpc_core::ChannelArgs()) {
grpc_core::Resolver::Result result;
result.addresses = grpc_core::ServerAddressList();
for (const int& port : ports) {
absl::StatusOr<grpc_core::URI> lb_uri = grpc_core::URI::Parse(
absl::StrCat(ipv6_only ? "ipv6:[::1]:" : "ipv4:127.0.0.1:", port));
GPR_ASSERT(lb_uri.ok());
grpc_resolved_address address;
GPR_ASSERT(grpc_parse_uri(*lb_uri, &address));
std::map<const char*,
std::unique_ptr<grpc_core::ServerAddress::AttributeInterface>>
attributes;
if (attribute != nullptr) {
attributes[attribute_key] = attribute->Copy();
}
result.addresses->emplace_back(address, per_address_args,
std::move(attributes));
}
if (result.addresses->empty()) {
result.resolution_note = "fake resolver empty address list";
}
if (service_config_json != nullptr) {
result.service_config = grpc_core::ServiceConfigImpl::Create(
grpc_core::ChannelArgs(), service_config_json);
EXPECT_TRUE(result.service_config.ok()) << result.service_config.status();
}
return result;
}
bool ipv6_only_ = false;
grpc_core::RefCountedPtr<grpc_core::FakeResolverResponseGenerator>
response_generator_;
};
class ClientLbEnd2endTest : public ::testing::Test {
protected:
ClientLbEnd2endTest()
: server_host_("localhost"),
creds_(new SecureChannelCredentials(
grpc_fake_transport_security_credentials_create())) {}
void SetUp() override {
grpc_init();
bool localhost_resolves_to_ipv4 = false;
bool localhost_resolves_to_ipv6 = false;
grpc_core::LocalhostResolves(&localhost_resolves_to_ipv4,
&localhost_resolves_to_ipv6);
ipv6_only_ = !localhost_resolves_to_ipv4 && localhost_resolves_to_ipv6;
}
void TearDown() override {
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
servers_.clear();
creds_.reset();
grpc_shutdown();
}
void CreateServers(size_t num_servers,
std::vector<int> ports = std::vector<int>()) {
servers_.clear();
for (size_t i = 0; i < num_servers; ++i) {
int port = 0;
if (ports.size() == num_servers) port = ports[i];
servers_.emplace_back(new ServerData(port));
}
}
void StartServer(size_t index) { servers_[index]->Start(server_host_); }
void StartServers(size_t num_servers,
std::vector<int> ports = std::vector<int>()) {
CreateServers(num_servers, std::move(ports));
for (size_t i = 0; i < num_servers; ++i) {
StartServer(i);
}
}
std::vector<int> GetServersPorts(size_t start_index = 0,
size_t stop_index = 0) {
if (stop_index == 0) stop_index = servers_.size();
std::vector<int> ports;
for (size_t i = start_index; i < stop_index; ++i) {
ports.push_back(servers_[i]->port_);
}
return ports;
}
FakeResolverResponseGeneratorWrapper BuildResolverResponseGenerator() {
return FakeResolverResponseGeneratorWrapper(ipv6_only_);
}
std::unique_ptr<grpc::testing::EchoTestService::Stub> BuildStub(
const std::shared_ptr<Channel>& channel) {
return grpc::testing::EchoTestService::NewStub(channel);
}
std::shared_ptr<Channel> BuildChannel(
const std::string& lb_policy_name,
const FakeResolverResponseGeneratorWrapper& response_generator,
ChannelArguments args = ChannelArguments()) {
if (!lb_policy_name.empty()) {
args.SetLoadBalancingPolicyName(lb_policy_name);
} // else, default to pick first
args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR,
response_generator.Get());
return grpc::CreateCustomChannel("fake:default.example.com", creds_, args);
}
Status SendRpc(
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
EchoResponse* response = nullptr, int timeout_ms = 1000,
bool wait_for_ready = false, EchoRequest* request = nullptr) {
EchoResponse local_response;
if (response == nullptr) response = &local_response;
EchoRequest local_request;
if (request == nullptr) request = &local_request;
request->set_message(kRequestMessage);
request->mutable_param()->set_echo_metadata(true);
ClientContext context;
context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms));
if (wait_for_ready) context.set_wait_for_ready(true);
context.AddMetadata("foo", "1");
context.AddMetadata("bar", "2");
context.AddMetadata("baz", "3");
return stub->Echo(&context, *request, response);
}
void CheckRpcSendOk(
const grpc_core::DebugLocation& location,
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
bool wait_for_ready = false, const OrcaLoadReport* load_report = nullptr,
int timeout_ms = 2000) {
EchoResponse response;
EchoRequest request;
EchoRequest* request_ptr = nullptr;
if (load_report != nullptr) {
request_ptr = &request;
auto params = request.mutable_param();
auto backend_metrics = params->mutable_backend_metrics();
*backend_metrics = *load_report;
}
Status status =
SendRpc(stub, &response, timeout_ms, wait_for_ready, request_ptr);
ASSERT_TRUE(status.ok())
<< "From " << location.file() << ":" << location.line()
<< "\nError: " << status.error_message() << " "
<< status.error_details();
ASSERT_EQ(response.message(), kRequestMessage)
<< "From " << location.file() << ":" << location.line();
}
void CheckRpcSendFailure(
const grpc_core::DebugLocation& location,
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
StatusCode expected_status, absl::string_view expected_message_regex) {
Status status = SendRpc(stub);
EXPECT_FALSE(status.ok());
EXPECT_EQ(expected_status, status.error_code())
<< location.file() << ":" << location.line();
EXPECT_THAT(status.error_message(),
::testing::MatchesRegex(expected_message_regex))
<< location.file() << ":" << location.line();
}
void SendRpcsUntil(
const grpc_core::DebugLocation& debug_location,
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
absl::AnyInvocable<bool(const Status&)> continue_predicate,
EchoRequest* request_ptr = nullptr, int timeout_ms = 15000) {
absl::Time deadline = absl::InfiniteFuture();
if (timeout_ms != 0) {
deadline = absl::Now() +
(absl::Milliseconds(timeout_ms) * grpc_test_slowdown_factor());
}
while (true) {
Status status =
SendRpc(stub, /*response=*/nullptr, /*timeout_ms=*/1000,
/*wait_for_ready=*/false, /*request=*/request_ptr);
if (!continue_predicate(status)) return;
EXPECT_LE(absl::Now(), deadline)
<< debug_location.file() << ":" << debug_location.line();
if (absl::Now() >= deadline) break;
}
}
struct ServerData {
const int port_;
std::unique_ptr<Server> server_;
MyTestServiceImpl service_;
std::unique_ptr<experimental::ServerMetricRecorder> server_metric_recorder_;
experimental::OrcaService orca_service_;
std::unique_ptr<std::thread> thread_;
bool enable_noop_health_check_service_ = false;
NoopHealthCheckServiceImpl noop_health_check_service_impl_;
grpc_core::Mutex mu_;
grpc_core::CondVar cond_;
bool server_ready_ ABSL_GUARDED_BY(mu_) = false;
bool started_ ABSL_GUARDED_BY(mu_) = false;
explicit ServerData(int port = 0)
: port_(port > 0 ? port : grpc_pick_unused_port_or_die()),
server_metric_recorder_(experimental::ServerMetricRecorder::Create()),
orca_service_(
server_metric_recorder_.get(),
experimental::OrcaService::Options().set_min_report_duration(
absl::Seconds(0.1))) {}
void Start(const std::string& server_host) {
gpr_log(GPR_INFO, "starting server on port %d", port_);
grpc_core::MutexLock lock(&mu_);
started_ = true;
thread_ = std::make_unique<std::thread>(
std::bind(&ServerData::Serve, this, server_host));
while (!server_ready_) {
cond_.Wait(&mu_);
}
server_ready_ = false;
gpr_log(GPR_INFO, "server startup complete");
}
void Serve(const std::string& server_host) {
std::ostringstream server_address;
server_address << server_host << ":" << port_;
ServerBuilder builder;
std::shared_ptr<ServerCredentials> creds(new SecureServerCredentials(
grpc_fake_transport_security_server_credentials_create()));
builder.AddListeningPort(server_address.str(), std::move(creds));
builder.RegisterService(&service_);
builder.RegisterService(&orca_service_);
if (enable_noop_health_check_service_) {
builder.RegisterService(&noop_health_check_service_impl_);
}
grpc::ServerBuilder::experimental_type(&builder)
.EnableCallMetricRecording(server_metric_recorder_.get());
server_ = builder.BuildAndStart();
grpc_core::MutexLock lock(&mu_);
server_ready_ = true;
cond_.Signal();
}
void Shutdown() {
grpc_core::MutexLock lock(&mu_);
if (!started_) return;
server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0));
thread_->join();
started_ = false;
}
void StopListeningAndSendGoaways() {
grpc_core::ExecCtx exec_ctx;
auto* server = grpc_core::Server::FromC(server_->c_server());
server->StopListening();
server->SendGoaways();
}
void SetServingStatus(const std::string& service, bool serving) {
server_->GetHealthCheckService()->SetServingStatus(service, serving);
}
};
void ResetCounters() {
for (const auto& server : servers_) server->service_.ResetCounters();
}
bool SeenAllServers(size_t start_index = 0, size_t stop_index = 0) {
if (stop_index == 0) stop_index = servers_.size();
for (size_t i = start_index; i < stop_index; ++i) {
if (servers_[i]->service_.request_count() == 0) return false;
}
return true;
}
// If status_check is null, all RPCs must succeed.
// If status_check is non-null, it will be called for all non-OK RPCs.
void WaitForServers(
const grpc_core::DebugLocation& location,
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
size_t start_index = 0, size_t stop_index = 0,
absl::AnyInvocable<void(const Status&)> status_check = nullptr,
absl::Duration timeout = absl::Seconds(30)) {
if (stop_index == 0) stop_index = servers_.size();
auto deadline = absl::Now() + (timeout * grpc_test_slowdown_factor());
gpr_log(GPR_INFO,
"========= WAITING FOR BACKENDS [%" PRIuPTR ", %" PRIuPTR
") ==========",
start_index, stop_index);
while (!SeenAllServers(start_index, stop_index)) {
Status status = SendRpc(stub);
if (status_check != nullptr) {
if (!status.ok()) status_check(status);
} else {
EXPECT_TRUE(status.ok())
<< " code=" << status.error_code() << " message=\""
<< status.error_message() << "\" at " << location.file() << ":"
<< location.line();
}
EXPECT_LE(absl::Now(), deadline)
<< " at " << location.file() << ":" << location.line();
if (absl::Now() >= deadline) break;
}
ResetCounters();
}
void WaitForServer(
const grpc_core::DebugLocation& location,
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
size_t server_index,
absl::AnyInvocable<void(const Status&)> status_check = nullptr) {
WaitForServers(location, stub, server_index, server_index + 1,
std::move(status_check));
}
bool WaitForChannelState(
Channel* channel,
absl::AnyInvocable<bool(grpc_connectivity_state)> predicate,
bool try_to_connect = false, int timeout_seconds = 5) {
const gpr_timespec deadline =
grpc_timeout_seconds_to_deadline(timeout_seconds);
while (true) {
grpc_connectivity_state state = channel->GetState(try_to_connect);
if (predicate(state)) break;
if (!channel->WaitForStateChange(state, deadline)) return false;
}
return true;
}
bool WaitForChannelNotReady(Channel* channel, int timeout_seconds = 5) {
auto predicate = [](grpc_connectivity_state state) {
return state != GRPC_CHANNEL_READY;
};
return WaitForChannelState(channel, predicate, false, timeout_seconds);
}
bool WaitForChannelReady(Channel* channel, int timeout_seconds = 5) {
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_READY;
};
return WaitForChannelState(channel, predicate, true, timeout_seconds);
}
// Updates \a connection_order by appending to it the index of the newly
// connected server. Must be called after every single RPC.
void UpdateConnectionOrder(
const std::vector<std::unique_ptr<ServerData>>& servers,
std::vector<int>* connection_order) {
for (size_t i = 0; i < servers.size(); ++i) {
if (servers[i]->service_.request_count() == 1) {
// Was the server index known? If not, update connection_order.
const auto it =
std::find(connection_order->begin(), connection_order->end(), i);
if (it == connection_order->end()) {
connection_order->push_back(i);
return;
}
}
}
}
void EnableNoopHealthCheckService() {
for (auto& server : servers_) {
server->enable_noop_health_check_service_ = true;
}
}
static std::string MakeConnectionFailureRegex(absl::string_view prefix) {
return absl::StrCat(prefix,
"; last error: (UNKNOWN|UNAVAILABLE): "
"(ipv6:%5B::1%5D|ipv4:127.0.0.1):[0-9]+: "
"(Failed to connect to remote host: )?"
"(Connection refused|Connection reset by peer|"
"Socket closed|FD shutdown)");
}
const std::string server_host_;
std::vector<std::unique_ptr<ServerData>> servers_;
std::shared_ptr<ChannelCredentials> creds_;
bool ipv6_only_ = false;
};
TEST_F(ClientLbEnd2endTest, ChannelStateConnectingWhenResolving) {
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator);
auto stub = BuildStub(channel);
// Initial state should be IDLE.
EXPECT_EQ(channel->GetState(false /* try_to_connect */), GRPC_CHANNEL_IDLE);
// Tell the channel to try to connect.
// Note that this call also returns IDLE, since the state change has
// not yet occurred; it just gets triggered by this call.
EXPECT_EQ(channel->GetState(true /* try_to_connect */), GRPC_CHANNEL_IDLE);
// Now that the channel is trying to connect, we should be in state
// CONNECTING.
EXPECT_EQ(channel->GetState(false /* try_to_connect */),
GRPC_CHANNEL_CONNECTING);
// Return a resolver result, which allows the connection attempt to proceed.
response_generator.SetNextResolution(GetServersPorts());
// We should eventually transition into state READY.
EXPECT_TRUE(WaitForChannelReady(channel.get()));
}
TEST_F(ClientLbEnd2endTest, ChannelIdleness) {
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Set max idle time and build the channel.
ChannelArguments args;
args.SetInt(GRPC_ARG_CLIENT_IDLE_TIMEOUT_MS,
1000 * grpc_test_slowdown_factor());
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator, args);
auto stub = BuildStub(channel);
// The initial channel state should be IDLE.
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
// After sending RPC, channel state should be READY.
gpr_log(GPR_INFO, "*** SENDING RPC, CHANNEL SHOULD CONNECT ***");
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// After a period time not using the channel, the channel state should switch
// to IDLE.
gpr_log(GPR_INFO, "*** WAITING FOR CHANNEL TO GO IDLE ***");
gpr_sleep_until(grpc_timeout_milliseconds_to_deadline(1200));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
// Sending a new RPC should awake the IDLE channel.
gpr_log(GPR_INFO, "*** SENDING ANOTHER RPC, CHANNEL SHOULD RECONNECT ***");
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
}
TEST_F(ClientLbEnd2endTest, AuthorityOverrideOnChannel) {
StartServers(1);
// Set authority via channel arg.
auto response_generator = BuildResolverResponseGenerator();
ChannelArguments args;
args.SetString(GRPC_ARG_DEFAULT_AUTHORITY, "foo.example.com");
auto channel = BuildChannel("", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Send an RPC.
EchoRequest request;
request.mutable_param()->set_echo_host_from_authority_header(true);
EchoResponse response;
Status status = SendRpc(stub, &response, /*timeout_ms=*/1000,
/*wait_for_ready=*/false, &request);
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
// Check that the right authority was seen by the server.
EXPECT_EQ("foo.example.com", response.param().host());
}
TEST_F(ClientLbEnd2endTest, AuthorityOverrideFromResolver) {
StartServers(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator);
auto stub = BuildStub(channel);
// Inject resolver result that sets the per-address authority to a
// different value.
response_generator.SetNextResolution(
GetServersPorts(), /*service_config_json=*/nullptr,
/*attribute_key=*/nullptr, /*attribute=*/nullptr,
grpc_core::ChannelArgs().Set(GRPC_ARG_DEFAULT_AUTHORITY,
"foo.example.com"));
// Send an RPC.
EchoRequest request;
request.mutable_param()->set_echo_host_from_authority_header(true);
EchoResponse response;
Status status = SendRpc(stub, &response, /*timeout_ms=*/1000,
/*wait_for_ready=*/false, &request);
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
// Check that the right authority was seen by the server.
EXPECT_EQ("foo.example.com", response.param().host());
}
TEST_F(ClientLbEnd2endTest, AuthorityOverridePrecedence) {
StartServers(1);
// Set authority via channel arg.
auto response_generator = BuildResolverResponseGenerator();
ChannelArguments args;
args.SetString(GRPC_ARG_DEFAULT_AUTHORITY, "foo.example.com");
auto channel = BuildChannel("", response_generator, args);
auto stub = BuildStub(channel);
// Inject resolver result that sets the per-address authority to a
// different value.
response_generator.SetNextResolution(
GetServersPorts(), /*service_config_json=*/nullptr,
/*attribute_key=*/nullptr, /*attribute=*/nullptr,
grpc_core::ChannelArgs().Set(GRPC_ARG_DEFAULT_AUTHORITY,
"bar.example.com"));
// Send an RPC.
EchoRequest request;
request.mutable_param()->set_echo_host_from_authority_header(true);
EchoResponse response;
Status status = SendRpc(stub, &response, /*timeout_ms=*/1000,
/*wait_for_ready=*/false, &request);
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
// Check that the right authority was seen by the server.
EXPECT_EQ("foo.example.com", response.param().host());
}
//
// pick_first tests
//
using PickFirstTest = ClientLbEnd2endTest;
TEST_F(PickFirstTest, Basic) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel(
"", response_generator); // test that pick first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
// All requests should have gone to a single server.
bool found = false;
for (size_t i = 0; i < servers_.size(); ++i) {
const int request_count = servers_[i]->service_.request_count();
if (request_count == kNumServers) {
found = true;
} else {
EXPECT_EQ(0, request_count);
}
}
EXPECT_TRUE(found);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, ProcessPending) {
StartServers(1); // Single server
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel(
"", response_generator); // test that pick first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution({servers_[0]->port_});
WaitForServer(DEBUG_LOCATION, stub, 0);
// Create a new channel and its corresponding PF LB policy, which will pick
// the subchannels in READY state from the previous RPC against the same
// target (even if it happened over a different channel, because subchannels
// are globally reused). Progress should happen without any transition from
// this READY state.
auto second_response_generator = BuildResolverResponseGenerator();
auto second_channel = BuildChannel("", second_response_generator);
auto second_stub = BuildStub(second_channel);
second_response_generator.SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(DEBUG_LOCATION, second_stub);
}
TEST_F(PickFirstTest, SelectsReadyAtStartup) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 5000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS,
kInitialBackOffMs * grpc_test_slowdown_factor());
// Create 2 servers, but start only the second one.
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
CreateServers(2, ports);
StartServer(1);
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("pick_first", response_generator1, args);
auto stub1 = BuildStub(channel1);
response_generator1.SetNextResolution(ports);
// Wait for second server to be ready.
WaitForServer(DEBUG_LOCATION, stub1, 1);
// Create a second channel with the same addresses. Its PF instance
// should immediately pick the second subchannel, since it's already
// in READY state.
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("pick_first", response_generator2, args);
response_generator2.SetNextResolution(ports);
// Check that the channel reports READY without waiting for the
// initial backoff.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1 /* timeout_seconds */));
}
TEST_F(PickFirstTest, BackOffInitialReconnect) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 100;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS,
kInitialBackOffMs * grpc_test_slowdown_factor());
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
// The channel won't become connected (there's no server).
ASSERT_FALSE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 2)));
// Bring up a server on the chosen port.
StartServers(1, ports);
// Now it will.
ASSERT_TRUE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 2)));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
// We should have waited at least kInitialBackOffMs. We substract one to
// account for test and precision accuracy drift.
EXPECT_GE(waited.millis(),
(kInitialBackOffMs * grpc_test_slowdown_factor()) - 1);
// But not much more.
EXPECT_GT(
gpr_time_cmp(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs * 1.10), t1),
0);
}
TEST_F(PickFirstTest, BackOffMinReconnect) {
ChannelArguments args;
constexpr int kMinReconnectBackOffMs = 1000;
args.SetInt(GRPC_ARG_MIN_RECONNECT_BACKOFF_MS,
kMinReconnectBackOffMs * grpc_test_slowdown_factor());
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
// Make connection delay a 10% longer than it's willing to in order to make
// sure we are hitting the codepath that waits for the min reconnect backoff.
ConnectionAttemptInjector injector;
injector.SetDelay(grpc_core::Duration::Milliseconds(
kMinReconnectBackOffMs * grpc_test_slowdown_factor() * 1.10));
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kMinReconnectBackOffMs * 2));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
// We should have waited at least kMinReconnectBackOffMs. We substract one to
// account for test and precision accuracy drift.
EXPECT_GE(waited.millis(),
(kMinReconnectBackOffMs * grpc_test_slowdown_factor()) - 1);
}
TEST_F(PickFirstTest, ResetConnectionBackoff) {
ChannelArguments args;
constexpr int kInitialBackOffMs = 1000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS,
kInitialBackOffMs * grpc_test_slowdown_factor());
const std::vector<int> ports = {grpc_pick_unused_port_or_die()};
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
// The channel won't become connected (there's no server).
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Bring up a server on the chosen port.
StartServers(1, ports);
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
// Wait for connect, but not long enough. This proves that we're
// being throttled by initial backoff.
EXPECT_FALSE(
channel->WaitForConnected(grpc_timeout_milliseconds_to_deadline(10)));
// Reset connection backoff.
experimental::ChannelResetConnectionBackoff(channel.get());
// Wait for connect. Should happen as soon as the client connects to
// the newly started server, which should be before the initial
// backoff timeout elapses.
EXPECT_TRUE(channel->WaitForConnected(
grpc_timeout_milliseconds_to_deadline(kInitialBackOffMs)));
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
// We should have waited less than kInitialBackOffMs.
EXPECT_LT(waited.millis(), kInitialBackOffMs * grpc_test_slowdown_factor());
}
TEST_F(ClientLbEnd2endTest,
ResetConnectionBackoffNextAttemptStartsImmediately) {
// Start connection injector.
ConnectionAttemptInjector injector;
// Create client.
const int port = grpc_pick_unused_port_or_die();
ChannelArguments args;
const int kInitialBackOffMs = 5000;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS,
kInitialBackOffMs * grpc_test_slowdown_factor());
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({port});
// Intercept initial connection attempt.
auto hold1 = injector.AddHold(port);
gpr_log(GPR_INFO, "=== TRIGGERING INITIAL CONNECTION ATTEMPT");
EXPECT_EQ(GRPC_CHANNEL_IDLE, channel->GetState(/*try_to_connect=*/true));
hold1->Wait();
EXPECT_EQ(GRPC_CHANNEL_CONNECTING,
channel->GetState(/*try_to_connect=*/false));
// Reset backoff.
gpr_log(GPR_INFO, "=== RESETTING BACKOFF");
experimental::ChannelResetConnectionBackoff(channel.get());
// Intercept next attempt. Do this before resuming the first attempt,
// just in case the client makes progress faster than this thread.
auto hold2 = injector.AddHold(port);
// Fail current attempt and wait for next one to start.
gpr_log(GPR_INFO, "=== RESUMING INITIAL ATTEMPT");
const gpr_timespec t0 = gpr_now(GPR_CLOCK_MONOTONIC);
hold1->Resume();
gpr_log(GPR_INFO, "=== WAITING FOR SECOND ATTEMPT");
// This WaitForStateChange() call just makes sure we're doing some polling.
EXPECT_TRUE(channel->WaitForStateChange(GRPC_CHANNEL_CONNECTING,
grpc_timeout_seconds_to_deadline(1)));
hold2->Wait();
const gpr_timespec t1 = gpr_now(GPR_CLOCK_MONOTONIC);
gpr_log(GPR_INFO, "=== RESUMING SECOND ATTEMPT");
hold2->Resume();
// Elapsed time should be very short, much less than kInitialBackOffMs.
const grpc_core::Duration waited =
grpc_core::Duration::FromTimespec(gpr_time_sub(t1, t0));
gpr_log(GPR_DEBUG, "Waited %" PRId64 " milliseconds", waited.millis());
EXPECT_LT(waited.millis(), 1000 * grpc_test_slowdown_factor());
}
TEST_F(
PickFirstTest,
TriesAllSubchannelsBeforeReportingTransientFailureWithSubchannelSharing) {
// Start connection injector.
ConnectionAttemptInjector injector;
// Get 5 unused ports. Each channel will have 2 unique ports followed
// by a common port.
std::vector<int> ports1 = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
std::vector<int> ports2 = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(), ports1[2]};
// Create channel 1.
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("pick_first", response_generator1);
auto stub1 = BuildStub(channel1);
response_generator1.SetNextResolution(ports1);
// Allow the connection attempts for ports 0 and 1 to fail normally.
// Inject a hold for the connection attempt to port 2.
auto hold_channel1_port2 = injector.AddHold(ports1[2]);
// Trigger connection attempt.
gpr_log(GPR_INFO, "=== START CONNECTING CHANNEL 1 ===");
channel1->GetState(/*try_to_connect=*/true);
// Wait for connection attempt to port 2.
gpr_log(GPR_INFO, "=== WAITING FOR CHANNEL 1 PORT 2 TO START ===");
hold_channel1_port2->Wait();
gpr_log(GPR_INFO, "=== CHANNEL 1 PORT 2 STARTED ===");
// Now create channel 2.
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("pick_first", response_generator2);
response_generator2.SetNextResolution(ports2);
// Inject a hold for port 0.
auto hold_channel2_port0 = injector.AddHold(ports2[0]);
// Trigger connection attempt.
gpr_log(GPR_INFO, "=== START CONNECTING CHANNEL 2 ===");
channel2->GetState(/*try_to_connect=*/true);
// Wait for connection attempt to port 0.
gpr_log(GPR_INFO, "=== WAITING FOR CHANNEL 2 PORT 0 TO START ===");
hold_channel2_port0->Wait();
gpr_log(GPR_INFO, "=== CHANNEL 2 PORT 0 STARTED ===");
// Inject a hold for port 0, which will be retried by channel 1.
auto hold_channel1_port0 = injector.AddHold(ports1[0]);
// Now allow the connection attempt to port 2 to complete. The subchannel
// will deliver a TRANSIENT_FAILURE notification to both channels.
gpr_log(GPR_INFO, "=== RESUMING CHANNEL 1 PORT 2 ===");
hold_channel1_port2->Resume();
// Wait for channel 1 to retry port 0, so that we know it's seen the
// connectivity state notification for port 2.
gpr_log(GPR_INFO, "=== WAITING FOR CHANNEL 1 PORT 0 ===");
hold_channel1_port0->Wait();
gpr_log(GPR_INFO, "=== CHANNEL 1 PORT 0 STARTED ===");
// Channel 1 should now report TRANSIENT_FAILURE.
// Channel 2 should continue to report CONNECTING.
EXPECT_EQ(GRPC_CHANNEL_TRANSIENT_FAILURE, channel1->GetState(false));
EXPECT_EQ(GRPC_CHANNEL_CONNECTING, channel2->GetState(false));
// Inject a hold for port 2, which will eventually be tried by channel 2.
auto hold_channel2_port2 = injector.AddHold(ports2[2]);
// Allow channel 2 to resume port 0. Port 0 will fail, as will port 1.
gpr_log(GPR_INFO, "=== RESUMING CHANNEL 2 PORT 0 ===");
hold_channel2_port0->Resume();
// Wait for channel 2 to try port 2.
gpr_log(GPR_INFO, "=== WAITING FOR CHANNEL 2 PORT 2 ===");
hold_channel2_port2->Wait();
gpr_log(GPR_INFO, "=== CHANNEL 2 PORT 2 STARTED ===");
// Channel 2 should still be CONNECTING here.
EXPECT_EQ(GRPC_CHANNEL_CONNECTING, channel2->GetState(false));
// Add a hold for channel 2 port 0.
hold_channel2_port0 = injector.AddHold(ports2[0]);
gpr_log(GPR_INFO, "=== RESUMING CHANNEL 2 PORT 2 ===");
hold_channel2_port2->Resume();
// Wait for channel 2 to retry port 0.
gpr_log(GPR_INFO, "=== WAITING FOR CHANNEL 2 PORT 0 ===");
hold_channel2_port0->Wait();
// Now channel 2 should be reporting TRANSIENT_FAILURE.
EXPECT_EQ(GRPC_CHANNEL_TRANSIENT_FAILURE, channel2->GetState(false));
// Clean up.
gpr_log(GPR_INFO, "=== RESUMING CHANNEL 1 PORT 0 AND CHANNEL 2 PORT 0 ===");
hold_channel1_port0->Resume();
hold_channel2_port0->Resume();
}
TEST_F(PickFirstTest, Updates) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports;
// Perform one RPC against the first server.
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
// An empty update will result in the channel going into TRANSIENT_FAILURE.
ports.clear();
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET none *******");
grpc_connectivity_state channel_state;
do {
channel_state = channel->GetState(true /* try to connect */);
} while (channel_state == GRPC_CHANNEL_READY);
ASSERT_NE(channel_state, GRPC_CHANNEL_READY);
servers_[0]->service_.ResetCounters();
// Next update introduces servers_[1], making the channel recover.
ports.clear();
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [1] *******");
WaitForServer(DEBUG_LOCATION, stub, 1);
EXPECT_EQ(servers_[0]->service_.request_count(), 0);
// And again for servers_[2]
ports.clear();
ports.emplace_back(servers_[2]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [2] *******");
WaitForServer(DEBUG_LOCATION, stub, 2);
EXPECT_EQ(servers_[0]->service_.request_count(), 0);
EXPECT_EQ(servers_[1]->service_.request_count(), 0);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, UpdateSuperset) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports;
// Perform one RPC against the first server.
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
servers_[0]->service_.ResetCounters();
// Send and superset update
ports.clear();
ports.emplace_back(servers_[1]->port_);
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET superset *******");
CheckRpcSendOk(DEBUG_LOCATION, stub);
// We stick to the previously connected server.
WaitForServer(DEBUG_LOCATION, stub, 0);
EXPECT_EQ(0, servers_[1]->service_.request_count());
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, UpdateToUnconnected) {
const int kNumServers = 2;
CreateServers(kNumServers);
StartServer(0);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports;
// Try to send rpcs against a list where the server is available.
ports.emplace_back(servers_[0]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [0] *******");
CheckRpcSendOk(DEBUG_LOCATION, stub);
// Send resolution for which all servers are currently unavailable. Eventually
// this triggers replacing the existing working subchannel_list with the new
// currently unresponsive list.
ports.clear();
ports.emplace_back(grpc_pick_unused_port_or_die());
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** SET [unavailable] *******");
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
// Ensure that the last resolution was installed correctly by verifying that
// the channel becomes ready once one of if its endpoints becomes available.
gpr_log(GPR_INFO, "****** StartServer(1) *******");
StartServer(1);
EXPECT_TRUE(WaitForChannelReady(channel.get()));
}
TEST_F(PickFirstTest, GlobalSubchannelPool) {
// Start one server.
const int kNumServers = 1;
StartServers(kNumServers);
std::vector<int> ports = GetServersPorts();
// Create two channels that (by default) use the global subchannel pool.
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("pick_first", response_generator1);
auto stub1 = BuildStub(channel1);
response_generator1.SetNextResolution(ports);
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("pick_first", response_generator2);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
WaitForServer(DEBUG_LOCATION, stub1, 0);
// Send one RPC on each channel.
CheckRpcSendOk(DEBUG_LOCATION, stub1);
CheckRpcSendOk(DEBUG_LOCATION, stub2);
// The server receives two requests.
EXPECT_EQ(2, servers_[0]->service_.request_count());
// The two requests are from the same client port, because the two channels
// share subchannels via the global subchannel pool.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
}
TEST_F(PickFirstTest, LocalSubchannelPool) {
// Start one server.
const int kNumServers = 1;
StartServers(kNumServers);
std::vector<int> ports = GetServersPorts();
// Create two channels that use local subchannel pool.
ChannelArguments args;
args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, 1);
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("pick_first", response_generator1, args);
auto stub1 = BuildStub(channel1);
response_generator1.SetNextResolution(ports);
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("pick_first", response_generator2, args);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
WaitForServer(DEBUG_LOCATION, stub1, 0);
// Send one RPC on each channel.
CheckRpcSendOk(DEBUG_LOCATION, stub1);
CheckRpcSendOk(DEBUG_LOCATION, stub2);
// The server receives two requests.
EXPECT_EQ(2, servers_[0]->service_.request_count());
// The two requests are from two client ports, because the two channels didn't
// share subchannels with each other.
EXPECT_EQ(2UL, servers_[0]->service_.clients().size());
}
TEST_F(PickFirstTest, ManyUpdates) {
const int kNumUpdates = 1000;
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
for (size_t i = 0; i < kNumUpdates; ++i) {
std::shuffle(ports.begin(), ports.end(),
std::mt19937(std::random_device()()));
response_generator.SetNextResolution(ports);
// We should re-enter core at the end of the loop to give the resolution
// setting closure a chance to run.
if ((i + 1) % 10 == 0) CheckRpcSendOk(DEBUG_LOCATION, stub);
}
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, ReresolutionNoSelected) {
// Prepare the ports for up servers and down servers.
const int kNumServers = 3;
const int kNumAliveServers = 1;
StartServers(kNumAliveServers);
std::vector<int> alive_ports, dead_ports;
for (size_t i = 0; i < kNumServers; ++i) {
if (i < kNumAliveServers) {
alive_ports.emplace_back(servers_[i]->port_);
} else {
dead_ports.emplace_back(grpc_pick_unused_port_or_die());
}
}
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
// The initial resolution only contains dead ports. There won't be any
// selected subchannel. Re-resolution will return the same result.
response_generator.SetNextResolution(dead_ports);
gpr_log(GPR_INFO, "****** INITIAL RESOLUTION SET *******");
for (size_t i = 0; i < 10; ++i) {
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
MakeConnectionFailureRegex("failed to connect to all addresses"));
}
// Set a re-resolution result that contains reachable ports, so that the
// pick_first LB policy can recover soon.
response_generator.SetNextResolutionUponError(alive_ports);
gpr_log(GPR_INFO, "****** RE-RESOLUTION SET *******");
WaitForServer(DEBUG_LOCATION, stub, 0, [](const Status& status) {
EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code());
EXPECT_THAT(status.error_message(),
::testing::ContainsRegex(MakeConnectionFailureRegex(
"failed to connect to all addresses")));
});
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(servers_[0]->service_.request_count(), 1);
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, ReconnectWithoutNewResolverResult) {
std::vector<int> ports = {grpc_pick_unused_port_or_die()};
StartServers(1, ports);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** INITIAL CONNECTION *******");
WaitForServer(DEBUG_LOCATION, stub, 0);
gpr_log(GPR_INFO, "****** STOPPING SERVER ******");
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
gpr_log(GPR_INFO, "****** RESTARTING SERVER ******");
StartServers(1, ports);
WaitForServer(DEBUG_LOCATION, stub, 0);
}
TEST_F(PickFirstTest, ReconnectWithoutNewResolverResultStartsFromTopOfList) {
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
CreateServers(2, ports);
StartServer(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** INITIAL CONNECTION *******");
WaitForServer(DEBUG_LOCATION, stub, 1);
gpr_log(GPR_INFO, "****** STOPPING SERVER ******");
servers_[1]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
gpr_log(GPR_INFO, "****** STARTING BOTH SERVERS ******");
StartServers(2, ports);
WaitForServer(DEBUG_LOCATION, stub, 0);
}
TEST_F(PickFirstTest, FailsEmptyResolverUpdate) {
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
gpr_log(GPR_INFO, "****** SENDING INITIAL RESOLVER RESULT *******");
// Send a resolver result with an empty address list and a callback
// that triggers a notification.
grpc_core::Notification notification;
grpc_core::Resolver::Result result;
result.addresses.emplace();
result.result_health_callback = [&](absl::Status status) {
EXPECT_EQ(absl::StatusCode::kUnavailable, status.code());
EXPECT_EQ("address list must not be empty", status.message()) << status;
notification.Notify();
};
response_generator.SetResponse(std::move(result));
// Wait for channel to report TRANSIENT_FAILURE.
gpr_log(GPR_INFO, "****** TELLING CHANNEL TO CONNECT *******");
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_TRANSIENT_FAILURE;
};
EXPECT_TRUE(
WaitForChannelState(channel.get(), predicate, /*try_to_connect=*/true));
// Callback should have been run.
ASSERT_TRUE(notification.HasBeenNotified());
// Return a valid address.
gpr_log(GPR_INFO, "****** SENDING NEXT RESOLVER RESULT *******");
StartServers(1);
response_generator.SetNextResolution(GetServersPorts());
gpr_log(GPR_INFO, "****** SENDING WAIT_FOR_READY RPC *******");
CheckRpcSendOk(DEBUG_LOCATION, stub, /*wait_for_ready=*/true);
}
TEST_F(PickFirstTest, CheckStateBeforeStartWatch) {
std::vector<int> ports = {grpc_pick_unused_port_or_die()};
StartServers(1, ports);
auto response_generator = BuildResolverResponseGenerator();
auto channel_1 = BuildChannel("pick_first", response_generator);
auto stub_1 = BuildStub(channel_1);
response_generator.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** RESOLUTION SET FOR CHANNEL 1 *******");
WaitForServer(DEBUG_LOCATION, stub_1, 0);
gpr_log(GPR_INFO, "****** CHANNEL 1 CONNECTED *******");
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel_1.get()));
// Channel 1 will receive a re-resolution containing the same server. It will
// create a new subchannel and hold a ref to it.
StartServers(1, ports);
gpr_log(GPR_INFO, "****** SERVER RESTARTED *******");
auto response_generator_2 = BuildResolverResponseGenerator();
auto channel_2 = BuildChannel("pick_first", response_generator_2);
auto stub_2 = BuildStub(channel_2);
response_generator_2.SetNextResolution(ports);
gpr_log(GPR_INFO, "****** RESOLUTION SET FOR CHANNEL 2 *******");
WaitForServer(DEBUG_LOCATION, stub_2, 0);
gpr_log(GPR_INFO, "****** CHANNEL 2 CONNECTED *******");
servers_[0]->Shutdown();
// Wait until the disconnection has triggered the connectivity notification.
// Otherwise, the subchannel may be picked for next call but will fail soon.
EXPECT_TRUE(WaitForChannelNotReady(channel_2.get()));
// Channel 2 will also receive a re-resolution containing the same server.
// Both channels will ref the same subchannel that failed.
StartServers(1, ports);
gpr_log(GPR_INFO, "****** SERVER RESTARTED AGAIN *******");
gpr_log(GPR_INFO, "****** CHANNEL 2 STARTING A CALL *******");
// The first call after the server restart will succeed.
CheckRpcSendOk(DEBUG_LOCATION, stub_2);
gpr_log(GPR_INFO, "****** CHANNEL 2 FINISHED A CALL *******");
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel_1->GetLoadBalancingPolicyName());
// Check LB policy name for the channel.
EXPECT_EQ("pick_first", channel_2->GetLoadBalancingPolicyName());
}
TEST_F(PickFirstTest, IdleOnDisconnect) {
// Start server, send RPC, and make sure channel is READY.
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("", response_generator); // pick_first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Stop server. Channel should go into state IDLE.
response_generator.SetFailureOnReresolution();
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
servers_.clear();
}
TEST_F(PickFirstTest, PendingUpdateAndSelectedSubchannelFails) {
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("", response_generator); // pick_first is the default.
auto stub = BuildStub(channel);
StartServers(2);
// Initially resolve to first server and make sure it connects.
gpr_log(GPR_INFO, "Phase 1: Connect to first server.");
response_generator.SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(DEBUG_LOCATION, stub, true /* wait_for_ready */);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
ConnectionAttemptInjector injector;
auto hold = injector.AddHold(servers_[1]->port_);
// Send a resolution update with the remaining servers, none of which are
// running yet, so the update will stay pending.
gpr_log(GPR_INFO,
"Phase 2: Resolver update pointing to remaining "
"(not started) servers.");
response_generator.SetNextResolution(GetServersPorts(1 /* start_index */));
// Add hold before connection attempt to ensure RPCs will be sent to first
// server. Otherwise, pending subchannel list might already have gone into
// TRANSIENT_FAILURE due to hitting the end of the server list by the time
// we check the state.
hold->Wait();
// RPCs will continue to be sent to the first server.
CheckRpcSendOk(DEBUG_LOCATION, stub);
// Now stop the first server, so that the current subchannel list
// fails. This should cause us to immediately swap over to the
// pending list, even though it's not yet connected. The state should
// be set to CONNECTING, since that's what the pending subchannel list
// was doing when we swapped over.
gpr_log(GPR_INFO, "Phase 3: Stopping first server.");
servers_[0]->Shutdown();
WaitForChannelNotReady(channel.get());
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_CONNECTING);
// Resume connection attempt to second server now that first server is down.
// The channel should go to READY state and RPCs should go to the second
// server.
gpr_log(GPR_INFO, "Phase 4: Resuming connection attempt to second server.");
hold->Resume();
WaitForChannelReady(channel.get());
WaitForServer(DEBUG_LOCATION, stub, 1);
}
TEST_F(PickFirstTest, StaysIdleUponEmptyUpdate) {
// Start server, send RPC, and make sure channel is READY.
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("", response_generator); // pick_first is the default.
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
// Stop server. Channel should go into state IDLE.
servers_[0]->Shutdown();
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_IDLE);
// Now send resolver update that includes no addresses. Channel
// should stay in state IDLE.
response_generator.SetNextResolution({});
EXPECT_FALSE(channel->WaitForStateChange(
GRPC_CHANNEL_IDLE, grpc_timeout_seconds_to_deadline(3)));
// Now bring the backend back up and send a non-empty resolver update,
// and then try to send an RPC. Channel should go back into state READY.
StartServer(0);
response_generator.SetNextResolution(GetServersPorts());
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(channel->GetState(false), GRPC_CHANNEL_READY);
}
TEST_F(PickFirstTest,
StaysTransientFailureOnFailedConnectionAttemptUntilReady) {
// Allocate 3 ports, with no servers running.
std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
// Create channel with a 1-second backoff.
ChannelArguments args;
args.SetInt(GRPC_ARG_INITIAL_RECONNECT_BACKOFF_MS,
1000 * grpc_test_slowdown_factor());
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
EXPECT_EQ(GRPC_CHANNEL_IDLE, channel->GetState(false));
// Send an RPC, which should fail.
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
MakeConnectionFailureRegex("failed to connect to all addresses"));
// Channel should be in TRANSIENT_FAILURE.
EXPECT_EQ(GRPC_CHANNEL_TRANSIENT_FAILURE, channel->GetState(false));
// Now start a server on the last port.
StartServers(1, {ports.back()});
// Channel should remain in TRANSIENT_FAILURE until it transitions to READY.
EXPECT_TRUE(channel->WaitForStateChange(GRPC_CHANNEL_TRANSIENT_FAILURE,
grpc_timeout_seconds_to_deadline(4)));
EXPECT_EQ(GRPC_CHANNEL_READY, channel->GetState(false));
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
//
// round_robin tests
//
using RoundRobinTest = ClientLbEnd2endTest;
TEST_F(RoundRobinTest, Basic) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Wait until all backends are ready.
do {
CheckRpcSendOk(DEBUG_LOCATION, stub);
} while (!SeenAllServers());
ResetCounters();
// "Sync" to the end of the list. Next sequence of picks will start at the
// first server (index 0).
WaitForServer(DEBUG_LOCATION, stub, servers_.size() - 1);
std::vector<int> connection_order;
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
UpdateConnectionOrder(servers_, &connection_order);
}
// Backends should be iterated over in the order in which the addresses were
// given.
const auto expected = std::vector<int>{0, 1, 2};
EXPECT_EQ(expected, connection_order);
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(RoundRobinTest, ProcessPending) {
StartServers(1); // Single server
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({servers_[0]->port_});
WaitForServer(DEBUG_LOCATION, stub, 0);
// Create a new channel and its corresponding RR LB policy, which will pick
// the subchannels in READY state from the previous RPC against the same
// target (even if it happened over a different channel, because subchannels
// are globally reused). Progress should happen without any transition from
// this READY state.
auto second_response_generator = BuildResolverResponseGenerator();
auto second_channel = BuildChannel("round_robin", second_response_generator);
auto second_stub = BuildStub(second_channel);
second_response_generator.SetNextResolution({servers_[0]->port_});
CheckRpcSendOk(DEBUG_LOCATION, second_stub);
}
TEST_F(RoundRobinTest, Updates) {
// Start servers.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
// Start with a single server.
gpr_log(GPR_INFO, "*** FIRST BACKEND ***");
std::vector<int> ports = {servers_[0]->port_};
response_generator.SetNextResolution(ports);
WaitForServer(DEBUG_LOCATION, stub, 0);
// Send RPCs. They should all go servers_[0]
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
ResetCounters();
// And now for the second server.
gpr_log(GPR_INFO, "*** SECOND BACKEND ***");
ports.clear();
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
// Wait until update has been processed, as signaled by the second backend
// receiving a request.
EXPECT_EQ(0, servers_[1]->service_.request_count());
WaitForServer(DEBUG_LOCATION, stub, 1);
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(0, servers_[0]->service_.request_count());
EXPECT_EQ(10, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
ResetCounters();
// ... and for the last server.
gpr_log(GPR_INFO, "*** THIRD BACKEND ***");
ports.clear();
ports.emplace_back(servers_[2]->port_);
response_generator.SetNextResolution(ports);
WaitForServer(DEBUG_LOCATION, stub, 2);
for (size_t i = 0; i < 10; ++i) CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(0, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(10, servers_[2]->service_.request_count());
ResetCounters();
// Back to all servers.
gpr_log(GPR_INFO, "*** ALL BACKENDS ***");
ports.clear();
ports.emplace_back(servers_[0]->port_);
ports.emplace_back(servers_[1]->port_);
ports.emplace_back(servers_[2]->port_);
response_generator.SetNextResolution(ports);
WaitForServers(DEBUG_LOCATION, stub);
// Send three RPCs, one per server.
for (size_t i = 0; i < 3; ++i) CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(1, servers_[0]->service_.request_count());
EXPECT_EQ(1, servers_[1]->service_.request_count());
EXPECT_EQ(1, servers_[2]->service_.request_count());
ResetCounters();
// An empty update will result in the channel going into TRANSIENT_FAILURE.
gpr_log(GPR_INFO, "*** NO BACKENDS ***");
ports.clear();
response_generator.SetNextResolution(ports);
WaitForChannelNotReady(channel.get());
CheckRpcSendFailure(DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
"empty address list: fake resolver empty address list");
servers_[0]->service_.ResetCounters();
// Next update introduces servers_[1], making the channel recover.
gpr_log(GPR_INFO, "*** BACK TO SECOND BACKEND ***");
ports.clear();
ports.emplace_back(servers_[1]->port_);
response_generator.SetNextResolution(ports);
WaitForServer(DEBUG_LOCATION, stub, 1);
EXPECT_EQ(GRPC_CHANNEL_READY, channel->GetState(/*try_to_connect=*/false));
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(RoundRobinTest, UpdateInError) {
StartServers(2);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
// Start with a single server.
response_generator.SetNextResolution(GetServersPorts(0, 1));
// Send RPCs. They should all go to server 0.
for (size_t i = 0; i < 10; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, /*wait_for_ready=*/false,
/*load_report=*/nullptr, /*timeout_ms=*/4000);
}
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
servers_[0]->service_.ResetCounters();
// Send an update adding an unreachable server and server 1.
std::vector<int> ports = {servers_[0]->port_, grpc_pick_unused_port_or_die(),
servers_[1]->port_};
response_generator.SetNextResolution(ports);
WaitForServers(DEBUG_LOCATION, stub, 0, 2, /*status_check=*/nullptr,
/*timeout=*/absl::Seconds(60));
// Send a bunch more RPCs. They should all succeed and should be
// split evenly between the two servers.
// Note: The split may be slightly uneven because of an extra picker
// update that can happen if the subchannels for servers 0 and 1
// report READY before the subchannel for the unreachable server
// transitions from CONNECTING to TRANSIENT_FAILURE.
for (size_t i = 0; i < 10; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, /*wait_for_ready=*/false,
/*load_report=*/nullptr, /*timeout_ms=*/4000);
}
EXPECT_THAT(servers_[0]->service_.request_count(),
::testing::AllOf(::testing::Ge(4), ::testing::Le(6)));
EXPECT_THAT(servers_[1]->service_.request_count(),
::testing::AllOf(::testing::Ge(4), ::testing::Le(6)));
EXPECT_EQ(10, servers_[0]->service_.request_count() +
servers_[1]->service_.request_count());
}
TEST_F(RoundRobinTest, ManyUpdates) {
// Start servers and send one RPC per server.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
for (size_t i = 0; i < 1000; ++i) {
std::shuffle(ports.begin(), ports.end(),
std::mt19937(std::random_device()()));
response_generator.SetNextResolution(ports);
if (i % 10 == 0) CheckRpcSendOk(DEBUG_LOCATION, stub);
}
// Check LB policy name for the channel.
EXPECT_EQ("round_robin", channel->GetLoadBalancingPolicyName());
}
TEST_F(RoundRobinTest, ReresolveOnSubchannelConnectionFailure) {
// Start 3 servers.
StartServers(3);
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
// Initially, tell the channel about only the first two servers.
std::vector<int> ports = {servers_[0]->port_, servers_[1]->port_};
response_generator.SetNextResolution(ports);
// Wait for both servers to be seen.
WaitForServers(DEBUG_LOCATION, stub, 0, 2);
// Tell the fake resolver to send an update that adds the last server, but
// only when the LB policy requests re-resolution.
ports.push_back(servers_[2]->port_);
response_generator.SetNextResolutionUponError(ports);
// Have server 0 send a GOAWAY. This should trigger a re-resolution.
gpr_log(GPR_INFO, "****** SENDING GOAWAY FROM SERVER 0 *******");
{
grpc_core::ExecCtx exec_ctx;
grpc_core::Server::FromC(servers_[0]->server_->c_server())->SendGoaways();
}
// Wait for the client to see server 2.
WaitForServer(DEBUG_LOCATION, stub, 2);
}
TEST_F(RoundRobinTest, FailsEmptyResolverUpdate) {
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
gpr_log(GPR_INFO, "****** SENDING INITIAL RESOLVER RESULT *******");
// Send a resolver result with an empty address list and a callback
// that triggers a notification.
grpc_core::Notification notification;
grpc_core::Resolver::Result result;
result.addresses.emplace();
result.resolution_note = "injected error";
result.result_health_callback = [&](absl::Status status) {
EXPECT_EQ(absl::StatusCode::kUnavailable, status.code());
EXPECT_EQ("empty address list: injected error", status.message()) << status;
notification.Notify();
};
response_generator.SetResponse(std::move(result));
// Wait for channel to report TRANSIENT_FAILURE.
gpr_log(GPR_INFO, "****** TELLING CHANNEL TO CONNECT *******");
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_TRANSIENT_FAILURE;
};
EXPECT_TRUE(
WaitForChannelState(channel.get(), predicate, /*try_to_connect=*/true));
// Callback should have been run.
ASSERT_TRUE(notification.HasBeenNotified());
// Return a valid address.
gpr_log(GPR_INFO, "****** SENDING NEXT RESOLVER RESULT *******");
StartServers(1);
response_generator.SetNextResolution(GetServersPorts());
gpr_log(GPR_INFO, "****** SENDING WAIT_FOR_READY RPC *******");
CheckRpcSendOk(DEBUG_LOCATION, stub, /*wait_for_ready=*/true);
}
TEST_F(RoundRobinTest, TransientFailure) {
// Start servers and create channel. Channel should go to READY state.
const int kNumServers = 3;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
EXPECT_TRUE(WaitForChannelReady(channel.get()));
// Now kill the servers. The channel should transition to TRANSIENT_FAILURE.
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_TRANSIENT_FAILURE;
};
EXPECT_TRUE(WaitForChannelState(channel.get(), predicate));
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
MakeConnectionFailureRegex("connections to all backends failing"));
}
TEST_F(RoundRobinTest, TransientFailureAtStartup) {
// Create channel and return servers that don't exist. Channel should
// quickly transition into TRANSIENT_FAILURE.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({
grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die(),
});
for (size_t i = 0; i < servers_.size(); ++i) {
servers_[i]->Shutdown();
}
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_TRANSIENT_FAILURE;
};
EXPECT_TRUE(WaitForChannelState(channel.get(), predicate, true));
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
MakeConnectionFailureRegex("connections to all backends failing"));
}
TEST_F(RoundRobinTest, StaysInTransientFailureInSubsequentConnecting) {
// Start connection injector.
ConnectionAttemptInjector injector;
// Get port.
const int port = grpc_pick_unused_port_or_die();
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({port});
// Allow first connection attempt to fail normally, and wait for
// channel to report TRANSIENT_FAILURE.
gpr_log(GPR_INFO, "=== WAITING FOR CHANNEL TO REPORT TF ===");
auto predicate = [](grpc_connectivity_state state) {
return state == GRPC_CHANNEL_TRANSIENT_FAILURE;
};
EXPECT_TRUE(
WaitForChannelState(channel.get(), predicate, /*try_to_connect=*/true));
// Wait for next connection attempt to start.
auto hold = injector.AddHold(port);
hold->Wait();
// Now the subchannel should be reporting CONNECTING. Make sure the
// channel is still in TRANSIENT_FAILURE and is still reporting the
// right status.
EXPECT_EQ(GRPC_CHANNEL_TRANSIENT_FAILURE, channel->GetState(false));
// Send a few RPCs, just to give the channel a chance to propagate a
// new picker, in case it was going to incorrectly do so.
gpr_log(GPR_INFO, "=== EXPECTING RPCs TO FAIL ===");
for (size_t i = 0; i < 5; ++i) {
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
MakeConnectionFailureRegex("connections to all backends failing"));
}
// Clean up.
hold->Resume();
}
TEST_F(RoundRobinTest, ReportsLatestStatusInTransientFailure) {
// Start connection injector.
ConnectionAttemptInjector injector;
// Get port.
const std::vector<int> ports = {grpc_pick_unused_port_or_die(),
grpc_pick_unused_port_or_die()};
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
// Allow first connection attempts to fail normally, and check that
// the RPC fails with the right status message.
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
MakeConnectionFailureRegex("connections to all backends failing"));
// Now intercept the next connection attempt for each port.
auto hold1 = injector.AddHold(ports[0]);
auto hold2 = injector.AddHold(ports[1]);
hold1->Wait();
hold2->Wait();
// Inject a custom failure message.
hold1->Wait();
hold1->Fail(GRPC_ERROR_CREATE("Survey says... Bzzzzt!"));
// Wait until RPC fails with the right message.
absl::Time deadline =
absl::Now() + (absl::Seconds(5) * grpc_test_slowdown_factor());
while (true) {
Status status = SendRpc(stub);
EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code());
if (::testing::Matches(::testing::MatchesRegex(
"connections to all backends failing; last error: "
"UNKNOWN: (ipv6:%5B::1%5D|ipv4:127.0.0.1):[0-9]+: "
"Survey says... Bzzzzt!"))(status.error_message())) {
break;
}
EXPECT_THAT(status.error_message(),
::testing::MatchesRegex(MakeConnectionFailureRegex(
"connections to all backends failing")));
EXPECT_LT(absl::Now(), deadline);
if (absl::Now() >= deadline) break;
}
// Clean up.
hold2->Resume();
}
TEST_F(RoundRobinTest, DoesNotFailRpcsUponDisconnection) {
// Start connection injector.
ConnectionAttemptInjector injector;
// Start server.
StartServers(1);
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Start a thread constantly sending RPCs in a loop.
gpr_log(GPR_INFO, "=== STARTING CLIENT THREAD ===");
std::atomic<bool> shutdown{false};
gpr_event ev;
gpr_event_init(&ev);
std::thread thd([&]() {
gpr_log(GPR_INFO, "sending first RPC");
CheckRpcSendOk(DEBUG_LOCATION, stub);
gpr_event_set(&ev, reinterpret_cast<void*>(1));
while (!shutdown.load()) {
gpr_log(GPR_INFO, "sending RPC");
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
});
// Wait for first RPC to complete.
gpr_log(GPR_INFO, "=== WAITING FOR FIRST RPC TO COMPLETE ===");
ASSERT_EQ(reinterpret_cast<void*>(1),
gpr_event_wait(&ev, grpc_timeout_seconds_to_deadline(1)));
// Channel should now be READY.
ASSERT_EQ(GRPC_CHANNEL_READY, channel->GetState(false));
// Tell injector to intercept the next connection attempt.
auto hold1 =
injector.AddHold(servers_[0]->port_, /*intercept_completion=*/true);
// Now kill the server. The subchannel should report IDLE and be
// immediately reconnected to, but this should not cause any test
// failures.
gpr_log(GPR_INFO, "=== SHUTTING DOWN SERVER ===");
{
grpc_core::ExecCtx exec_ctx;
grpc_core::Server::FromC(servers_[0]->server_->c_server())->SendGoaways();
}
gpr_sleep_until(grpc_timeout_seconds_to_deadline(1));
servers_[0]->Shutdown();
// Wait for next attempt to start.
gpr_log(GPR_INFO, "=== WAITING FOR RECONNECTION ATTEMPT ===");
hold1->Wait();
// Start server and allow attempt to continue.
gpr_log(GPR_INFO, "=== RESTARTING SERVER ===");
StartServer(0);
hold1->Resume();
// Wait for next attempt to complete.
gpr_log(GPR_INFO, "=== WAITING FOR RECONNECTION ATTEMPT TO COMPLETE ===");
hold1->WaitForCompletion();
// Now shut down the thread.
gpr_log(GPR_INFO, "=== SHUTTING DOWN CLIENT THREAD ===");
shutdown.store(true);
thd.join();
}
TEST_F(RoundRobinTest, SingleReconnect) {
const int kNumServers = 3;
StartServers(kNumServers);
const auto ports = GetServersPorts();
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(ports);
WaitForServers(DEBUG_LOCATION, stub);
// Sync to end of list.
WaitForServer(DEBUG_LOCATION, stub, servers_.size() - 1);
for (size_t i = 0; i < servers_.size(); ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
EXPECT_EQ(1, servers_[i]->service_.request_count()) << "for backend #" << i;
}
// One request should have gone to each server.
for (size_t i = 0; i < servers_.size(); ++i) {
EXPECT_EQ(1, servers_[i]->service_.request_count());
}
// Kill the first server.
servers_[0]->StopListeningAndSendGoaways();
// Wait for client to notice that the backend is down. We know that's
// happened when we see kNumServers RPCs that do not go to backend 0.
ResetCounters();
SendRpcsUntil(
DEBUG_LOCATION, stub,
[&, num_rpcs_not_on_backend_0 = 0](const Status& status) mutable {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
if (servers_[0]->service_.request_count() == 1) {
num_rpcs_not_on_backend_0 = 0;
} else {
++num_rpcs_not_on_backend_0;
}
ResetCounters();
return num_rpcs_not_on_backend_0 < kNumServers;
});
// Send a bunch of RPCs.
for (int i = 0; i < 10 * kNumServers; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
// No requests have gone to the deceased server.
EXPECT_EQ(0UL, servers_[0]->service_.request_count());
// Bring the first server back up.
servers_[0]->Shutdown();
StartServer(0);
// Requests should start arriving at the first server either right away (if
// the server managed to start before the RR policy retried the subchannel) or
// after the subchannel retry delay otherwise (RR's subchannel retried before
// the server was fully back up).
WaitForServer(DEBUG_LOCATION, stub, 0);
}
// If health checking is required by client but health checking service
// is not running on the server, the channel should be treated as healthy.
TEST_F(RoundRobinTest, ServersHealthCheckingUnimplementedTreatedAsHealthy) {
StartServers(1); // Single server
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution({servers_[0]->port_});
EXPECT_TRUE(WaitForChannelReady(channel.get()));
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
TEST_F(RoundRobinTest, HealthChecking) {
EnableDefaultHealthCheckService(true);
// Start servers.
const int kNumServers = 3;
StartServers(kNumServers);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Channel should not become READY, because health checks should be failing.
gpr_log(GPR_INFO,
"*** initial state: unknown health check service name for "
"all servers");
EXPECT_FALSE(WaitForChannelReady(channel.get(), 1));
// Now set one of the servers to be healthy.
// The channel should become healthy and all requests should go to
// the healthy server.
gpr_log(GPR_INFO, "*** server 0 healthy");
servers_[0]->SetServingStatus("health_check_service_name", true);
EXPECT_TRUE(WaitForChannelReady(channel.get()));
for (int i = 0; i < 10; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
EXPECT_EQ(10, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(0, servers_[2]->service_.request_count());
// Now set a second server to be healthy.
gpr_log(GPR_INFO, "*** server 2 healthy");
servers_[2]->SetServingStatus("health_check_service_name", true);
WaitForServer(DEBUG_LOCATION, stub, 2);
for (int i = 0; i < 10; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
EXPECT_EQ(5, servers_[0]->service_.request_count());
EXPECT_EQ(0, servers_[1]->service_.request_count());
EXPECT_EQ(5, servers_[2]->service_.request_count());
// Now set the remaining server to be healthy.
gpr_log(GPR_INFO, "*** server 1 healthy");
servers_[1]->SetServingStatus("health_check_service_name", true);
WaitForServer(DEBUG_LOCATION, stub, 1);
for (int i = 0; i < 9; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
EXPECT_EQ(3, servers_[0]->service_.request_count());
EXPECT_EQ(3, servers_[1]->service_.request_count());
EXPECT_EQ(3, servers_[2]->service_.request_count());
// Now set one server to be unhealthy again. Then wait until the
// unhealthiness has hit the client. We know that the client will see
// this when we send kNumServers requests and one of the remaining servers
// sees two of the requests.
gpr_log(GPR_INFO, "*** server 0 unhealthy");
servers_[0]->SetServingStatus("health_check_service_name", false);
do {
ResetCounters();
for (int i = 0; i < kNumServers; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
} while (servers_[1]->service_.request_count() != 2 &&
servers_[2]->service_.request_count() != 2);
// Now set the remaining two servers to be unhealthy. Make sure the
// channel leaves READY state and that RPCs fail.
gpr_log(GPR_INFO, "*** all servers unhealthy");
servers_[1]->SetServingStatus("health_check_service_name", false);
servers_[2]->SetServingStatus("health_check_service_name", false);
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
CheckRpcSendFailure(DEBUG_LOCATION, stub, StatusCode::UNAVAILABLE,
"connections to all backends failing; last error: "
"UNAVAILABLE: backend unhealthy");
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(RoundRobinTest, HealthCheckingHandlesSubchannelFailure) {
EnableDefaultHealthCheckService(true);
// Start servers.
const int kNumServers = 3;
StartServers(kNumServers);
servers_[0]->SetServingStatus("health_check_service_name", true);
servers_[1]->SetServingStatus("health_check_service_name", true);
servers_[2]->SetServingStatus("health_check_service_name", true);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
WaitForServer(DEBUG_LOCATION, stub, 0);
// Stop server 0 and send a new resolver result to ensure that RR
// checks each subchannel's state.
servers_[0]->StopListeningAndSendGoaways();
response_generator.SetNextResolution(GetServersPorts());
// Send a bunch more RPCs.
for (size_t i = 0; i < 100; i++) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
}
TEST_F(RoundRobinTest, WithHealthCheckingInhibitPerChannel) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("round_robin", response_generator1, args);
auto stub1 = BuildStub(channel1);
std::vector<int> ports = GetServersPorts();
response_generator1.SetNextResolution(ports);
// Create a channel with health checking enabled but inhibited.
args.SetInt(GRPC_ARG_INHIBIT_HEALTH_CHECKING, 1);
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("round_robin", response_generator2, args);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
// First channel should not become READY, because health checks should be
// failing.
EXPECT_FALSE(WaitForChannelReady(channel1.get(), 1));
CheckRpcSendFailure(DEBUG_LOCATION, stub1, StatusCode::UNAVAILABLE,
"connections to all backends failing; last error: "
"UNAVAILABLE: backend unhealthy");
// Second channel should be READY.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1));
CheckRpcSendOk(DEBUG_LOCATION, stub2);
// Enable health checks on the backend and wait for channel 1 to succeed.
servers_[0]->SetServingStatus("health_check_service_name", true);
CheckRpcSendOk(DEBUG_LOCATION, stub1, true /* wait_for_ready */);
// Check that we created only one subchannel to the backend.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(RoundRobinTest, HealthCheckingServiceNamePerChannel) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
ChannelArguments args;
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator1 = BuildResolverResponseGenerator();
auto channel1 = BuildChannel("round_robin", response_generator1, args);
auto stub1 = BuildStub(channel1);
std::vector<int> ports = GetServersPorts();
response_generator1.SetNextResolution(ports);
// Create a channel with health-checking enabled with a different
// service name.
ChannelArguments args2;
args2.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name2\"}}");
auto response_generator2 = BuildResolverResponseGenerator();
auto channel2 = BuildChannel("round_robin", response_generator2, args2);
auto stub2 = BuildStub(channel2);
response_generator2.SetNextResolution(ports);
// Allow health checks from channel 2 to succeed.
servers_[0]->SetServingStatus("health_check_service_name2", true);
// First channel should not become READY, because health checks should be
// failing.
EXPECT_FALSE(WaitForChannelReady(channel1.get(), 1));
CheckRpcSendFailure(DEBUG_LOCATION, stub1, StatusCode::UNAVAILABLE,
"connections to all backends failing; last error: "
"UNAVAILABLE: backend unhealthy");
// Second channel should be READY.
EXPECT_TRUE(WaitForChannelReady(channel2.get(), 1));
CheckRpcSendOk(DEBUG_LOCATION, stub2);
// Enable health checks for channel 1 and wait for it to succeed.
servers_[0]->SetServingStatus("health_check_service_name", true);
CheckRpcSendOk(DEBUG_LOCATION, stub1, true /* wait_for_ready */);
// Check that we created only one subchannel to the backend.
EXPECT_EQ(1UL, servers_[0]->service_.clients().size());
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(RoundRobinTest,
HealthCheckingServiceNameChangesAfterSubchannelsCreated) {
EnableDefaultHealthCheckService(true);
// Start server.
const int kNumServers = 1;
StartServers(kNumServers);
// Create a channel with health-checking enabled.
const char* kServiceConfigJson =
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}";
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator);
auto stub = BuildStub(channel);
std::vector<int> ports = GetServersPorts();
response_generator.SetNextResolution(ports, kServiceConfigJson);
servers_[0]->SetServingStatus("health_check_service_name", true);
EXPECT_TRUE(WaitForChannelReady(channel.get(), 1 /* timeout_seconds */));
// Send an update on the channel to change it to use a health checking
// service name that is not being reported as healthy.
const char* kServiceConfigJson2 =
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name2\"}}";
response_generator.SetNextResolution(ports, kServiceConfigJson2);
EXPECT_TRUE(WaitForChannelNotReady(channel.get()));
// Clean up.
EnableDefaultHealthCheckService(false);
}
TEST_F(RoundRobinTest, HealthCheckingRetryOnStreamEnd) {
// Start servers.
const int kNumServers = 2;
CreateServers(kNumServers);
EnableNoopHealthCheckService();
StartServer(0);
StartServer(1);
ChannelArguments args;
// Create a channel with health-checking enabled.
args.SetServiceConfigJSON(
"{\"healthCheckConfig\": "
"{\"serviceName\": \"health_check_service_name\"}}");
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("round_robin", response_generator, args);
response_generator.SetNextResolution(GetServersPorts());
EXPECT_FALSE(WaitForChannelReady(channel.get()));
EXPECT_GT(servers_[0]->noop_health_check_service_impl_.request_count(), 1);
EXPECT_GT(servers_[1]->noop_health_check_service_impl_.request_count(), 1);
}
//
// LB policy pick args
//
class ClientLbPickArgsTest : public ClientLbEnd2endTest {
protected:
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestSuite() {
grpc_core::CoreConfiguration::Reset();
grpc_core::CoreConfiguration::RegisterBuilder(
[](grpc_core::CoreConfiguration::Builder* builder) {
grpc_core::RegisterTestPickArgsLoadBalancingPolicy(builder,
SavePickArgs);
});
grpc_init();
}
static void TearDownTestSuite() {
grpc_shutdown();
grpc_core::CoreConfiguration::Reset();
}
std::vector<grpc_core::PickArgsSeen> args_seen_list() {
grpc_core::MutexLock lock(&mu_);
return args_seen_list_;
}
static std::string ArgsSeenListString(
const std::vector<grpc_core::PickArgsSeen>& args_seen_list) {
std::vector<std::string> entries;
for (const auto& args_seen : args_seen_list) {
std::vector<std::string> metadata;
for (const auto& p : args_seen.metadata) {
metadata.push_back(absl::StrCat(p.first, "=", p.second));
}
entries.push_back(absl::StrFormat("{path=\"%s\", metadata=[%s]}",
args_seen.path,
absl::StrJoin(metadata, ", ")));
}
return absl::StrCat("[", absl::StrJoin(entries, ", "), "]");
}
private:
static void SavePickArgs(const grpc_core::PickArgsSeen& args_seen) {
ClientLbPickArgsTest* self = current_test_instance_;
grpc_core::MutexLock lock(&self->mu_);
self->args_seen_list_.emplace_back(args_seen);
}
static ClientLbPickArgsTest* current_test_instance_;
grpc_core::Mutex mu_;
std::vector<grpc_core::PickArgsSeen> args_seen_list_;
};
ClientLbPickArgsTest* ClientLbPickArgsTest::current_test_instance_ = nullptr;
TEST_F(ClientLbPickArgsTest, Basic) {
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("test_pick_args_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Proactively connect the channel, so that the LB policy will always
// be connected before it sees the pick. Otherwise, the test would be
// flaky because sometimes the pick would be seen twice (once in
// CONNECTING and again in READY) and other times only once (in READY).
ASSERT_TRUE(channel->WaitForConnected(gpr_inf_future(GPR_CLOCK_MONOTONIC)));
// Check LB policy name for the channel.
EXPECT_EQ("test_pick_args_lb", channel->GetLoadBalancingPolicyName());
// Now send an RPC and check that the picker sees the expected data.
CheckRpcSendOk(DEBUG_LOCATION, stub, /*wait_for_ready=*/true);
auto pick_args_seen_list = args_seen_list();
EXPECT_THAT(pick_args_seen_list,
::testing::ElementsAre(::testing::AllOf(
::testing::Field(&grpc_core::PickArgsSeen::path,
"/grpc.testing.EchoTestService/Echo"),
::testing::Field(&grpc_core::PickArgsSeen::metadata,
::testing::UnorderedElementsAre(
::testing::Pair("foo", "1"),
::testing::Pair("bar", "2"),
::testing::Pair("baz", "3"))))))
<< ArgsSeenListString(pick_args_seen_list);
}
class OrcaLoadReportBuilder {
public:
OrcaLoadReportBuilder() = default;
explicit OrcaLoadReportBuilder(const OrcaLoadReport& report)
: report_(report) {}
OrcaLoadReportBuilder& SetCpuUtilization(double v) {
report_.set_cpu_utilization(v);
return *this;
}
OrcaLoadReportBuilder& SetMemUtilization(double v) {
report_.set_mem_utilization(v);
return *this;
}
OrcaLoadReportBuilder& SetQps(double v) {
report_.set_rps_fractional(v);
return *this;
}
OrcaLoadReportBuilder& SetEps(double v) {
report_.set_eps(v);
return *this;
}
OrcaLoadReportBuilder& SetRequestCost(absl::string_view n, double v) {
(*report_.mutable_request_cost())[n] = v;
return *this;
}
OrcaLoadReportBuilder& SetUtilization(absl::string_view n, double v) {
(*report_.mutable_utilization())[n] = v;
return *this;
}
OrcaLoadReportBuilder& SetNamedMetrics(absl::string_view n, double v) {
(*report_.mutable_named_metrics())[n] = v;
return *this;
}
OrcaLoadReport Build() { return std::move(report_); }
private:
OrcaLoadReport report_;
};
//
// tests that LB policies can get the call's trailing metadata
//
OrcaLoadReport BackendMetricDataToOrcaLoadReport(
const grpc_core::BackendMetricData& backend_metric_data) {
auto builder = OrcaLoadReportBuilder()
.SetCpuUtilization(backend_metric_data.cpu_utilization)
.SetMemUtilization(backend_metric_data.mem_utilization)
.SetQps(backend_metric_data.qps)
.SetEps(backend_metric_data.eps);
for (const auto& p : backend_metric_data.request_cost) {
builder.SetRequestCost(std::string(p.first), p.second);
}
for (const auto& p : backend_metric_data.utilization) {
builder.SetUtilization(std::string(p.first), p.second);
}
for (const auto& p : backend_metric_data.named_metrics) {
builder.SetNamedMetrics(std::string(p.first), p.second);
}
return builder.Build();
}
// TODO(roth): Change this to use EqualsProto() once that becomes available in
// OSS.
void CheckLoadReportAsExpected(const OrcaLoadReport& actual,
const OrcaLoadReport& expected) {
EXPECT_EQ(actual.cpu_utilization(), expected.cpu_utilization());
EXPECT_EQ(actual.mem_utilization(), expected.mem_utilization());
EXPECT_EQ(actual.rps_fractional(), expected.rps_fractional());
EXPECT_EQ(actual.eps(), expected.eps());
EXPECT_EQ(actual.request_cost().size(), expected.request_cost().size());
for (const auto& p : actual.request_cost()) {
auto it = expected.request_cost().find(p.first);
ASSERT_NE(it, expected.request_cost().end());
EXPECT_EQ(it->second, p.second);
}
EXPECT_EQ(actual.utilization().size(), expected.utilization().size());
for (const auto& p : actual.utilization()) {
auto it = expected.utilization().find(p.first);
ASSERT_NE(it, expected.utilization().end());
EXPECT_EQ(it->second, p.second);
}
EXPECT_EQ(actual.named_metrics().size(), expected.named_metrics().size());
for (const auto& p : actual.named_metrics()) {
auto it = expected.named_metrics().find(p.first);
ASSERT_NE(it, expected.named_metrics().end());
EXPECT_EQ(it->second, p.second);
}
}
class ClientLbInterceptTrailingMetadataTest : public ClientLbEnd2endTest {
protected:
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestSuite() {
grpc_core::CoreConfiguration::Reset();
grpc_core::CoreConfiguration::RegisterBuilder(
[](grpc_core::CoreConfiguration::Builder* builder) {
grpc_core::RegisterInterceptRecvTrailingMetadataLoadBalancingPolicy(
builder, ReportTrailerIntercepted);
});
grpc_init();
}
static void TearDownTestSuite() {
grpc_shutdown();
grpc_core::CoreConfiguration::Reset();
}
int num_trailers_intercepted() {
grpc_core::MutexLock lock(&mu_);
return num_trailers_intercepted_;
}
absl::Status last_status() {
grpc_core::MutexLock lock(&mu_);
return last_status_;
}
grpc_core::MetadataVector trailing_metadata() {
grpc_core::MutexLock lock(&mu_);
return std::move(trailing_metadata_);
}
absl::optional<OrcaLoadReport> backend_load_report() {
grpc_core::MutexLock lock(&mu_);
return std::move(load_report_);
}
// Returns true if received callback within deadline.
bool WaitForLbCallback() {
grpc_core::MutexLock lock(&mu_);
while (!trailer_intercepted_) {
if (cond_.WaitWithTimeout(&mu_, absl::Seconds(3))) return false;
}
trailer_intercepted_ = false;
return true;
}
void RunPerRpcMetricReportingTest(const OrcaLoadReport& reported,
const OrcaLoadReport& expected) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, false, &reported);
auto actual = backend_load_report();
ASSERT_TRUE(actual.has_value());
CheckLoadReportAsExpected(*actual, expected);
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, num_trailers_intercepted());
}
private:
static void ReportTrailerIntercepted(
const grpc_core::TrailingMetadataArgsSeen& args_seen) {
const auto* backend_metric_data = args_seen.backend_metric_data;
ClientLbInterceptTrailingMetadataTest* self = current_test_instance_;
grpc_core::MutexLock lock(&self->mu_);
self->last_status_ = args_seen.status;
self->num_trailers_intercepted_++;
self->trailer_intercepted_ = true;
self->trailing_metadata_ = args_seen.metadata;
if (backend_metric_data != nullptr) {
self->load_report_ =
BackendMetricDataToOrcaLoadReport(*backend_metric_data);
}
self->cond_.Signal();
}
static ClientLbInterceptTrailingMetadataTest* current_test_instance_;
int num_trailers_intercepted_ = 0;
bool trailer_intercepted_ = false;
grpc_core::Mutex mu_;
grpc_core::CondVar cond_;
absl::Status last_status_;
grpc_core::MetadataVector trailing_metadata_;
absl::optional<OrcaLoadReport> load_report_;
};
ClientLbInterceptTrailingMetadataTest*
ClientLbInterceptTrailingMetadataTest::current_test_instance_ = nullptr;
TEST_F(ClientLbInterceptTrailingMetadataTest, StatusOk) {
StartServers(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Send an OK RPC.
CheckRpcSendOk(DEBUG_LOCATION, stub);
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(1, num_trailers_intercepted());
EXPECT_EQ(absl::OkStatus(), last_status());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, StatusFailed) {
StartServers(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
EchoRequest request;
auto* expected_error = request.mutable_param()->mutable_expected_error();
expected_error->set_code(GRPC_STATUS_PERMISSION_DENIED);
expected_error->set_error_message("bummer, man");
Status status = SendRpc(stub, /*response=*/nullptr, /*timeout_ms=*/1000,
/*wait_for_ready=*/false, &request);
EXPECT_EQ(status.error_code(), StatusCode::PERMISSION_DENIED);
EXPECT_EQ(status.error_message(), "bummer, man");
absl::Status status_seen_by_lb = last_status();
EXPECT_EQ(status_seen_by_lb.code(), absl::StatusCode::kPermissionDenied);
EXPECT_EQ(status_seen_by_lb.message(), "bummer, man");
}
TEST_F(ClientLbInterceptTrailingMetadataTest,
StatusCancelledWithoutStartingRecvTrailingMetadata) {
StartServers(1);
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
response_generator.SetNextResolution(GetServersPorts());
auto stub = BuildStub(channel);
{
// Start a stream (sends initial metadata) and then cancel without
// calling Finish().
ClientContext ctx;
auto stream = stub->BidiStream(&ctx);
ctx.TryCancel();
}
// Wait for stream to be cancelled.
ASSERT_TRUE(WaitForLbCallback());
// Check status seen by LB policy.
EXPECT_EQ(1, num_trailers_intercepted());
absl::Status status_seen_by_lb = last_status();
EXPECT_EQ(status_seen_by_lb.code(), absl::StatusCode::kCancelled);
EXPECT_EQ(status_seen_by_lb.message(), "call cancelled");
}
TEST_F(ClientLbInterceptTrailingMetadataTest, InterceptsRetriesDisabled) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
ChannelArguments channel_args;
channel_args.SetInt(GRPC_ARG_ENABLE_RETRIES, 0);
auto channel = BuildChannel("intercept_trailing_metadata_lb",
response_generator, channel_args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, num_trailers_intercepted());
EXPECT_THAT(trailing_metadata(),
::testing::UnorderedElementsAre(
// TODO(roth): Should grpc-status be visible here?
::testing::Pair("grpc-status", "0"),
::testing::Pair("user-agent", ::testing::_),
::testing::Pair("foo", "1"), ::testing::Pair("bar", "2"),
::testing::Pair("baz", "3")));
EXPECT_FALSE(backend_load_report().has_value());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, InterceptsRetriesEnabled) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
ChannelArguments args;
args.SetServiceConfigJSON(
"{\n"
" \"methodConfig\": [ {\n"
" \"name\": [\n"
" { \"service\": \"grpc.testing.EchoTestService\" }\n"
" ],\n"
" \"retryPolicy\": {\n"
" \"maxAttempts\": 3,\n"
" \"initialBackoff\": \"1s\",\n"
" \"maxBackoff\": \"120s\",\n"
" \"backoffMultiplier\": 1.6,\n"
" \"retryableStatusCodes\": [ \"ABORTED\" ]\n"
" }\n"
" } ]\n"
"}");
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator, args);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub);
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(kNumRpcs, num_trailers_intercepted());
EXPECT_THAT(trailing_metadata(),
::testing::UnorderedElementsAre(
// TODO(roth): Should grpc-status be visible here?
::testing::Pair("grpc-status", "0"),
::testing::Pair("user-agent", ::testing::_),
::testing::Pair("foo", "1"), ::testing::Pair("bar", "2"),
::testing::Pair("baz", "3")));
EXPECT_FALSE(backend_load_report().has_value());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, Valid) {
RunPerRpcMetricReportingTest(OrcaLoadReportBuilder()
.SetCpuUtilization(0.5)
.SetMemUtilization(0.75)
.SetQps(0.25)
.SetEps(0.1)
.SetRequestCost("foo", -0.8)
.SetRequestCost("bar", 1.4)
.SetUtilization("baz", 1.0)
.SetUtilization("quux", 0.9)
.SetNamedMetrics("metric0", 3.0)
.SetNamedMetrics("metric1", -1.0)
.Build(),
OrcaLoadReportBuilder()
.SetCpuUtilization(0.5)
.SetMemUtilization(0.75)
.SetQps(0.25)
.SetEps(0.1)
.SetRequestCost("foo", -0.8)
.SetRequestCost("bar", 1.4)
.SetUtilization("baz", 1.0)
.SetUtilization("quux", 0.9)
.SetNamedMetrics("metric0", 3.0)
.SetNamedMetrics("metric1", -1.0)
.Build());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, NegativeValues) {
RunPerRpcMetricReportingTest(OrcaLoadReportBuilder()
.SetCpuUtilization(-0.1)
.SetMemUtilization(-0.2)
.SetQps(-3)
.SetEps(-4)
.SetRequestCost("foo", -5)
.SetUtilization("bar", -0.6)
.SetNamedMetrics("baz", -0.7)
.Build(),
OrcaLoadReportBuilder()
.SetRequestCost("foo", -5)
.SetNamedMetrics("baz", -0.7)
.Build());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, AboveOneUtilization) {
RunPerRpcMetricReportingTest(OrcaLoadReportBuilder()
.SetCpuUtilization(1.1)
.SetMemUtilization(2)
.SetQps(3)
.SetEps(4)
.SetUtilization("foo", 5)
.Build(),
OrcaLoadReportBuilder()
.SetCpuUtilization(1.1)
.SetQps(3)
.SetEps(4)
.Build());
}
TEST_F(ClientLbInterceptTrailingMetadataTest, BackendMetricDataMerge) {
const int kNumServers = 1;
const int kNumRpcs = 10;
StartServers(kNumServers);
servers_[0]->server_metric_recorder_->SetCpuUtilization(0.99);
servers_[0]->server_metric_recorder_->SetMemoryUtilization(0.99);
servers_[0]->server_metric_recorder_->SetQps(0.99);
servers_[0]->server_metric_recorder_->SetEps(0.99);
servers_[0]->server_metric_recorder_->SetNamedUtilization("foo", 0.99);
servers_[0]->server_metric_recorder_->SetNamedUtilization("bar", 0.1);
OrcaLoadReport per_server_load = OrcaLoadReportBuilder()
.SetCpuUtilization(0.99)
.SetMemUtilization(0.99)
.SetQps(0.99)
.SetEps(0.99)
.SetUtilization("foo", 0.99)
.SetUtilization("bar", 0.1)
.Build();
auto response_generator = BuildResolverResponseGenerator();
auto channel =
BuildChannel("intercept_trailing_metadata_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
size_t total_num_rpcs = 0;
{
OrcaLoadReport load_report =
OrcaLoadReportBuilder().SetCpuUtilization(0.5).Build();
OrcaLoadReport expected =
OrcaLoadReportBuilder(per_server_load).SetCpuUtilization(0.5).Build();
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, false, &load_report);
auto actual = backend_load_report();
ASSERT_TRUE(actual.has_value());
CheckLoadReportAsExpected(*actual, expected);
++total_num_rpcs;
}
}
{
OrcaLoadReport load_report =
OrcaLoadReportBuilder().SetMemUtilization(0.5).Build();
OrcaLoadReport expected =
OrcaLoadReportBuilder(per_server_load).SetMemUtilization(0.5).Build();
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, false, &load_report);
auto actual = backend_load_report();
ASSERT_TRUE(actual.has_value());
CheckLoadReportAsExpected(*actual, expected);
++total_num_rpcs;
}
}
{
OrcaLoadReport load_report = OrcaLoadReportBuilder().SetQps(0.5).Build();
OrcaLoadReport expected =
OrcaLoadReportBuilder(per_server_load).SetQps(0.5).Build();
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, false, &load_report);
auto actual = backend_load_report();
ASSERT_TRUE(actual.has_value());
CheckLoadReportAsExpected(*actual, expected);
++total_num_rpcs;
}
}
{
OrcaLoadReport load_report = OrcaLoadReportBuilder().SetEps(0.5).Build();
OrcaLoadReport expected =
OrcaLoadReportBuilder(per_server_load).SetEps(0.5).Build();
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, false, &load_report);
auto actual = backend_load_report();
ASSERT_TRUE(actual.has_value());
CheckLoadReportAsExpected(*actual, expected);
++total_num_rpcs;
}
}
{
OrcaLoadReport load_report =
OrcaLoadReportBuilder()
.SetUtilization("foo", 0.5)
.SetUtilization("bar", 1.1) // Out of range.
.SetUtilization("baz", 1.0)
.Build();
auto expected = OrcaLoadReportBuilder(per_server_load)
.SetUtilization("foo", 0.5)
.SetUtilization("baz", 1.0)
.Build();
for (size_t i = 0; i < kNumRpcs; ++i) {
CheckRpcSendOk(DEBUG_LOCATION, stub, false, &load_report);
auto actual = backend_load_report();
ASSERT_TRUE(actual.has_value());
CheckLoadReportAsExpected(*actual, expected);
++total_num_rpcs;
}
}
// Check LB policy name for the channel.
EXPECT_EQ("intercept_trailing_metadata_lb",
channel->GetLoadBalancingPolicyName());
EXPECT_EQ(total_num_rpcs, num_trailers_intercepted());
}
//
// tests that address attributes from the resolver are visible to the LB policy
//
class ClientLbAddressTest : public ClientLbEnd2endTest {
protected:
static const char* kAttributeKey;
class Attribute : public grpc_core::ServerAddress::AttributeInterface {
public:
explicit Attribute(const std::string& str) : str_(str) {}
std::unique_ptr<AttributeInterface> Copy() const override {
return std::make_unique<Attribute>(str_);
}
int Cmp(const AttributeInterface* other) const override {
return str_.compare(static_cast<const Attribute*>(other)->str_);
}
std::string ToString() const override { return str_; }
private:
std::string str_;
};
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestSuite() {
grpc_core::CoreConfiguration::Reset();
grpc_core::CoreConfiguration::RegisterBuilder(
[](grpc_core::CoreConfiguration::Builder* builder) {
grpc_core::RegisterAddressTestLoadBalancingPolicy(builder,
SaveAddress);
});
grpc_init();
}
static void TearDownTestSuite() {
grpc_shutdown();
grpc_core::CoreConfiguration::Reset();
}
const std::vector<std::string>& addresses_seen() {
grpc_core::MutexLock lock(&mu_);
return addresses_seen_;
}
private:
static void SaveAddress(const grpc_core::ServerAddress& address) {
ClientLbAddressTest* self = current_test_instance_;
grpc_core::MutexLock lock(&self->mu_);
self->addresses_seen_.emplace_back(address.ToString());
}
static ClientLbAddressTest* current_test_instance_;
grpc_core::Mutex mu_;
std::vector<std::string> addresses_seen_;
};
const char* ClientLbAddressTest::kAttributeKey = "attribute_key";
ClientLbAddressTest* ClientLbAddressTest::current_test_instance_ = nullptr;
TEST_F(ClientLbAddressTest, Basic) {
const int kNumServers = 1;
StartServers(kNumServers);
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("address_test_lb", response_generator);
auto stub = BuildStub(channel);
// Addresses returned by the resolver will have attached attributes.
response_generator.SetNextResolution(GetServersPorts(), nullptr,
kAttributeKey,
std::make_unique<Attribute>("foo"));
CheckRpcSendOk(DEBUG_LOCATION, stub);
// Check LB policy name for the channel.
EXPECT_EQ("address_test_lb", channel->GetLoadBalancingPolicyName());
// Make sure that the attributes wind up on the subchannels.
std::vector<std::string> expected;
for (const int port : GetServersPorts()) {
expected.emplace_back(absl::StrCat(
ipv6_only_ ? "[::1]:" : "127.0.0.1:", port, " attributes={",
kAttributeKey, "=foo, disable_outlier_detection=true}"));
}
EXPECT_EQ(addresses_seen(), expected);
}
//
// tests OOB backend metric API
//
class OobBackendMetricTest : public ClientLbEnd2endTest {
protected:
using BackendMetricReport = std::pair<int /*port*/, OrcaLoadReport>;
void SetUp() override {
ClientLbEnd2endTest::SetUp();
current_test_instance_ = this;
}
static void SetUpTestSuite() {
grpc_core::CoreConfiguration::Reset();
grpc_core::CoreConfiguration::RegisterBuilder(
[](grpc_core::CoreConfiguration::Builder* builder) {
grpc_core::RegisterOobBackendMetricTestLoadBalancingPolicy(
builder, BackendMetricCallback);
});
grpc_init();
}
static void TearDownTestSuite() {
grpc_shutdown();
grpc_core::CoreConfiguration::Reset();
}
absl::optional<BackendMetricReport> GetBackendMetricReport() {
grpc_core::MutexLock lock(&mu_);
if (backend_metric_reports_.empty()) return absl::nullopt;
auto result = std::move(backend_metric_reports_.front());
backend_metric_reports_.pop_front();
return result;
}
private:
static void BackendMetricCallback(
const grpc_core::ServerAddress& address,
const grpc_core::BackendMetricData& backend_metric_data) {
auto load_report = BackendMetricDataToOrcaLoadReport(backend_metric_data);
int port = grpc_sockaddr_get_port(&address.address());
grpc_core::MutexLock lock(&current_test_instance_->mu_);
current_test_instance_->backend_metric_reports_.push_back(
{port, std::move(load_report)});
}
static OobBackendMetricTest* current_test_instance_;
grpc_core::Mutex mu_;
std::deque<BackendMetricReport> backend_metric_reports_ ABSL_GUARDED_BY(&mu_);
};
OobBackendMetricTest* OobBackendMetricTest::current_test_instance_ = nullptr;
TEST_F(OobBackendMetricTest, Basic) {
StartServers(1);
// Set initial backend metric data on server.
constexpr char kMetricName[] = "foo";
servers_[0]->server_metric_recorder_->SetCpuUtilization(0.1);
servers_[0]->server_metric_recorder_->SetMemoryUtilization(0.2);
servers_[0]->server_metric_recorder_->SetEps(0.3);
servers_[0]->server_metric_recorder_->SetQps(0.4);
servers_[0]->server_metric_recorder_->SetNamedUtilization(kMetricName, 0.4);
// Start client.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("oob_backend_metric_test_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Send an OK RPC.
CheckRpcSendOk(DEBUG_LOCATION, stub);
// Check LB policy name for the channel.
EXPECT_EQ("oob_backend_metric_test_lb",
channel->GetLoadBalancingPolicyName());
// Check report seen by client.
bool report_seen = false;
for (size_t i = 0; i < 5; ++i) {
auto report = GetBackendMetricReport();
if (report.has_value()) {
EXPECT_EQ(report->first, servers_[0]->port_);
EXPECT_EQ(report->second.cpu_utilization(), 0.1);
EXPECT_EQ(report->second.mem_utilization(), 0.2);
EXPECT_EQ(report->second.eps(), 0.3);
EXPECT_EQ(report->second.rps_fractional(), 0.4);
EXPECT_THAT(
report->second.utilization(),
::testing::UnorderedElementsAre(::testing::Pair(kMetricName, 0.4)));
report_seen = true;
break;
}
gpr_sleep_until(grpc_timeout_seconds_to_deadline(1));
}
ASSERT_TRUE(report_seen);
// Now update the utilization data on the server.
// Note that the server may send a new report while we're updating these,
// so we set them in reverse order, so that we know we'll get all new
// data once we see a report with the new CPU utilization value.
servers_[0]->server_metric_recorder_->SetNamedUtilization(kMetricName, 0.7);
servers_[0]->server_metric_recorder_->SetEps(0.6);
servers_[0]->server_metric_recorder_->SetQps(0.8);
servers_[0]->server_metric_recorder_->SetMemoryUtilization(0.5);
servers_[0]->server_metric_recorder_->SetCpuUtilization(2.4);
// Wait for client to see new report.
report_seen = false;
for (size_t i = 0; i < 5; ++i) {
auto report = GetBackendMetricReport();
if (report.has_value()) {
EXPECT_EQ(report->first, servers_[0]->port_);
if (report->second.cpu_utilization() != 0.1) {
EXPECT_EQ(report->second.cpu_utilization(), 2.4);
EXPECT_EQ(report->second.mem_utilization(), 0.5);
EXPECT_EQ(report->second.eps(), 0.6);
EXPECT_EQ(report->second.rps_fractional(), 0.8);
EXPECT_THAT(
report->second.utilization(),
::testing::UnorderedElementsAre(::testing::Pair(kMetricName, 0.7)));
report_seen = true;
break;
}
}
gpr_sleep_until(grpc_timeout_seconds_to_deadline(1));
}
ASSERT_TRUE(report_seen);
}
//
// tests rewriting of control plane status codes
//
class ControlPlaneStatusRewritingTest : public ClientLbEnd2endTest {
protected:
static void SetUpTestSuite() {
grpc_core::CoreConfiguration::Reset();
grpc_core::CoreConfiguration::RegisterBuilder(
[](grpc_core::CoreConfiguration::Builder* builder) {
grpc_core::RegisterFailLoadBalancingPolicy(
builder, absl::AbortedError("nope"));
});
grpc_init();
}
static void TearDownTestSuite() {
grpc_shutdown();
grpc_core::CoreConfiguration::Reset();
}
};
TEST_F(ControlPlaneStatusRewritingTest, RewritesFromLb) {
// Start client.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("fail_lb", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts());
// Send an RPC, verify that status was rewritten.
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::INTERNAL,
"Illegal status code from LB pick; original status: ABORTED: nope");
}
TEST_F(ControlPlaneStatusRewritingTest, RewritesFromResolver) {
// Start client.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
grpc_core::Resolver::Result result;
result.service_config = absl::AbortedError("nope");
result.addresses.emplace();
response_generator.SetResponse(std::move(result));
// Send an RPC, verify that status was rewritten.
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::INTERNAL,
"Illegal status code from resolver; original status: ABORTED: nope");
}
TEST_F(ControlPlaneStatusRewritingTest, RewritesFromConfigSelector) {
class FailConfigSelector : public grpc_core::ConfigSelector {
public:
explicit FailConfigSelector(absl::Status status)
: status_(std::move(status)) {}
const char* name() const override { return "FailConfigSelector"; }
bool Equals(const ConfigSelector* other) const override {
return status_ == static_cast<const FailConfigSelector*>(other)->status_;
}
absl::Status GetCallConfig(GetCallConfigArgs /*args*/) override {
return status_;
}
private:
absl::Status status_;
};
// Start client.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("pick_first", response_generator);
auto stub = BuildStub(channel);
auto config_selector =
grpc_core::MakeRefCounted<FailConfigSelector>(absl::AbortedError("nope"));
grpc_core::Resolver::Result result;
result.addresses.emplace();
result.service_config =
grpc_core::ServiceConfigImpl::Create(grpc_core::ChannelArgs(), "{}");
ASSERT_TRUE(result.service_config.ok()) << result.service_config.status();
result.args = grpc_core::ChannelArgs().SetObject(config_selector);
response_generator.SetResponse(std::move(result));
// Send an RPC, verify that status was rewritten.
CheckRpcSendFailure(
DEBUG_LOCATION, stub, StatusCode::INTERNAL,
"Illegal status code from ConfigSelector; original status: "
"ABORTED: nope");
}
//
// WeightedRoundRobinTest
//
const char kServiceConfigPerCall[] =
"{\n"
" \"loadBalancingConfig\": [\n"
" {\"weighted_round_robin\": {\n"
" \"blackoutPeriod\": \"0s\",\n"
" \"weightUpdatePeriod\": \"0.1s\"\n"
" }}\n"
" ]\n"
"}";
const char kServiceConfigOob[] =
"{\n"
" \"loadBalancingConfig\": [\n"
" {\"weighted_round_robin\": {\n"
" \"blackoutPeriod\": \"0s\",\n"
" \"weightUpdatePeriod\": \"0.1s\",\n"
" \"enableOobLoadReport\": true\n"
" }}\n"
" ]\n"
"}";
class WeightedRoundRobinTest : public ClientLbEnd2endTest {
protected:
void ExpectWeightedRoundRobinPicks(
const grpc_core::DebugLocation& location,
const std::unique_ptr<grpc::testing::EchoTestService::Stub>& stub,
const std::vector<size_t>& expected_weights, size_t total_passes = 3,
EchoRequest* request_ptr = nullptr) {
GPR_ASSERT(expected_weights.size() == servers_.size());
size_t total_picks_per_pass = 0;
for (size_t picks : expected_weights) {
total_picks_per_pass += picks;
}
size_t num_picks = 0;
size_t num_passes = 0;
SendRpcsUntil(
location, stub,
[&](const Status&) {
if (++num_picks == total_picks_per_pass) {
bool match = true;
for (size_t i = 0; i < expected_weights.size(); ++i) {
if (servers_[i]->service_.request_count() !=
expected_weights[i]) {
match = false;
break;
}
}
if (match) {
if (++num_passes == total_passes) return false;
} else {
num_passes = 0;
}
num_picks = 0;
ResetCounters();
}
return true;
},
request_ptr);
}
};
TEST_F(WeightedRoundRobinTest, CallAndServerMetric) {
const int kNumServers = 3;
StartServers(kNumServers);
// Report server metrics that should give 6:4:3 WRR picks.
// weights = qps / (cpu_util + (eps/qps)) =
// 1/(0.2+0.2) : 1/(0.3+0.3) : 2/(1.5+0.1) = 6:4:3
servers_[0]->server_metric_recorder_->SetCpuUtilization(0.2);
servers_[0]->server_metric_recorder_->SetEps(20);
servers_[0]->server_metric_recorder_->SetQps(100);
servers_[1]->server_metric_recorder_->SetCpuUtilization(0.3);
servers_[1]->server_metric_recorder_->SetEps(30);
servers_[1]->server_metric_recorder_->SetQps(100);
servers_[2]->server_metric_recorder_->SetCpuUtilization(1.5);
servers_[2]->server_metric_recorder_->SetEps(20);
servers_[2]->server_metric_recorder_->SetQps(200);
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts(),
kServiceConfigPerCall);
// Send requests with per-call reported EPS/QPS set to 0/100.
// This should give 1/2:1/3:1/15 = 15:10:2 WRR picks.
EchoRequest request;
// We cannot override with 0 with proto3, so setting it to almost 0.
request.mutable_param()->mutable_backend_metrics()->set_eps(
std::numeric_limits<double>::min());
request.mutable_param()->mutable_backend_metrics()->set_rps_fractional(100);
ExpectWeightedRoundRobinPicks(DEBUG_LOCATION, stub,
/*expected_weights=*/{15, 10, 2},
/*total_passes=*/3, &request);
// Now send requests without per-call reported QPS.
// This should change WRR picks back to 6:4:3.
ExpectWeightedRoundRobinPicks(DEBUG_LOCATION, stub,
/*expected_weights=*/{6, 4, 3});
// Check LB policy name for the channel.
EXPECT_EQ("weighted_round_robin", channel->GetLoadBalancingPolicyName());
}
class WeightedRoundRobinParamTest
: public WeightedRoundRobinTest,
public ::testing::WithParamInterface<const char*> {};
INSTANTIATE_TEST_SUITE_P(WeightedRoundRobin, WeightedRoundRobinParamTest,
::testing::Values(kServiceConfigPerCall,
kServiceConfigOob));
TEST_P(WeightedRoundRobinParamTest, Basic) {
const int kNumServers = 3;
StartServers(kNumServers);
// Report server metrics that should give 1:2:4 WRR picks.
// weights = qps / (cpu_util + (eps/qps)) =
// 1/(0.4+0.4) : 1/(0.2+0.2) : 2/(0.3+0.1) = 1:2:4
servers_[0]->server_metric_recorder_->SetCpuUtilization(0.4);
servers_[0]->server_metric_recorder_->SetEps(40);
servers_[0]->server_metric_recorder_->SetQps(100);
servers_[1]->server_metric_recorder_->SetCpuUtilization(0.2);
servers_[1]->server_metric_recorder_->SetEps(20);
servers_[1]->server_metric_recorder_->SetQps(100);
servers_[2]->server_metric_recorder_->SetCpuUtilization(0.3);
servers_[2]->server_metric_recorder_->SetEps(5);
servers_[2]->server_metric_recorder_->SetQps(200);
// Create channel.
auto response_generator = BuildResolverResponseGenerator();
auto channel = BuildChannel("", response_generator);
auto stub = BuildStub(channel);
response_generator.SetNextResolution(GetServersPorts(), GetParam());
// Wait for the right set of WRR picks.
ExpectWeightedRoundRobinPicks(DEBUG_LOCATION, stub,
/*expected_weights=*/{1, 2, 4});
// Check LB policy name for the channel.
EXPECT_EQ("weighted_round_robin", channel->GetLoadBalancingPolicyName());
}
} // namespace
} // namespace testing
} // namespace grpc
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
grpc::testing::TestEnvironment env(&argc, argv);
// Make the backup poller poll very frequently in order to pick up
// updates from all the subchannels's FDs.
grpc_core::ConfigVars::Overrides overrides;
overrides.client_channel_backup_poll_interval_ms = 1;
grpc_core::ConfigVars::SetOverrides(overrides);
#if TARGET_OS_IPHONE
// Workaround Apple CFStream bug
grpc_core::SetEnv("grpc_cfstream", "0");
#endif
grpc_init();
grpc::testing::ConnectionAttemptInjector::Init();
const auto result = RUN_ALL_TESTS();
grpc_shutdown();
return result;
}