The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2083 lines
83 KiB

//
// Copyright 2017 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <deque>
#include <memory>
#include <mutex>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include <grpc/grpc.h>
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpc/support/time.h>
#include <grpcpp/channel.h>
#include <grpcpp/client_context.h>
#include <grpcpp/create_channel.h>
#include <grpcpp/impl/codegen/sync.h>
#include <grpcpp/server.h>
#include <grpcpp/server_builder.h>
#include "src/core/ext/filters/client_channel/backup_poller.h"
#include "src/core/ext/filters/client_channel/lb_policy/grpclb/grpclb.h"
#include "src/core/ext/filters/client_channel/lb_policy/grpclb/grpclb_balancer_addresses.h"
#include "src/core/ext/filters/client_channel/resolver/fake/fake_resolver.h"
#include "src/core/lib/address_utils/parse_address.h"
#include "src/core/lib/channel/channel_args.h"
#include "src/core/lib/gpr/env.h"
#include "src/core/lib/gprpp/ref_counted_ptr.h"
#include "src/core/lib/iomgr/sockaddr.h"
#include "src/core/lib/resolver/server_address.h"
#include "src/core/lib/security/credentials/fake/fake_credentials.h"
#include "src/core/lib/service_config/service_config_impl.h"
#include "src/cpp/client/secure_credentials.h"
#include "src/cpp/server/secure_server_credentials.h"
#include "src/proto/grpc/lb/v1/load_balancer.grpc.pb.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
#include "test/core/util/port.h"
#include "test/core/util/resolve_localhost_ip46.h"
#include "test/core/util/test_config.h"
#include "test/cpp/end2end/counted_service.h"
#include "test/cpp/end2end/test_service_impl.h"
#include "test/cpp/util/test_config.h"
// TODO(dgq): Other scenarios in need of testing:
// - Send a serverlist with faulty ip:port addresses (port > 2^16, etc).
// - Test reception of invalid serverlist
// - Test against a non-LB server.
// - Random LB server closing the stream unexpectedly.
//
// Findings from end to end testing to be covered here:
// - Handling of LB servers restart, including reconnection after backing-off
// retries.
// - Destruction of load balanced channel (and therefore of grpclb instance)
// while:
// 1) the internal LB call is still active. This should work by virtue
// of the weak reference the LB call holds. The call should be terminated as
// part of the grpclb shutdown process.
// 2) the retry timer is active. Again, the weak reference it holds should
// prevent a premature call to \a glb_destroy.
using std::chrono::system_clock;
using grpc::lb::v1::LoadBalancer;
using grpc::lb::v1::LoadBalanceRequest;
using grpc::lb::v1::LoadBalanceResponse;
namespace grpc {
namespace testing {
namespace {
constexpr char kDefaultServiceConfig[] =
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{} }\n"
" ]\n"
"}";
using BackendService = CountedService<TestServiceImpl>;
using BalancerService = CountedService<LoadBalancer::Service>;
const char g_kCallCredsMdKey[] = "Balancer should not ...";
const char g_kCallCredsMdValue[] = "... receive me";
// A test user agent string sent by the client only to the grpclb loadbalancer.
// The backend should not see this user-agent string.
constexpr char kGrpclbSpecificUserAgentString[] = "grpc-grpclb-test-user-agent";
class BackendServiceImpl : public BackendService {
public:
BackendServiceImpl() {}
Status Echo(ServerContext* context, const EchoRequest* request,
EchoResponse* response) override {
// The backend should not see a test user agent configured at the client
// using GRPC_ARG_GRPCLB_CHANNEL_ARGS.
auto it = context->client_metadata().find("user-agent");
if (it != context->client_metadata().end()) {
EXPECT_FALSE(it->second.starts_with(kGrpclbSpecificUserAgentString));
}
// Backend should receive the call credentials metadata.
auto call_credentials_entry =
context->client_metadata().find(g_kCallCredsMdKey);
EXPECT_NE(call_credentials_entry, context->client_metadata().end());
if (call_credentials_entry != context->client_metadata().end()) {
EXPECT_EQ(call_credentials_entry->second, g_kCallCredsMdValue);
}
IncreaseRequestCount();
const auto status = TestServiceImpl::Echo(context, request, response);
IncreaseResponseCount();
AddClient(context->peer());
return status;
}
void Start() {}
void Shutdown() {}
std::set<std::string> clients() {
grpc::internal::MutexLock lock(&clients_mu_);
return clients_;
}
private:
void AddClient(const std::string& client) {
grpc::internal::MutexLock lock(&clients_mu_);
clients_.insert(client);
}
grpc::internal::Mutex clients_mu_;
std::set<std::string> clients_ ABSL_GUARDED_BY(&clients_mu_);
};
std::string Ip4ToPackedString(const char* ip_str) {
struct in_addr ip4;
GPR_ASSERT(inet_pton(AF_INET, ip_str, &ip4) == 1);
return std::string(reinterpret_cast<const char*>(&ip4), sizeof(ip4));
}
std::string Ip6ToPackedString(const char* ip_str) {
struct in6_addr ip6;
GPR_ASSERT(inet_pton(AF_INET6, ip_str, &ip6) == 1);
return std::string(reinterpret_cast<const char*>(&ip6), sizeof(ip6));
}
struct ClientStats {
size_t num_calls_started = 0;
size_t num_calls_finished = 0;
size_t num_calls_finished_with_client_failed_to_send = 0;
size_t num_calls_finished_known_received = 0;
std::map<std::string, size_t> drop_token_counts;
ClientStats& operator+=(const ClientStats& other) {
num_calls_started += other.num_calls_started;
num_calls_finished += other.num_calls_finished;
num_calls_finished_with_client_failed_to_send +=
other.num_calls_finished_with_client_failed_to_send;
num_calls_finished_known_received +=
other.num_calls_finished_known_received;
for (const auto& p : other.drop_token_counts) {
drop_token_counts[p.first] += p.second;
}
return *this;
}
void Reset() {
num_calls_started = 0;
num_calls_finished = 0;
num_calls_finished_with_client_failed_to_send = 0;
num_calls_finished_known_received = 0;
drop_token_counts.clear();
}
};
class BalancerServiceImpl : public BalancerService {
public:
using Stream = ServerReaderWriter<LoadBalanceResponse, LoadBalanceRequest>;
using ResponseDelayPair = std::pair<LoadBalanceResponse, int>;
explicit BalancerServiceImpl(int client_load_reporting_interval_seconds)
: client_load_reporting_interval_seconds_(
client_load_reporting_interval_seconds) {}
Status BalanceLoad(ServerContext* context, Stream* stream) override {
gpr_log(GPR_INFO, "LB[%p]: BalanceLoad", this);
{
grpc::internal::MutexLock lock(&mu_);
if (serverlist_done_) goto done;
}
{
// The loadbalancer should see a test user agent because it was
// specifically configured at the client using
// GRPC_ARG_GRPCLB_CHANNEL_ARGS
auto it = context->client_metadata().find("user-agent");
EXPECT_TRUE(it != context->client_metadata().end());
if (it != context->client_metadata().end()) {
EXPECT_THAT(std::string(it->second.data(), it->second.length()),
::testing::StartsWith(kGrpclbSpecificUserAgentString));
}
// Balancer shouldn't receive the call credentials metadata.
EXPECT_EQ(context->client_metadata().find(g_kCallCredsMdKey),
context->client_metadata().end());
LoadBalanceRequest request;
std::vector<ResponseDelayPair> responses_and_delays;
if (!stream->Read(&request)) {
goto done;
} else {
if (request.has_initial_request()) {
grpc::internal::MutexLock lock(&mu_);
service_names_.push_back(request.initial_request().name());
}
}
IncreaseRequestCount();
gpr_log(GPR_INFO, "LB[%p]: received initial message '%s'", this,
request.DebugString().c_str());
// TODO(juanlishen): Initial response should always be the first response.
if (client_load_reporting_interval_seconds_ > 0) {
LoadBalanceResponse initial_response;
initial_response.mutable_initial_response()
->mutable_client_stats_report_interval()
->set_seconds(client_load_reporting_interval_seconds_);
stream->Write(initial_response);
}
{
grpc::internal::MutexLock lock(&mu_);
responses_and_delays = responses_and_delays_;
}
for (const auto& response_and_delay : responses_and_delays) {
SendResponse(stream, response_and_delay.first,
response_and_delay.second);
}
{
grpc::internal::MutexLock lock(&mu_);
while (!serverlist_done_) {
serverlist_cond_.Wait(&mu_);
}
}
if (client_load_reporting_interval_seconds_ > 0) {
request.Clear();
while (stream->Read(&request)) {
gpr_log(GPR_INFO, "LB[%p]: received client load report message '%s'",
this, request.DebugString().c_str());
GPR_ASSERT(request.has_client_stats());
ClientStats load_report;
load_report.num_calls_started =
request.client_stats().num_calls_started();
load_report.num_calls_finished =
request.client_stats().num_calls_finished();
load_report.num_calls_finished_with_client_failed_to_send =
request.client_stats()
.num_calls_finished_with_client_failed_to_send();
load_report.num_calls_finished_known_received =
request.client_stats().num_calls_finished_known_received();
for (const auto& drop_token_count :
request.client_stats().calls_finished_with_drop()) {
load_report
.drop_token_counts[drop_token_count.load_balance_token()] =
drop_token_count.num_calls();
}
// We need to acquire the lock here in order to prevent the notify_one
// below from firing before its corresponding wait is executed.
grpc::internal::MutexLock lock(&mu_);
load_report_queue_.emplace_back(std::move(load_report));
load_report_cond_.Signal();
}
}
}
done:
gpr_log(GPR_INFO, "LB[%p]: done", this);
return Status::OK;
}
void add_response(const LoadBalanceResponse& response, int send_after_ms) {
grpc::internal::MutexLock lock(&mu_);
responses_and_delays_.push_back(std::make_pair(response, send_after_ms));
}
void Start() {
grpc::internal::MutexLock lock(&mu_);
serverlist_done_ = false;
responses_and_delays_.clear();
load_report_queue_.clear();
}
void Shutdown() {
NotifyDoneWithServerlists();
gpr_log(GPR_INFO, "LB[%p]: shut down", this);
}
ClientStats WaitForLoadReport() {
grpc::internal::MutexLock lock(&mu_);
if (load_report_queue_.empty()) {
while (load_report_queue_.empty()) {
load_report_cond_.Wait(&mu_);
}
}
ClientStats load_report = std::move(load_report_queue_.front());
load_report_queue_.pop_front();
return load_report;
}
void NotifyDoneWithServerlists() {
grpc::internal::MutexLock lock(&mu_);
if (!serverlist_done_) {
serverlist_done_ = true;
serverlist_cond_.SignalAll();
}
}
std::vector<std::string> service_names() {
grpc::internal::MutexLock lock(&mu_);
return service_names_;
}
private:
void SendResponse(Stream* stream, const LoadBalanceResponse& response,
int delay_ms) {
gpr_log(GPR_INFO, "LB[%p]: sleeping for %d ms...", this, delay_ms);
if (delay_ms > 0) {
gpr_sleep_until(grpc_timeout_milliseconds_to_deadline(delay_ms));
}
gpr_log(GPR_INFO, "LB[%p]: Woke up! Sending response '%s'", this,
response.DebugString().c_str());
IncreaseResponseCount();
stream->Write(response);
}
const int client_load_reporting_interval_seconds_;
std::vector<ResponseDelayPair> responses_and_delays_;
std::vector<std::string> service_names_;
grpc::internal::Mutex mu_;
grpc::internal::CondVar serverlist_cond_;
bool serverlist_done_ ABSL_GUARDED_BY(mu_) = false;
grpc::internal::CondVar load_report_cond_;
std::deque<ClientStats> load_report_queue_ ABSL_GUARDED_BY(mu_);
};
class GrpclbEnd2endTest : public ::testing::Test {
protected:
GrpclbEnd2endTest(size_t num_backends, size_t num_balancers,
int client_load_reporting_interval_seconds)
: server_host_("localhost"),
num_backends_(num_backends),
num_balancers_(num_balancers),
client_load_reporting_interval_seconds_(
client_load_reporting_interval_seconds) {}
static void SetUpTestCase() {
// Make the backup poller poll very frequently in order to pick up
// updates from all the subchannels's FDs.
GPR_GLOBAL_CONFIG_SET(grpc_client_channel_backup_poll_interval_ms, 1);
#if TARGET_OS_IPHONE
// Workaround Apple CFStream bug
gpr_setenv("grpc_cfstream", "0");
#endif
grpc_init();
}
static void TearDownTestCase() { grpc_shutdown(); }
void SetUp() override {
bool localhost_resolves_to_ipv4 = false;
bool localhost_resolves_to_ipv6 = false;
grpc_core::LocalhostResolves(&localhost_resolves_to_ipv4,
&localhost_resolves_to_ipv6);
ipv6_only_ = !localhost_resolves_to_ipv4 && localhost_resolves_to_ipv6;
response_generator_ =
grpc_core::MakeRefCounted<grpc_core::FakeResolverResponseGenerator>();
// Start the backends.
for (size_t i = 0; i < num_backends_; ++i) {
backends_.emplace_back(new ServerThread<BackendServiceImpl>("backend"));
backends_.back()->Start(server_host_);
}
// Start the load balancers.
for (size_t i = 0; i < num_balancers_; ++i) {
balancers_.emplace_back(new ServerThread<BalancerServiceImpl>(
"balancer", client_load_reporting_interval_seconds_));
balancers_.back()->Start(server_host_);
}
ResetStub();
}
void TearDown() override {
ShutdownAllBackends();
for (auto& balancer : balancers_) balancer->Shutdown();
}
void StartAllBackends() {
for (auto& backend : backends_) backend->Start(server_host_);
}
void StartBackend(size_t index) { backends_[index]->Start(server_host_); }
void ShutdownAllBackends() {
for (auto& backend : backends_) backend->Shutdown();
}
void ShutdownBackend(size_t index) { backends_[index]->Shutdown(); }
void ResetStub(int fallback_timeout = 0,
const std::string& expected_targets = "",
int subchannel_cache_delay_ms = 0) {
// Send a separate user agent string for the grpclb load balancer alone.
grpc_core::ChannelArgs grpclb_channel_args;
// Set a special user agent string for the grpclb load balancer. It
// will be verified at the load balancer.
grpclb_channel_args = grpclb_channel_args.Set(
GRPC_ARG_PRIMARY_USER_AGENT_STRING, kGrpclbSpecificUserAgentString);
ChannelArguments args;
if (fallback_timeout > 0) args.SetGrpclbFallbackTimeout(fallback_timeout);
args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR,
response_generator_.get());
if (!expected_targets.empty()) {
args.SetString(GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets);
grpclb_channel_args = grpclb_channel_args.Set(
GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets);
}
if (subchannel_cache_delay_ms > 0) {
args.SetInt(GRPC_ARG_GRPCLB_SUBCHANNEL_CACHE_INTERVAL_MS,
subchannel_cache_delay_ms * grpc_test_slowdown_factor());
}
static const grpc_arg_pointer_vtable channel_args_vtable = {
// copy
[](void* p) -> void* {
return grpc_channel_args_copy(static_cast<grpc_channel_args*>(p));
},
// destroy
[](void* p) {
grpc_channel_args_destroy(static_cast<grpc_channel_args*>(p));
},
// compare
[](void* p1, void* p2) {
return grpc_channel_args_compare(static_cast<grpc_channel_args*>(p1),
static_cast<grpc_channel_args*>(p2));
},
};
// Specify channel args for the channel to the load balancer.
args.SetPointerWithVtable(
GRPC_ARG_EXPERIMENTAL_GRPCLB_CHANNEL_ARGS,
const_cast<grpc_channel_args*>(grpclb_channel_args.ToC().get()),
&channel_args_vtable);
std::ostringstream uri;
uri << "fake:///" << kApplicationTargetName_;
// TODO(dgq): templatize tests to run everything using both secure and
// insecure channel credentials.
grpc_channel_credentials* channel_creds =
grpc_fake_transport_security_credentials_create();
grpc_call_credentials* call_creds = grpc_md_only_test_credentials_create(
g_kCallCredsMdKey, g_kCallCredsMdValue);
std::shared_ptr<ChannelCredentials> creds(
new SecureChannelCredentials(grpc_composite_channel_credentials_create(
channel_creds, call_creds, nullptr)));
call_creds->Unref();
channel_creds->Unref();
channel_ = grpc::CreateCustomChannel(uri.str(), creds, args);
stub_ = grpc::testing::EchoTestService::NewStub(channel_);
}
void ResetBackendCounters() {
for (auto& backend : backends_) backend->service_.ResetCounters();
}
ClientStats WaitForLoadReports() {
ClientStats client_stats;
for (auto& balancer : balancers_) {
client_stats += balancer->service_.WaitForLoadReport();
}
return client_stats;
}
bool SeenAllBackends(size_t start_index = 0, size_t stop_index = 0) {
if (stop_index == 0) stop_index = backends_.size();
for (size_t i = start_index; i < stop_index; ++i) {
if (backends_[i]->service_.request_count() == 0) return false;
}
return true;
}
void SendRpcAndCount(int* num_total, int* num_ok, int* num_failure,
int* num_drops) {
const Status status = SendRpc();
if (status.ok()) {
++*num_ok;
} else {
if (status.error_message() == "drop directed by grpclb balancer") {
++*num_drops;
} else {
++*num_failure;
}
}
++*num_total;
}
std::tuple<int, int, int> WaitForAllBackends(int num_requests_multiple_of = 1,
size_t start_index = 0,
size_t stop_index = 0) {
int num_ok = 0;
int num_failure = 0;
int num_drops = 0;
int num_total = 0;
while (!SeenAllBackends(start_index, stop_index)) {
SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops);
}
while (num_total % num_requests_multiple_of != 0) {
SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops);
}
ResetBackendCounters();
gpr_log(GPR_INFO,
"Performed %d warm up requests (a multiple of %d) against the "
"backends. %d succeeded, %d failed, %d dropped.",
num_total, num_requests_multiple_of, num_ok, num_failure,
num_drops);
return std::make_tuple(num_ok, num_failure, num_drops);
}
void WaitForBackend(size_t backend_idx) {
do {
(void)SendRpc();
} while (backends_[backend_idx]->service_.request_count() == 0);
ResetBackendCounters();
}
struct AddressData {
int port;
std::string balancer_name;
};
grpc_core::ServerAddressList CreateLbAddressesFromAddressDataList(
const std::vector<AddressData>& address_data) {
grpc_core::ServerAddressList addresses;
for (const auto& addr : address_data) {
absl::StatusOr<grpc_core::URI> lb_uri =
grpc_core::URI::Parse(absl::StrCat(
ipv6_only_ ? "ipv6:[::1]:" : "ipv4:127.0.0.1:", addr.port));
GPR_ASSERT(lb_uri.ok());
grpc_resolved_address address;
GPR_ASSERT(grpc_parse_uri(*lb_uri, &address));
addresses.emplace_back(
address.addr, address.len,
grpc_core::ChannelArgs().Set(GRPC_ARG_DEFAULT_AUTHORITY,
addr.balancer_name));
}
return addresses;
}
grpc_core::Resolver::Result MakeResolverResult(
const std::vector<AddressData>& balancer_address_data,
const std::vector<AddressData>& backend_address_data = {},
const char* service_config_json = kDefaultServiceConfig) {
grpc_core::Resolver::Result result;
result.addresses =
CreateLbAddressesFromAddressDataList(backend_address_data);
result.service_config = grpc_core::ServiceConfigImpl::Create(
grpc_core::ChannelArgs(), service_config_json);
GPR_ASSERT(result.service_config.ok());
grpc_core::ServerAddressList balancer_addresses =
CreateLbAddressesFromAddressDataList(balancer_address_data);
result.args = grpc_core::SetGrpcLbBalancerAddresses(
grpc_core::ChannelArgs(), std::move(balancer_addresses));
return result;
}
void SetNextResolutionAllBalancers(
const char* service_config_json = kDefaultServiceConfig) {
std::vector<AddressData> addresses;
for (size_t i = 0; i < balancers_.size(); ++i) {
addresses.emplace_back(AddressData{balancers_[i]->port_, ""});
}
SetNextResolution(addresses, {}, service_config_json);
}
void SetNextResolution(
const std::vector<AddressData>& balancer_address_data,
const std::vector<AddressData>& backend_address_data = {},
const char* service_config_json = kDefaultServiceConfig) {
grpc_core::ExecCtx exec_ctx;
grpc_core::Resolver::Result result = MakeResolverResult(
balancer_address_data, backend_address_data, service_config_json);
response_generator_->SetResponse(std::move(result));
}
void SetNextReresolutionResponse(
const std::vector<AddressData>& balancer_address_data,
const std::vector<AddressData>& backend_address_data = {},
const char* service_config_json = kDefaultServiceConfig) {
grpc_core::ExecCtx exec_ctx;
grpc_core::Resolver::Result result = MakeResolverResult(
balancer_address_data, backend_address_data, service_config_json);
response_generator_->SetReresolutionResponse(std::move(result));
}
std::vector<int> GetBackendPorts(size_t start_index = 0,
size_t stop_index = 0) const {
if (stop_index == 0) stop_index = backends_.size();
std::vector<int> backend_ports;
for (size_t i = start_index; i < stop_index; ++i) {
backend_ports.push_back(backends_[i]->port_);
}
return backend_ports;
}
void ScheduleResponseForBalancer(size_t i,
const LoadBalanceResponse& response,
int delay_ms) {
balancers_[i]->service_.add_response(response, delay_ms);
}
LoadBalanceResponse BuildResponseForBackends(
const std::vector<int>& backend_ports,
const std::map<std::string, size_t>& drop_token_counts) {
LoadBalanceResponse response;
for (const auto& drop_token_count : drop_token_counts) {
for (size_t i = 0; i < drop_token_count.second; ++i) {
auto* server = response.mutable_server_list()->add_servers();
server->set_drop(true);
server->set_load_balance_token(drop_token_count.first);
}
}
for (const int& backend_port : backend_ports) {
auto* server = response.mutable_server_list()->add_servers();
server->set_ip_address(ipv6_only_ ? Ip6ToPackedString("::1")
: Ip4ToPackedString("127.0.0.1"));
server->set_port(backend_port);
static int token_count = 0;
server->set_load_balance_token(
absl::StrFormat("token%03d", ++token_count));
}
return response;
}
Status SendRpc(EchoResponse* response = nullptr, int timeout_ms = 1000,
bool wait_for_ready = false,
const Status& expected_status = Status::OK) {
const bool local_response = (response == nullptr);
if (local_response) response = new EchoResponse;
EchoRequest request;
request.set_message(kRequestMessage_);
if (!expected_status.ok()) {
auto* error = request.mutable_param()->mutable_expected_error();
error->set_code(expected_status.error_code());
error->set_error_message(expected_status.error_message());
}
ClientContext context;
context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms));
if (wait_for_ready) context.set_wait_for_ready(true);
Status status = stub_->Echo(&context, request, response);
if (local_response) delete response;
return status;
}
void CheckRpcSendOk(const size_t times = 1, const int timeout_ms = 1000,
bool wait_for_ready = false) {
for (size_t i = 0; i < times; ++i) {
EchoResponse response;
const Status status = SendRpc(&response, timeout_ms, wait_for_ready);
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kRequestMessage_);
}
}
void CheckRpcSendFailure() {
const Status status = SendRpc();
EXPECT_FALSE(status.ok());
}
template <typename T>
struct ServerThread {
template <typename... Args>
explicit ServerThread(const std::string& type, Args&&... args)
: port_(grpc_pick_unused_port_or_die()),
type_(type),
service_(std::forward<Args>(args)...) {}
void Start(const std::string& server_host) {
gpr_log(GPR_INFO, "starting %s server on port %d", type_.c_str(), port_);
GPR_ASSERT(!running_);
running_ = true;
service_.Start();
grpc::internal::Mutex mu;
// We need to acquire the lock here in order to prevent the notify_one
// by ServerThread::Serve from firing before the wait below is hit.
grpc::internal::MutexLock lock(&mu);
grpc::internal::CondVar cond;
thread_ = absl::make_unique<std::thread>(
std::bind(&ServerThread::Serve, this, server_host, &mu, &cond));
cond.Wait(&mu);
gpr_log(GPR_INFO, "%s server startup complete", type_.c_str());
}
void Serve(const std::string& server_host, grpc::internal::Mutex* mu,
grpc::internal::CondVar* cond) {
// We need to acquire the lock here in order to prevent the notify_one
// below from firing before its corresponding wait is executed.
grpc::internal::MutexLock lock(mu);
std::ostringstream server_address;
server_address << server_host << ":" << port_;
ServerBuilder builder;
std::shared_ptr<ServerCredentials> creds(new SecureServerCredentials(
grpc_fake_transport_security_server_credentials_create()));
builder.AddListeningPort(server_address.str(), creds);
builder.RegisterService(&service_);
server_ = builder.BuildAndStart();
cond->Signal();
}
void Shutdown() {
if (!running_) return;
gpr_log(GPR_INFO, "%s about to shutdown", type_.c_str());
service_.Shutdown();
server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0));
thread_->join();
gpr_log(GPR_INFO, "%s shutdown completed", type_.c_str());
running_ = false;
}
const int port_;
std::string type_;
T service_;
std::unique_ptr<Server> server_;
std::unique_ptr<std::thread> thread_;
bool running_ = false;
};
const std::string server_host_;
const size_t num_backends_;
const size_t num_balancers_;
const int client_load_reporting_interval_seconds_;
bool ipv6_only_ = false;
std::shared_ptr<Channel> channel_;
std::unique_ptr<grpc::testing::EchoTestService::Stub> stub_;
std::vector<std::unique_ptr<ServerThread<BackendServiceImpl>>> backends_;
std::vector<std::unique_ptr<ServerThread<BalancerServiceImpl>>> balancers_;
grpc_core::RefCountedPtr<grpc_core::FakeResolverResponseGenerator>
response_generator_;
const std::string kRequestMessage_ = "Live long and prosper.";
const std::string kApplicationTargetName_ = "application_target_name";
};
class SingleBalancerTest : public GrpclbEnd2endTest {
public:
SingleBalancerTest() : GrpclbEnd2endTest(4, 1, 0) {}
};
TEST_F(SingleBalancerTest, Vanilla) {
SetNextResolutionAllBalancers();
const size_t kNumRpcsPerAddress = 100;
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// We need to wait for all backends to come online.
WaitForAllBackends();
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * num_backends_);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count());
}
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, SubchannelCaching) {
ResetStub(/*fallback_timeout=*/0, /*expected_targets=*/"",
/*subchannel_cache_delay_ms=*/1500);
SetNextResolutionAllBalancers();
// Initially send all backends.
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
// Then remove backends 0 and 1.
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(2), {}), 1000);
// Now re-add backend 1.
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(1), {}), 1000);
// Wait for all backends to come online.
WaitForAllBackends();
// Send RPCs for long enough to get all responses.
gpr_timespec deadline = grpc_timeout_milliseconds_to_deadline(3000);
do {
CheckRpcSendOk();
} while (gpr_time_cmp(gpr_now(GPR_CLOCK_MONOTONIC), deadline) < 0);
// Backend 0 should have received less traffic than the others.
// Backend 1 would have received less traffic than 2 and 3.
gpr_log(GPR_INFO, "BACKEND 0: %" PRIuPTR " requests",
backends_[0]->service_.request_count());
EXPECT_GT(backends_[0]->service_.request_count(), 0);
for (size_t i = 1; i < backends_.size(); ++i) {
gpr_log(GPR_INFO, "BACKEND %" PRIuPTR ": %" PRIuPTR " requests", i,
backends_[i]->service_.request_count());
EXPECT_GT(backends_[i]->service_.request_count(),
backends_[0]->service_.request_count())
<< "backend " << i;
if (i >= 2) {
EXPECT_GT(backends_[i]->service_.request_count(),
backends_[1]->service_.request_count())
<< "backend " << i;
}
}
// Backend 1 should never have lost its connection from the client.
EXPECT_EQ(1UL, backends_[1]->service_.clients().size());
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// And sent 3 responses.
EXPECT_EQ(3U, balancers_[0]->service_.response_count());
}
TEST_F(SingleBalancerTest, ReturnServerStatus) {
SetNextResolutionAllBalancers();
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
// We need to wait for all backends to come online.
WaitForAllBackends();
// Send a request that the backend will fail, and make sure we get
// back the right status.
Status expected(StatusCode::INVALID_ARGUMENT, "He's dead, Jim!");
Status actual = SendRpc(/*response=*/nullptr, /*timeout_ms=*/1000,
/*wait_for_ready=*/false, expected);
EXPECT_EQ(actual.error_code(), expected.error_code());
EXPECT_EQ(actual.error_message(), expected.error_message());
}
TEST_F(SingleBalancerTest, SelectGrpclbWithMigrationServiceConfig) {
SetNextResolutionAllBalancers(
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"does_not_exist\":{} },\n"
" { \"grpclb\":{} }\n"
" ]\n"
"}");
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
CheckRpcSendOk(1, 1000 /* timeout_ms */, true /* wait_for_ready */);
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest,
SelectGrpclbWithMigrationServiceConfigAndNoAddresses) {
const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor();
ResetStub(kFallbackTimeoutMs);
SetNextResolution({}, {},
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"does_not_exist\":{} },\n"
" { \"grpclb\":{} }\n"
" ]\n"
"}");
// Try to connect.
EXPECT_EQ(GRPC_CHANNEL_IDLE, channel_->GetState(true));
// Should go into state TRANSIENT_FAILURE when we enter fallback mode.
const gpr_timespec deadline = grpc_timeout_seconds_to_deadline(1);
grpc_connectivity_state state;
while ((state = channel_->GetState(false)) !=
GRPC_CHANNEL_TRANSIENT_FAILURE) {
ASSERT_TRUE(channel_->WaitForStateChange(state, deadline));
}
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, UsePickFirstChildPolicy) {
SetNextResolutionAllBalancers(
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{\n"
" \"childPolicy\":[\n"
" { \"pick_first\":{} }\n"
" ]\n"
" } }\n"
" ]\n"
"}");
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
const size_t kNumRpcs = num_backends_ * 2;
CheckRpcSendOk(kNumRpcs, 1000 /* timeout_ms */, true /* wait_for_ready */);
balancers_[0]->service_.NotifyDoneWithServerlists();
// Check that all requests went to the first backend. This verifies
// that we used pick_first instead of round_robin as the child policy.
EXPECT_EQ(backends_[0]->service_.request_count(), kNumRpcs);
for (size_t i = 1; i < backends_.size(); ++i) {
EXPECT_EQ(backends_[i]->service_.request_count(), 0UL);
}
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, SwapChildPolicy) {
SetNextResolutionAllBalancers(
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{\n"
" \"childPolicy\":[\n"
" { \"pick_first\":{} }\n"
" ]\n"
" } }\n"
" ]\n"
"}");
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
const size_t kNumRpcs = num_backends_ * 2;
CheckRpcSendOk(kNumRpcs, 1000 /* timeout_ms */, true /* wait_for_ready */);
// Check that all requests went to the first backend. This verifies
// that we used pick_first instead of round_robin as the child policy.
EXPECT_EQ(backends_[0]->service_.request_count(), kNumRpcs);
for (size_t i = 1; i < backends_.size(); ++i) {
EXPECT_EQ(backends_[i]->service_.request_count(), 0UL);
}
// Send new resolution that removes child policy from service config.
SetNextResolutionAllBalancers();
WaitForAllBackends();
CheckRpcSendOk(kNumRpcs, 1000 /* timeout_ms */, true /* wait_for_ready */);
// Check that every backend saw the same number of requests. This verifies
// that we used round_robin.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(backends_[i]->service_.request_count(), 2UL);
}
// Done.
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, SameBackendListedMultipleTimes) {
SetNextResolutionAllBalancers();
// Same backend listed twice.
std::vector<int> ports;
ports.push_back(backends_[0]->port_);
ports.push_back(backends_[0]->port_);
const size_t kNumRpcsPerAddress = 10;
ScheduleResponseForBalancer(0, BuildResponseForBackends(ports, {}), 0);
// We need to wait for the backend to come online.
WaitForBackend(0);
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * ports.size());
// Backend should have gotten 20 requests.
EXPECT_EQ(kNumRpcsPerAddress * 2, backends_[0]->service_.request_count());
// And they should have come from a single client port, because of
// subchannel sharing.
EXPECT_EQ(1UL, backends_[0]->service_.clients().size());
balancers_[0]->service_.NotifyDoneWithServerlists();
}
TEST_F(SingleBalancerTest, SecureNaming) {
ResetStub(0, kApplicationTargetName_ + ";lb");
SetNextResolution({AddressData{balancers_[0]->port_, "lb"}});
const size_t kNumRpcsPerAddress = 100;
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// We need to wait for all backends to come online.
WaitForAllBackends();
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * num_backends_);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count());
}
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
// Check LB policy name for the channel.
EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName());
}
TEST_F(SingleBalancerTest, SecureNamingDeathTest) {
GTEST_FLAG_SET(death_test_style, "threadsafe");
// Make sure that we blow up (via abort() from the security connector) when
// the name from the balancer doesn't match expectations.
ASSERT_DEATH_IF_SUPPORTED(
{
ResetStub(0, kApplicationTargetName_ + ";lb");
SetNextResolution({AddressData{balancers_[0]->port_, "woops"}});
channel_->WaitForConnected(grpc_timeout_seconds_to_deadline(1));
},
"");
}
TEST_F(SingleBalancerTest, InitiallyEmptyServerlist) {
SetNextResolutionAllBalancers();
const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor();
const int kCallDeadlineMs = kServerlistDelayMs * 10;
// First response is an empty serverlist, sent right away.
ScheduleResponseForBalancer(0, LoadBalanceResponse(), 0);
// Send non-empty serverlist only after kServerlistDelayMs
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), kServerlistDelayMs);
const auto t0 = system_clock::now();
// Client will block: LB will initially send empty serverlist.
CheckRpcSendOk(1, kCallDeadlineMs, true /* wait_for_ready */);
const auto ellapsed_ms =
std::chrono::duration_cast<std::chrono::milliseconds>(
system_clock::now() - t0);
// but eventually, the LB sends a serverlist update that allows the call to
// proceed. The call delay must be larger than the delay in sending the
// populated serverlist but under the call's deadline (which is enforced by
// the call's deadline).
EXPECT_GT(ellapsed_ms.count(), kServerlistDelayMs);
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent two responses.
EXPECT_EQ(2U, balancers_[0]->service_.response_count());
}
TEST_F(SingleBalancerTest, AllServersUnreachableFailFast) {
SetNextResolutionAllBalancers();
const size_t kNumUnreachableServers = 5;
std::vector<int> ports;
for (size_t i = 0; i < kNumUnreachableServers; ++i) {
ports.push_back(grpc_pick_unused_port_or_die());
}
ScheduleResponseForBalancer(0, BuildResponseForBackends(ports, {}), 0);
const Status status = SendRpc();
// The error shouldn't be DEADLINE_EXCEEDED.
EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code());
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
}
TEST_F(SingleBalancerTest, Fallback) {
SetNextResolutionAllBalancers();
const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor();
const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor();
const size_t kNumBackendsInResolution = backends_.size() / 2;
ResetStub(kFallbackTimeoutMs);
std::vector<AddressData> balancer_addresses;
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
std::vector<AddressData> backend_addresses;
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""});
}
SetNextResolution(balancer_addresses, backend_addresses);
// Send non-empty serverlist only after kServerlistDelayMs.
ScheduleResponseForBalancer(
0,
BuildResponseForBackends(
GetBackendPorts(kNumBackendsInResolution /* start_index */), {}),
kServerlistDelayMs);
// Wait until all the fallback backends are reachable.
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
WaitForBackend(i);
}
// The first request.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
CheckRpcSendOk(kNumBackendsInResolution);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// Fallback is used: each backend returned by the resolver should have
// gotten one request.
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
EXPECT_EQ(1U, backends_[i]->service_.request_count());
}
for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) {
EXPECT_EQ(0U, backends_[i]->service_.request_count());
}
// Wait until the serverlist reception has been processed and all backends
// in the serverlist are reachable.
for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) {
WaitForBackend(i);
}
// Send out the second request.
gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH ==========");
CheckRpcSendOk(backends_.size() - kNumBackendsInResolution);
gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH ==========");
// Serverlist is used: each backend returned by the balancer should
// have gotten one request.
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
EXPECT_EQ(0U, backends_[i]->service_.request_count());
}
for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) {
EXPECT_EQ(1U, backends_[i]->service_.request_count());
}
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
}
TEST_F(SingleBalancerTest, FallbackUpdate) {
SetNextResolutionAllBalancers();
const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor();
const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor();
const size_t kNumBackendsInResolution = backends_.size() / 3;
const size_t kNumBackendsInResolutionUpdate = backends_.size() / 3;
ResetStub(kFallbackTimeoutMs);
std::vector<AddressData> balancer_addresses;
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
std::vector<AddressData> backend_addresses;
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""});
}
SetNextResolution(balancer_addresses, backend_addresses);
// Send non-empty serverlist only after kServerlistDelayMs.
ScheduleResponseForBalancer(
0,
BuildResponseForBackends(
GetBackendPorts(kNumBackendsInResolution +
kNumBackendsInResolutionUpdate /* start_index */),
{}),
kServerlistDelayMs);
// Wait until all the fallback backends are reachable.
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
WaitForBackend(i);
}
// The first request.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
CheckRpcSendOk(kNumBackendsInResolution);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// Fallback is used: each backend returned by the resolver should have
// gotten one request.
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
EXPECT_EQ(1U, backends_[i]->service_.request_count());
}
for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) {
EXPECT_EQ(0U, backends_[i]->service_.request_count());
}
balancer_addresses.clear();
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
backend_addresses.clear();
for (size_t i = kNumBackendsInResolution;
i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) {
backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""});
}
SetNextResolution(balancer_addresses, backend_addresses);
// Wait until the resolution update has been processed and all the new
// fallback backends are reachable.
for (size_t i = kNumBackendsInResolution;
i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) {
WaitForBackend(i);
}
// Send out the second request.
gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH ==========");
CheckRpcSendOk(kNumBackendsInResolutionUpdate);
gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH ==========");
// The resolution update is used: each backend in the resolution update should
// have gotten one request.
for (size_t i = 0; i < kNumBackendsInResolution; ++i) {
EXPECT_EQ(0U, backends_[i]->service_.request_count());
}
for (size_t i = kNumBackendsInResolution;
i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) {
EXPECT_EQ(1U, backends_[i]->service_.request_count());
}
for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate;
i < backends_.size(); ++i) {
EXPECT_EQ(0U, backends_[i]->service_.request_count());
}
// Wait until the serverlist reception has been processed and all backends
// in the serverlist are reachable.
for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate;
i < backends_.size(); ++i) {
WaitForBackend(i);
}
// Send out the third request.
gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH ==========");
CheckRpcSendOk(backends_.size() - kNumBackendsInResolution -
kNumBackendsInResolutionUpdate);
gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH ==========");
// Serverlist is used: each backend returned by the balancer should
// have gotten one request.
for (size_t i = 0;
i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) {
EXPECT_EQ(0U, backends_[i]->service_.request_count());
}
for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate;
i < backends_.size(); ++i) {
EXPECT_EQ(1U, backends_[i]->service_.request_count());
}
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
}
TEST_F(SingleBalancerTest,
FallbackAfterStartup_LoseContactWithBalancerThenBackends) {
// First two backends are fallback, last two are pointed to by balancer.
const size_t kNumFallbackBackends = 2;
const size_t kNumBalancerBackends = backends_.size() - kNumFallbackBackends;
std::vector<AddressData> backend_addresses;
for (size_t i = 0; i < kNumFallbackBackends; ++i) {
backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""});
}
std::vector<AddressData> balancer_addresses;
for (size_t i = 0; i < balancers_.size(); ++i) {
balancer_addresses.emplace_back(AddressData{balancers_[i]->port_, ""});
}
SetNextResolution(balancer_addresses, backend_addresses);
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}),
0);
// Try to connect.
channel_->GetState(true /* try_to_connect */);
WaitForAllBackends(1 /* num_requests_multiple_of */,
kNumFallbackBackends /* start_index */);
// Stop balancer. RPCs should continue going to backends from balancer.
balancers_[0]->Shutdown();
CheckRpcSendOk(100 * kNumBalancerBackends);
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
EXPECT_EQ(100UL, backends_[i]->service_.request_count());
}
// Stop backends from balancer. This should put us in fallback mode.
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
ShutdownBackend(i);
}
WaitForAllBackends(1 /* num_requests_multiple_of */, 0 /* start_index */,
kNumFallbackBackends /* stop_index */);
// Restart the backends from the balancer. We should *not* start
// sending traffic back to them at this point (although the behavior
// in xds may be different).
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
StartBackend(i);
}
CheckRpcSendOk(100 * kNumBalancerBackends);
for (size_t i = 0; i < kNumFallbackBackends; ++i) {
EXPECT_EQ(100UL, backends_[i]->service_.request_count());
}
// Now start the balancer again. This should cause us to exit
// fallback mode.
balancers_[0]->Start(server_host_);
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}),
0);
WaitForAllBackends(1 /* num_requests_multiple_of */,
kNumFallbackBackends /* start_index */);
}
TEST_F(SingleBalancerTest,
FallbackAfterStartup_LoseContactWithBackendsThenBalancer) {
// First two backends are fallback, last two are pointed to by balancer.
const size_t kNumFallbackBackends = 2;
const size_t kNumBalancerBackends = backends_.size() - kNumFallbackBackends;
std::vector<AddressData> backend_addresses;
for (size_t i = 0; i < kNumFallbackBackends; ++i) {
backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""});
}
std::vector<AddressData> balancer_addresses;
for (size_t i = 0; i < balancers_.size(); ++i) {
balancer_addresses.emplace_back(AddressData{balancers_[i]->port_, ""});
}
SetNextResolution(balancer_addresses, backend_addresses);
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}),
0);
// Try to connect.
channel_->GetState(true /* try_to_connect */);
WaitForAllBackends(1 /* num_requests_multiple_of */,
kNumFallbackBackends /* start_index */);
// Stop backends from balancer. Since we are still in contact with
// the balancer at this point, RPCs should be failing.
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
ShutdownBackend(i);
}
CheckRpcSendFailure();
// Stop balancer. This should put us in fallback mode.
balancers_[0]->Shutdown();
WaitForAllBackends(1 /* num_requests_multiple_of */, 0 /* start_index */,
kNumFallbackBackends /* stop_index */);
// Restart the backends from the balancer. We should *not* start
// sending traffic back to them at this point (although the behavior
// in xds may be different).
for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) {
StartBackend(i);
}
CheckRpcSendOk(100 * kNumBalancerBackends);
for (size_t i = 0; i < kNumFallbackBackends; ++i) {
EXPECT_EQ(100UL, backends_[i]->service_.request_count());
}
// Now start the balancer again. This should cause us to exit
// fallback mode.
balancers_[0]->Start(server_host_);
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}),
0);
WaitForAllBackends(1 /* num_requests_multiple_of */,
kNumFallbackBackends /* start_index */);
}
TEST_F(SingleBalancerTest, FallbackEarlyWhenBalancerChannelFails) {
const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor();
ResetStub(kFallbackTimeoutMs);
// Return an unreachable balancer and one fallback backend.
std::vector<AddressData> balancer_addresses;
balancer_addresses.emplace_back(
AddressData{grpc_pick_unused_port_or_die(), ""});
std::vector<AddressData> backend_addresses;
backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""});
SetNextResolution(balancer_addresses, backend_addresses);
// Send RPC with deadline less than the fallback timeout and make sure it
// succeeds.
CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000,
/* wait_for_ready */ false);
}
TEST_F(SingleBalancerTest, FallbackEarlyWhenBalancerCallFails) {
const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor();
ResetStub(kFallbackTimeoutMs);
// Return one balancer and one fallback backend.
std::vector<AddressData> balancer_addresses;
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
std::vector<AddressData> backend_addresses;
backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""});
SetNextResolution(balancer_addresses, backend_addresses);
// Balancer drops call without sending a serverlist.
balancers_[0]->service_.NotifyDoneWithServerlists();
// Send RPC with deadline less than the fallback timeout and make sure it
// succeeds.
CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000,
/* wait_for_ready */ false);
}
TEST_F(SingleBalancerTest, FallbackControlledByBalancer_BeforeFirstServerlist) {
const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor();
ResetStub(kFallbackTimeoutMs);
// Return one balancer and one fallback backend.
std::vector<AddressData> balancer_addresses;
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
std::vector<AddressData> backend_addresses;
backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""});
SetNextResolution(balancer_addresses, backend_addresses);
// Balancer explicitly tells client to fallback.
LoadBalanceResponse resp;
resp.mutable_fallback_response();
ScheduleResponseForBalancer(0, resp, 0);
// Send RPC with deadline less than the fallback timeout and make sure it
// succeeds.
CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000,
/* wait_for_ready */ false);
}
TEST_F(SingleBalancerTest, FallbackControlledByBalancer_AfterFirstServerlist) {
// Return one balancer and one fallback backend (backend 0).
std::vector<AddressData> balancer_addresses;
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
std::vector<AddressData> backend_addresses;
backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""});
SetNextResolution(balancer_addresses, backend_addresses);
// Balancer initially sends serverlist, then tells client to fall back,
// then sends the serverlist again.
// The serverlist points to backend 1.
LoadBalanceResponse serverlist_resp =
BuildResponseForBackends({backends_[1]->port_}, {});
LoadBalanceResponse fallback_resp;
fallback_resp.mutable_fallback_response();
ScheduleResponseForBalancer(0, serverlist_resp, 0);
ScheduleResponseForBalancer(0, fallback_resp, 100);
ScheduleResponseForBalancer(0, serverlist_resp, 100);
// Requests initially go to backend 1, then go to backend 0 in
// fallback mode, then go back to backend 1 when we exit fallback.
WaitForBackend(1);
WaitForBackend(0);
WaitForBackend(1);
}
TEST_F(SingleBalancerTest, BackendsRestart) {
SetNextResolutionAllBalancers();
const size_t kNumRpcsPerAddress = 100;
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * num_backends_);
// Stop backends. RPCs should fail.
ShutdownAllBackends();
CheckRpcSendFailure();
// Restart backends. RPCs should start succeeding again.
StartAllBackends();
CheckRpcSendOk(1 /* times */, 2000 /* timeout_ms */,
true /* wait_for_ready */);
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
}
TEST_F(SingleBalancerTest, ServiceNameFromLbPolicyConfig) {
constexpr char kServiceConfigWithTarget[] =
"{\n"
" \"loadBalancingConfig\":[\n"
" { \"grpclb\":{\n"
" \"serviceName\":\"test_service\"\n"
" }}\n"
" ]\n"
"}";
SetNextResolutionAllBalancers(kServiceConfigWithTarget);
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
// Make sure that trying to connect works without a call.
channel_->GetState(true /* try_to_connect */);
// We need to wait for all backends to come online.
WaitForAllBackends();
EXPECT_EQ(balancers_[0]->service_.service_names().back(), "test_service");
}
class UpdatesTest : public GrpclbEnd2endTest {
public:
UpdatesTest() : GrpclbEnd2endTest(4, 3, 0) {}
};
TEST_F(UpdatesTest, UpdateBalancersButKeepUsingOriginalBalancer) {
SetNextResolutionAllBalancers();
const std::vector<int> first_backend{GetBackendPorts()[0]};
const std::vector<int> second_backend{GetBackendPorts()[1]};
ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}),
0);
ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}),
0);
// Wait until the first backend is ready.
WaitForBackend(0);
// Send 10 requests.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service_.request_count());
// Balancer 0 got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
EXPECT_EQ(0U, balancers_[1]->service_.request_count());
EXPECT_EQ(0U, balancers_[1]->service_.response_count());
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
std::vector<AddressData> addresses;
addresses.emplace_back(AddressData{balancers_[1]->port_, ""});
gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 ==========");
SetNextResolution(addresses);
gpr_log(GPR_INFO, "========= UPDATE 1 DONE ==========");
EXPECT_EQ(0U, backends_[1]->service_.request_count());
gpr_timespec deadline = gpr_time_add(
gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN));
// Send 10 seconds worth of RPCs
do {
CheckRpcSendOk();
} while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0);
// The current LB call is still working, so grpclb continued using it to the
// first balancer, which doesn't assign the second backend.
EXPECT_EQ(0U, backends_[1]->service_.request_count());
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
EXPECT_EQ(0U, balancers_[1]->service_.request_count());
EXPECT_EQ(0U, balancers_[1]->service_.response_count());
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
}
// Send an update with the same set of LBs as the one in SetUp() in order to
// verify that the LB channel inside grpclb keeps the initial connection (which
// by definition is also present in the update).
TEST_F(UpdatesTest, UpdateBalancersRepeated) {
SetNextResolutionAllBalancers();
const std::vector<int> first_backend{GetBackendPorts()[0]};
const std::vector<int> second_backend{GetBackendPorts()[0]};
ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}),
0);
ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}),
0);
// Wait until the first backend is ready.
WaitForBackend(0);
// Send 10 requests.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service_.request_count());
balancers_[0]->service_.NotifyDoneWithServerlists();
// Balancer 0 got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
EXPECT_EQ(0U, balancers_[1]->service_.request_count());
EXPECT_EQ(0U, balancers_[1]->service_.response_count());
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
std::vector<AddressData> addresses;
addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
addresses.emplace_back(AddressData{balancers_[1]->port_, ""});
addresses.emplace_back(AddressData{balancers_[2]->port_, ""});
gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 ==========");
SetNextResolution(addresses);
gpr_log(GPR_INFO, "========= UPDATE 1 DONE ==========");
EXPECT_EQ(0U, backends_[1]->service_.request_count());
gpr_timespec deadline = gpr_time_add(
gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN));
// Send 10 seconds worth of RPCs
do {
CheckRpcSendOk();
} while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0);
// grpclb continued using the original LB call to the first balancer, which
// doesn't assign the second backend.
EXPECT_EQ(0U, backends_[1]->service_.request_count());
balancers_[0]->service_.NotifyDoneWithServerlists();
addresses.clear();
addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
addresses.emplace_back(AddressData{balancers_[1]->port_, ""});
gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 2 ==========");
SetNextResolution(addresses);
gpr_log(GPR_INFO, "========= UPDATE 2 DONE ==========");
EXPECT_EQ(0U, backends_[1]->service_.request_count());
deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
gpr_time_from_millis(10000, GPR_TIMESPAN));
// Send 10 seconds worth of RPCs
do {
CheckRpcSendOk();
} while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0);
// grpclb continued using the original LB call to the first balancer, which
// doesn't assign the second backend.
EXPECT_EQ(0U, backends_[1]->service_.request_count());
balancers_[0]->service_.NotifyDoneWithServerlists();
}
TEST_F(UpdatesTest, UpdateBalancersDeadUpdate) {
std::vector<AddressData> addresses;
addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
SetNextResolution(addresses);
const std::vector<int> first_backend{GetBackendPorts()[0]};
const std::vector<int> second_backend{GetBackendPorts()[1]};
ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}),
0);
ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}),
0);
// Start servers and send 10 RPCs per server.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service_.request_count());
// Kill balancer 0
gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER 0 *************");
balancers_[0]->Shutdown();
gpr_log(GPR_INFO, "********** KILLED BALANCER 0 *************");
// This is serviced by the existing RR policy
gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH ==========");
// All 10 requests should again have gone to the first backend.
EXPECT_EQ(20U, backends_[0]->service_.request_count());
EXPECT_EQ(0U, backends_[1]->service_.request_count());
// Balancer 0 got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
EXPECT_EQ(0U, balancers_[1]->service_.request_count());
EXPECT_EQ(0U, balancers_[1]->service_.response_count());
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
addresses.clear();
addresses.emplace_back(AddressData{balancers_[1]->port_, ""});
gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 ==========");
SetNextResolution(addresses);
gpr_log(GPR_INFO, "========= UPDATE 1 DONE ==========");
// Wait until update has been processed, as signaled by the second backend
// receiving a request. In the meantime, the client continues to be serviced
// (by the first backend) without interruption.
EXPECT_EQ(0U, backends_[1]->service_.request_count());
WaitForBackend(1);
// This is serviced by the updated RR policy
backends_[1]->service_.ResetCounters();
gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH ==========");
// All 10 requests should have gone to the second backend.
EXPECT_EQ(10U, backends_[1]->service_.request_count());
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
// The second balancer, published as part of the first update, may end up
// getting two requests (that is, 1 <= #req <= 2) if the LB call retry timer
// firing races with the arrival of the update containing the second
// balancer.
EXPECT_GE(balancers_[1]->service_.request_count(), 1U);
EXPECT_GE(balancers_[1]->service_.response_count(), 1U);
EXPECT_LE(balancers_[1]->service_.request_count(), 2U);
EXPECT_LE(balancers_[1]->service_.response_count(), 2U);
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
}
TEST_F(UpdatesTest, ReresolveDeadBackend) {
ResetStub(500);
// The first resolution contains the addresses of a balancer that never
// responds, and a fallback backend.
std::vector<AddressData> balancer_addresses;
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
std::vector<AddressData> backend_addresses;
backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""});
SetNextResolution(balancer_addresses, backend_addresses);
// Ask channel to connect to trigger resolver creation.
channel_->GetState(true);
// The re-resolution result will contain the addresses of the same balancer
// and a new fallback backend.
balancer_addresses.clear();
balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
backend_addresses.clear();
backend_addresses.emplace_back(AddressData{backends_[1]->port_, ""});
SetNextReresolutionResponse(balancer_addresses, backend_addresses);
// Start servers and send 10 RPCs per server.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// All 10 requests should have gone to the fallback backend.
EXPECT_EQ(10U, backends_[0]->service_.request_count());
// Kill backend 0.
gpr_log(GPR_INFO, "********** ABOUT TO KILL BACKEND 0 *************");
backends_[0]->Shutdown();
gpr_log(GPR_INFO, "********** KILLED BACKEND 0 *************");
// Wait until re-resolution has finished, as signaled by the second backend
// receiving a request.
WaitForBackend(1);
gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH ==========");
// All 10 requests should have gone to the second backend.
EXPECT_EQ(10U, backends_[1]->service_.request_count());
balancers_[0]->service_.NotifyDoneWithServerlists();
balancers_[1]->service_.NotifyDoneWithServerlists();
balancers_[2]->service_.NotifyDoneWithServerlists();
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
EXPECT_EQ(0U, balancers_[0]->service_.response_count());
EXPECT_EQ(0U, balancers_[1]->service_.request_count());
EXPECT_EQ(0U, balancers_[1]->service_.response_count());
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
}
// TODO(juanlishen): Should be removed when the first response is always the
// initial response. Currently, if client load reporting is not enabled, the
// balancer doesn't send initial response. When the backend shuts down, an
// unexpected re-resolution will happen. This test configuration is a workaround
// for test ReresolveDeadBalancer.
class UpdatesWithClientLoadReportingTest : public GrpclbEnd2endTest {
public:
UpdatesWithClientLoadReportingTest() : GrpclbEnd2endTest(4, 3, 2) {}
};
TEST_F(UpdatesWithClientLoadReportingTest, ReresolveDeadBalancer) {
const std::vector<int> first_backend{GetBackendPorts()[0]};
const std::vector<int> second_backend{GetBackendPorts()[1]};
ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}),
0);
ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}),
0);
// Ask channel to connect to trigger resolver creation.
channel_->GetState(true);
std::vector<AddressData> addresses;
addresses.emplace_back(AddressData{balancers_[0]->port_, ""});
SetNextResolution(addresses);
addresses.clear();
addresses.emplace_back(AddressData{balancers_[1]->port_, ""});
SetNextReresolutionResponse(addresses);
// Start servers and send 10 RPCs per server.
gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH ==========");
// All 10 requests should have gone to the first backend.
EXPECT_EQ(10U, backends_[0]->service_.request_count());
// Kill backend 0.
gpr_log(GPR_INFO, "********** ABOUT TO KILL BACKEND 0 *************");
backends_[0]->Shutdown();
gpr_log(GPR_INFO, "********** KILLED BACKEND 0 *************");
CheckRpcSendFailure();
// Balancer 0 got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
EXPECT_EQ(0U, balancers_[1]->service_.request_count());
EXPECT_EQ(0U, balancers_[1]->service_.response_count());
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
// Kill balancer 0.
gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER 0 *************");
balancers_[0]->Shutdown();
gpr_log(GPR_INFO, "********** KILLED BALANCER 0 *************");
// Wait until re-resolution has finished, as signaled by the second backend
// receiving a request.
WaitForBackend(1);
// This is serviced by the new serverlist.
gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH ==========");
CheckRpcSendOk(10);
gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH ==========");
// All 10 requests should have gone to the second backend.
EXPECT_EQ(10U, backends_[1]->service_.request_count());
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
// After balancer 0 is killed, we restart an LB call immediately (because we
// disconnect to a previously connected balancer). Although we will cancel
// this call when the re-resolution update is done and another LB call restart
// is needed, this old call may still succeed reaching the LB server if
// re-resolution is slow. So balancer 1 may have received 2 requests and sent
// 2 responses.
EXPECT_GE(balancers_[1]->service_.request_count(), 1U);
EXPECT_GE(balancers_[1]->service_.response_count(), 1U);
EXPECT_LE(balancers_[1]->service_.request_count(), 2U);
EXPECT_LE(balancers_[1]->service_.response_count(), 2U);
EXPECT_EQ(0U, balancers_[2]->service_.request_count());
EXPECT_EQ(0U, balancers_[2]->service_.response_count());
}
TEST_F(SingleBalancerTest, Drop) {
SetNextResolutionAllBalancers();
const size_t kNumRpcsPerAddress = 100;
const int num_of_drop_by_rate_limiting_addresses = 1;
const int num_of_drop_by_load_balancing_addresses = 2;
const int num_of_drop_addresses = num_of_drop_by_rate_limiting_addresses +
num_of_drop_by_load_balancing_addresses;
const int num_total_addresses = num_backends_ + num_of_drop_addresses;
ScheduleResponseForBalancer(
0,
BuildResponseForBackends(
GetBackendPorts(),
{{"rate_limiting", num_of_drop_by_rate_limiting_addresses},
{"load_balancing", num_of_drop_by_load_balancing_addresses}}),
0);
// Wait until all backends are ready.
WaitForAllBackends();
// Send kNumRpcsPerAddress RPCs for each server and drop address.
size_t num_drops = 0;
for (size_t i = 0; i < kNumRpcsPerAddress * num_total_addresses; ++i) {
EchoResponse response;
const Status status = SendRpc(&response);
if (!status.ok() &&
status.error_message() == "drop directed by grpclb balancer") {
++num_drops;
} else {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kRequestMessage_);
}
}
EXPECT_EQ(kNumRpcsPerAddress * num_of_drop_addresses, num_drops);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count());
}
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
}
TEST_F(SingleBalancerTest, DropAllFirst) {
SetNextResolutionAllBalancers();
// All registered addresses are marked as "drop".
const int num_of_drop_by_rate_limiting_addresses = 1;
const int num_of_drop_by_load_balancing_addresses = 1;
ScheduleResponseForBalancer(
0,
BuildResponseForBackends(
{}, {{"rate_limiting", num_of_drop_by_rate_limiting_addresses},
{"load_balancing", num_of_drop_by_load_balancing_addresses}}),
0);
const Status status = SendRpc(nullptr, 1000, true);
EXPECT_FALSE(status.ok());
EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer");
}
TEST_F(SingleBalancerTest, DropAll) {
SetNextResolutionAllBalancers();
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
const int num_of_drop_by_rate_limiting_addresses = 1;
const int num_of_drop_by_load_balancing_addresses = 1;
ScheduleResponseForBalancer(
0,
BuildResponseForBackends(
{}, {{"rate_limiting", num_of_drop_by_rate_limiting_addresses},
{"load_balancing", num_of_drop_by_load_balancing_addresses}}),
1000);
// First call succeeds.
CheckRpcSendOk();
// But eventually, the update with only dropped servers is processed and calls
// fail.
Status status;
do {
status = SendRpc(nullptr, 1000, true);
} while (status.ok());
EXPECT_FALSE(status.ok());
EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer");
}
class SingleBalancerWithClientLoadReportingTest : public GrpclbEnd2endTest {
public:
SingleBalancerWithClientLoadReportingTest() : GrpclbEnd2endTest(4, 1, 3) {}
};
TEST_F(SingleBalancerWithClientLoadReportingTest, Vanilla) {
SetNextResolutionAllBalancers();
const size_t kNumRpcsPerAddress = 100;
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(), {}), 0);
// Wait until all backends are ready.
int num_ok = 0;
int num_failure = 0;
int num_drops = 0;
std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends();
// Send kNumRpcsPerAddress RPCs per server.
CheckRpcSendOk(kNumRpcsPerAddress * num_backends_);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count());
}
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
ClientStats client_stats;
do {
client_stats += WaitForLoadReports();
} while (client_stats.num_calls_finished !=
kNumRpcsPerAddress * num_backends_ + num_ok);
EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_ok,
client_stats.num_calls_started);
EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_ok,
client_stats.num_calls_finished);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + (num_ok + num_drops),
client_stats.num_calls_finished_known_received);
EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre());
}
TEST_F(SingleBalancerWithClientLoadReportingTest, BalancerRestart) {
SetNextResolutionAllBalancers();
const size_t kNumBackendsFirstPass = 2;
const size_t kNumBackendsSecondPass =
backends_.size() - kNumBackendsFirstPass;
// Balancer returns backends starting at index 1.
ScheduleResponseForBalancer(
0,
BuildResponseForBackends(GetBackendPorts(0, kNumBackendsFirstPass), {}),
0);
// Wait until all backends returned by the balancer are ready.
int num_ok = 0;
int num_failure = 0;
int num_drops = 0;
std::tie(num_ok, num_failure, num_drops) =
WaitForAllBackends(/* num_requests_multiple_of */ 1, /* start_index */ 0,
/* stop_index */ kNumBackendsFirstPass);
balancers_[0]->service_.NotifyDoneWithServerlists();
ClientStats client_stats = WaitForLoadReports();
EXPECT_EQ(static_cast<size_t>(num_ok), client_stats.num_calls_started);
EXPECT_EQ(static_cast<size_t>(num_ok), client_stats.num_calls_finished);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(static_cast<size_t>(num_ok),
client_stats.num_calls_finished_known_received);
EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre());
// Shut down the balancer.
balancers_[0]->Shutdown();
// Send 10 more requests per backend. This will continue using the
// last serverlist we received from the balancer before it was shut down.
ResetBackendCounters();
CheckRpcSendOk(kNumBackendsFirstPass);
// Each backend should have gotten 1 request.
for (size_t i = 0; i < kNumBackendsFirstPass; ++i) {
EXPECT_EQ(1UL, backends_[i]->service_.request_count());
}
// Now restart the balancer, this time pointing to all backends.
balancers_[0]->Start(server_host_);
ScheduleResponseForBalancer(
0, BuildResponseForBackends(GetBackendPorts(kNumBackendsFirstPass), {}),
0);
// Wait for queries to start going to one of the new backends.
// This tells us that we're now using the new serverlist.
do {
CheckRpcSendOk();
} while (backends_[2]->service_.request_count() == 0 &&
backends_[3]->service_.request_count() == 0);
// Send one RPC per backend.
CheckRpcSendOk(kNumBackendsSecondPass);
balancers_[0]->service_.NotifyDoneWithServerlists();
// Check client stats.
client_stats = WaitForLoadReports();
EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats.num_calls_started);
EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats.num_calls_finished);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumBackendsSecondPass + 1,
client_stats.num_calls_finished_known_received);
EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre());
}
TEST_F(SingleBalancerWithClientLoadReportingTest, Drop) {
SetNextResolutionAllBalancers();
const size_t kNumRpcsPerAddress = 3;
const int num_of_drop_by_rate_limiting_addresses = 2;
const int num_of_drop_by_load_balancing_addresses = 1;
const int num_of_drop_addresses = num_of_drop_by_rate_limiting_addresses +
num_of_drop_by_load_balancing_addresses;
const int num_total_addresses = num_backends_ + num_of_drop_addresses;
ScheduleResponseForBalancer(
0,
BuildResponseForBackends(
GetBackendPorts(),
{{"rate_limiting", num_of_drop_by_rate_limiting_addresses},
{"load_balancing", num_of_drop_by_load_balancing_addresses}}),
0);
// Wait until all backends are ready.
int num_warmup_ok = 0;
int num_warmup_failure = 0;
int num_warmup_drops = 0;
std::tie(num_warmup_ok, num_warmup_failure, num_warmup_drops) =
WaitForAllBackends(num_total_addresses /* num_requests_multiple_of */);
const int num_total_warmup_requests =
num_warmup_ok + num_warmup_failure + num_warmup_drops;
size_t num_drops = 0;
for (size_t i = 0; i < kNumRpcsPerAddress * num_total_addresses; ++i) {
EchoResponse response;
const Status status = SendRpc(&response);
if (!status.ok() &&
status.error_message() == "drop directed by grpclb balancer") {
++num_drops;
} else {
EXPECT_TRUE(status.ok()) << "code=" << status.error_code()
<< " message=" << status.error_message();
EXPECT_EQ(response.message(), kRequestMessage_);
}
}
EXPECT_EQ(kNumRpcsPerAddress * num_of_drop_addresses, num_drops);
// Each backend should have gotten 100 requests.
for (size_t i = 0; i < backends_.size(); ++i) {
EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count());
}
balancers_[0]->service_.NotifyDoneWithServerlists();
// The balancer got a single request.
EXPECT_EQ(1U, balancers_[0]->service_.request_count());
// and sent a single response.
EXPECT_EQ(1U, balancers_[0]->service_.response_count());
const ClientStats client_stats = WaitForLoadReports();
EXPECT_EQ(
kNumRpcsPerAddress * num_total_addresses + num_total_warmup_requests,
client_stats.num_calls_started);
EXPECT_EQ(
kNumRpcsPerAddress * num_total_addresses + num_total_warmup_requests,
client_stats.num_calls_finished);
EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send);
EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_warmup_ok,
client_stats.num_calls_finished_known_received);
// The number of warmup request is a multiple of the number of addresses.
// Therefore, all addresses in the scheduled balancer response are hit the
// same number of times.
const int num_times_drop_addresses_hit =
num_warmup_drops / num_of_drop_addresses;
EXPECT_THAT(
client_stats.drop_token_counts,
::testing::ElementsAre(
::testing::Pair("load_balancing",
(kNumRpcsPerAddress + num_times_drop_addresses_hit)),
::testing::Pair(
"rate_limiting",
(kNumRpcsPerAddress + num_times_drop_addresses_hit) * 2)));
}
} // namespace
} // namespace testing
} // namespace grpc
int main(int argc, char** argv) {
grpc::testing::TestEnvironment env(&argc, argv);
::testing::InitGoogleTest(&argc, argv);
const auto result = RUN_ALL_TESTS();
return result;
}