mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
542 lines
17 KiB
542 lines
17 KiB
/* |
|
* |
|
* Copyright 2015 gRPC authors. |
|
* |
|
* Licensed under the Apache License, Version 2.0 (the "License"); |
|
* you may not use this file except in compliance with the License. |
|
* You may obtain a copy of the License at |
|
* |
|
* http://www.apache.org/licenses/LICENSE-2.0 |
|
* |
|
* Unless required by applicable law or agreed to in writing, software |
|
* distributed under the License is distributed on an "AS IS" BASIS, |
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
* See the License for the specific language governing permissions and |
|
* limitations under the License. |
|
* |
|
*/ |
|
|
|
#ifndef TEST_QPS_CLIENT_H |
|
#define TEST_QPS_CLIENT_H |
|
|
|
#include <stdlib.h> |
|
|
|
#include <condition_variable> |
|
#include <mutex> |
|
#include <unordered_map> |
|
#include <vector> |
|
|
|
#include <grpc/support/log.h> |
|
#include <grpc/support/time.h> |
|
#include <grpcpp/channel.h> |
|
#include <grpcpp/support/byte_buffer.h> |
|
#include <grpcpp/support/channel_arguments.h> |
|
#include <grpcpp/support/slice.h> |
|
|
|
#include "src/proto/grpc/testing/benchmark_service.grpc.pb.h" |
|
#include "src/proto/grpc/testing/payloads.pb.h" |
|
|
|
#include "src/core/lib/gpr/env.h" |
|
#include "src/cpp/util/core_stats.h" |
|
#include "test/cpp/qps/histogram.h" |
|
#include "test/cpp/qps/interarrival.h" |
|
#include "test/cpp/qps/qps_worker.h" |
|
#include "test/cpp/qps/server.h" |
|
#include "test/cpp/qps/usage_timer.h" |
|
#include "test/cpp/util/create_test_channel.h" |
|
#include "test/cpp/util/test_credentials_provider.h" |
|
|
|
#define INPROC_NAME_PREFIX "qpsinproc:" |
|
|
|
namespace grpc { |
|
namespace testing { |
|
|
|
template <class RequestType> |
|
class ClientRequestCreator { |
|
public: |
|
ClientRequestCreator(RequestType* req, const PayloadConfig&) { |
|
// this template must be specialized |
|
// fail with an assertion rather than a compile-time |
|
// check since these only happen at the beginning anyway |
|
GPR_ASSERT(false); |
|
} |
|
}; |
|
|
|
template <> |
|
class ClientRequestCreator<SimpleRequest> { |
|
public: |
|
ClientRequestCreator(SimpleRequest* req, |
|
const PayloadConfig& payload_config) { |
|
if (payload_config.has_bytebuf_params()) { |
|
GPR_ASSERT(false); // not appropriate for this specialization |
|
} else if (payload_config.has_simple_params()) { |
|
req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE); |
|
req->set_response_size(payload_config.simple_params().resp_size()); |
|
req->mutable_payload()->set_type( |
|
grpc::testing::PayloadType::COMPRESSABLE); |
|
int size = payload_config.simple_params().req_size(); |
|
std::unique_ptr<char[]> body(new char[size]); |
|
req->mutable_payload()->set_body(body.get(), size); |
|
} else if (payload_config.has_complex_params()) { |
|
GPR_ASSERT(false); // not appropriate for this specialization |
|
} else { |
|
// default should be simple proto without payloads |
|
req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE); |
|
req->set_response_size(0); |
|
req->mutable_payload()->set_type( |
|
grpc::testing::PayloadType::COMPRESSABLE); |
|
} |
|
} |
|
}; |
|
|
|
template <> |
|
class ClientRequestCreator<ByteBuffer> { |
|
public: |
|
ClientRequestCreator(ByteBuffer* req, const PayloadConfig& payload_config) { |
|
if (payload_config.has_bytebuf_params()) { |
|
std::unique_ptr<char[]> buf( |
|
new char[payload_config.bytebuf_params().req_size()]); |
|
Slice slice(buf.get(), payload_config.bytebuf_params().req_size()); |
|
*req = ByteBuffer(&slice, 1); |
|
} else { |
|
GPR_ASSERT(false); // not appropriate for this specialization |
|
} |
|
} |
|
}; |
|
|
|
class HistogramEntry final { |
|
public: |
|
HistogramEntry() : value_used_(false), status_used_(false) {} |
|
bool value_used() const { return value_used_; } |
|
double value() const { return value_; } |
|
void set_value(double v) { |
|
value_used_ = true; |
|
value_ = v; |
|
} |
|
bool status_used() const { return status_used_; } |
|
int status() const { return status_; } |
|
void set_status(int status) { |
|
status_used_ = true; |
|
status_ = status; |
|
} |
|
|
|
private: |
|
bool value_used_; |
|
double value_; |
|
bool status_used_; |
|
int status_; |
|
}; |
|
|
|
typedef std::unordered_map<int, int64_t> StatusHistogram; |
|
|
|
inline void MergeStatusHistogram(const StatusHistogram& from, |
|
StatusHistogram* to) { |
|
for (StatusHistogram::const_iterator it = from.begin(); it != from.end(); |
|
++it) { |
|
(*to)[it->first] += it->second; |
|
} |
|
} |
|
|
|
class Client { |
|
public: |
|
Client() |
|
: timer_(new UsageTimer), |
|
interarrival_timer_(), |
|
started_requests_(false), |
|
last_reset_poll_count_(0) { |
|
gpr_event_init(&start_requests_); |
|
} |
|
virtual ~Client() {} |
|
|
|
ClientStats Mark(bool reset) { |
|
Histogram latencies; |
|
StatusHistogram statuses; |
|
UsageTimer::Result timer_result; |
|
|
|
MaybeStartRequests(); |
|
|
|
int cur_poll_count = GetPollCount(); |
|
int poll_count = cur_poll_count - last_reset_poll_count_; |
|
if (reset) { |
|
std::vector<Histogram> to_merge(threads_.size()); |
|
std::vector<StatusHistogram> to_merge_status(threads_.size()); |
|
|
|
for (size_t i = 0; i < threads_.size(); i++) { |
|
threads_[i]->BeginSwap(&to_merge[i], &to_merge_status[i]); |
|
} |
|
std::unique_ptr<UsageTimer> timer(new UsageTimer); |
|
timer_.swap(timer); |
|
for (size_t i = 0; i < threads_.size(); i++) { |
|
latencies.Merge(to_merge[i]); |
|
MergeStatusHistogram(to_merge_status[i], &statuses); |
|
} |
|
timer_result = timer->Mark(); |
|
last_reset_poll_count_ = cur_poll_count; |
|
} else { |
|
// merge snapshots of each thread histogram |
|
for (size_t i = 0; i < threads_.size(); i++) { |
|
threads_[i]->MergeStatsInto(&latencies, &statuses); |
|
} |
|
timer_result = timer_->Mark(); |
|
} |
|
|
|
// Print the median latency per interval for one thread. |
|
// If the number of warmup seconds is x, then the first x + 1 numbers in the |
|
// vector are from the warmup period and should be discarded. |
|
if (median_latency_collection_interval_seconds_ > 0) { |
|
std::vector<double> medians_per_interval = |
|
threads_[0]->GetMedianPerIntervalList(); |
|
gpr_log(GPR_INFO, "Num threads: %ld", threads_.size()); |
|
gpr_log(GPR_INFO, "Number of medians: %ld", medians_per_interval.size()); |
|
for (size_t j = 0; j < medians_per_interval.size(); j++) { |
|
gpr_log(GPR_INFO, "%f", medians_per_interval[j]); |
|
} |
|
} |
|
|
|
grpc_stats_data core_stats; |
|
grpc_stats_collect(&core_stats); |
|
|
|
ClientStats stats; |
|
latencies.FillProto(stats.mutable_latencies()); |
|
for (StatusHistogram::const_iterator it = statuses.begin(); |
|
it != statuses.end(); ++it) { |
|
RequestResultCount* rrc = stats.add_request_results(); |
|
rrc->set_status_code(it->first); |
|
rrc->set_count(it->second); |
|
} |
|
stats.set_time_elapsed(timer_result.wall); |
|
stats.set_time_system(timer_result.system); |
|
stats.set_time_user(timer_result.user); |
|
stats.set_cq_poll_count(poll_count); |
|
CoreStatsToProto(core_stats, stats.mutable_core_stats()); |
|
return stats; |
|
} |
|
|
|
// Must call AwaitThreadsCompletion before destructor to avoid a race |
|
// between destructor and invocation of virtual ThreadFunc |
|
void AwaitThreadsCompletion() { |
|
gpr_atm_rel_store(&thread_pool_done_, static_cast<gpr_atm>(true)); |
|
DestroyMultithreading(); |
|
std::unique_lock<std::mutex> g(thread_completion_mu_); |
|
while (threads_remaining_ != 0) { |
|
threads_complete_.wait(g); |
|
} |
|
} |
|
|
|
// Returns the interval (in seconds) between collecting latency medians. If 0, |
|
// no periodic median latencies will be collected. |
|
double GetLatencyCollectionIntervalInSeconds() { |
|
return median_latency_collection_interval_seconds_; |
|
} |
|
|
|
virtual int GetPollCount() { |
|
// For sync client. |
|
return 0; |
|
} |
|
|
|
protected: |
|
bool closed_loop_; |
|
gpr_atm thread_pool_done_; |
|
double median_latency_collection_interval_seconds_; // In seconds |
|
|
|
void StartThreads(size_t num_threads) { |
|
gpr_atm_rel_store(&thread_pool_done_, static_cast<gpr_atm>(false)); |
|
threads_remaining_ = num_threads; |
|
for (size_t i = 0; i < num_threads; i++) { |
|
threads_.emplace_back(new Thread(this, i)); |
|
} |
|
} |
|
|
|
void EndThreads() { |
|
MaybeStartRequests(); |
|
threads_.clear(); |
|
} |
|
|
|
virtual void DestroyMultithreading() = 0; |
|
|
|
void SetupLoadTest(const ClientConfig& config, size_t num_threads) { |
|
// Set up the load distribution based on the number of threads |
|
const auto& load = config.load_params(); |
|
|
|
std::unique_ptr<RandomDistInterface> random_dist; |
|
switch (load.load_case()) { |
|
case LoadParams::kClosedLoop: |
|
// Closed-loop doesn't use random dist at all |
|
break; |
|
case LoadParams::kPoisson: |
|
random_dist.reset( |
|
new ExpDist(load.poisson().offered_load() / num_threads)); |
|
break; |
|
default: |
|
GPR_ASSERT(false); |
|
} |
|
|
|
// Set closed_loop_ based on whether or not random_dist is set |
|
if (!random_dist) { |
|
closed_loop_ = true; |
|
} else { |
|
closed_loop_ = false; |
|
// set up interarrival timer according to random dist |
|
interarrival_timer_.init(*random_dist, num_threads); |
|
const auto now = gpr_now(GPR_CLOCK_MONOTONIC); |
|
for (size_t i = 0; i < num_threads; i++) { |
|
next_time_.push_back(gpr_time_add( |
|
now, |
|
gpr_time_from_nanos(interarrival_timer_.next(i), GPR_TIMESPAN))); |
|
} |
|
} |
|
} |
|
|
|
gpr_timespec NextIssueTime(int thread_idx) { |
|
const gpr_timespec result = next_time_[thread_idx]; |
|
next_time_[thread_idx] = |
|
gpr_time_add(next_time_[thread_idx], |
|
gpr_time_from_nanos(interarrival_timer_.next(thread_idx), |
|
GPR_TIMESPAN)); |
|
return result; |
|
} |
|
std::function<gpr_timespec()> NextIssuer(int thread_idx) { |
|
return closed_loop_ ? std::function<gpr_timespec()>() |
|
: std::bind(&Client::NextIssueTime, this, thread_idx); |
|
} |
|
|
|
class Thread { |
|
public: |
|
Thread(Client* client, size_t idx) |
|
: client_(client), idx_(idx), impl_(&Thread::ThreadFunc, this) {} |
|
|
|
~Thread() { impl_.join(); } |
|
|
|
void BeginSwap(Histogram* n, StatusHistogram* s) { |
|
std::lock_guard<std::mutex> g(mu_); |
|
n->Swap(&histogram_); |
|
s->swap(statuses_); |
|
} |
|
|
|
void MergeStatsInto(Histogram* hist, StatusHistogram* s) { |
|
std::unique_lock<std::mutex> g(mu_); |
|
hist->Merge(histogram_); |
|
MergeStatusHistogram(statuses_, s); |
|
} |
|
|
|
std::vector<double> GetMedianPerIntervalList() { |
|
return medians_each_interval_list_; |
|
} |
|
|
|
void UpdateHistogram(HistogramEntry* entry) { |
|
std::lock_guard<std::mutex> g(mu_); |
|
if (entry->value_used()) { |
|
histogram_.Add(entry->value()); |
|
if (client_->GetLatencyCollectionIntervalInSeconds() > 0) { |
|
histogram_per_interval_.Add(entry->value()); |
|
double now = UsageTimer::Now(); |
|
if ((now - interval_start_time_) >= |
|
client_->GetLatencyCollectionIntervalInSeconds()) { |
|
// Record the median latency of requests from the last interval. |
|
// Divide by 1e3 to get microseconds. |
|
medians_each_interval_list_.push_back( |
|
histogram_per_interval_.Percentile(50) / 1e3); |
|
histogram_per_interval_.Reset(); |
|
interval_start_time_ = now; |
|
} |
|
} |
|
} |
|
if (entry->status_used()) { |
|
statuses_[entry->status()]++; |
|
} |
|
} |
|
|
|
private: |
|
Thread(const Thread&); |
|
Thread& operator=(const Thread&); |
|
|
|
void ThreadFunc() { |
|
int wait_loop = 0; |
|
while (!gpr_event_wait( |
|
&client_->start_requests_, |
|
gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), |
|
gpr_time_from_seconds(20, GPR_TIMESPAN)))) { |
|
gpr_log(GPR_INFO, "%" PRIdPTR ": Waiting for benchmark to start (%d)", |
|
idx_, wait_loop); |
|
wait_loop++; |
|
} |
|
|
|
client_->ThreadFunc(idx_, this); |
|
client_->CompleteThread(); |
|
} |
|
|
|
std::mutex mu_; |
|
Histogram histogram_; |
|
StatusHistogram statuses_; |
|
Client* client_; |
|
const size_t idx_; |
|
std::thread impl_; |
|
// The following are used only if |
|
// median_latency_collection_interval_seconds_ is greater than 0 |
|
Histogram histogram_per_interval_; |
|
std::vector<double> medians_each_interval_list_; |
|
double interval_start_time_; |
|
}; |
|
|
|
bool ThreadCompleted() { |
|
return static_cast<bool>(gpr_atm_acq_load(&thread_pool_done_)); |
|
} |
|
|
|
virtual void ThreadFunc(size_t thread_idx, Client::Thread* t) = 0; |
|
|
|
std::vector<std::unique_ptr<Thread>> threads_; |
|
std::unique_ptr<UsageTimer> timer_; |
|
|
|
InterarrivalTimer interarrival_timer_; |
|
std::vector<gpr_timespec> next_time_; |
|
|
|
std::mutex thread_completion_mu_; |
|
size_t threads_remaining_; |
|
std::condition_variable threads_complete_; |
|
|
|
gpr_event start_requests_; |
|
bool started_requests_; |
|
|
|
int last_reset_poll_count_; |
|
|
|
void MaybeStartRequests() { |
|
if (!started_requests_) { |
|
started_requests_ = true; |
|
gpr_event_set(&start_requests_, (void*)1); |
|
} |
|
} |
|
|
|
void CompleteThread() { |
|
std::lock_guard<std::mutex> g(thread_completion_mu_); |
|
threads_remaining_--; |
|
if (threads_remaining_ == 0) { |
|
threads_complete_.notify_all(); |
|
} |
|
} |
|
}; |
|
|
|
template <class StubType, class RequestType> |
|
class ClientImpl : public Client { |
|
public: |
|
ClientImpl(const ClientConfig& config, |
|
std::function<std::unique_ptr<StubType>(std::shared_ptr<Channel>)> |
|
create_stub) |
|
: cores_(gpr_cpu_num_cores()), create_stub_(create_stub) { |
|
for (int i = 0; i < config.client_channels(); i++) { |
|
channels_.emplace_back( |
|
config.server_targets(i % config.server_targets_size()), config, |
|
create_stub_, i); |
|
} |
|
std::vector<std::unique_ptr<std::thread>> connecting_threads; |
|
for (auto& c : channels_) { |
|
connecting_threads.emplace_back(c.WaitForReady()); |
|
} |
|
for (auto& t : connecting_threads) { |
|
t->join(); |
|
} |
|
median_latency_collection_interval_seconds_ = |
|
config.median_latency_collection_interval_millis() / 1e3; |
|
ClientRequestCreator<RequestType> create_req(&request_, |
|
config.payload_config()); |
|
} |
|
virtual ~ClientImpl() {} |
|
|
|
protected: |
|
const int cores_; |
|
RequestType request_; |
|
|
|
class ClientChannelInfo { |
|
public: |
|
ClientChannelInfo( |
|
const grpc::string& target, const ClientConfig& config, |
|
std::function<std::unique_ptr<StubType>(std::shared_ptr<Channel>)> |
|
create_stub, |
|
int shard) { |
|
ChannelArguments args; |
|
args.SetInt("shard_to_ensure_no_subchannel_merges", shard); |
|
set_channel_args(config, &args); |
|
|
|
grpc::string type; |
|
if (config.has_security_params() && |
|
config.security_params().cred_type().empty()) { |
|
type = kTlsCredentialsType; |
|
} else { |
|
type = config.security_params().cred_type(); |
|
} |
|
|
|
grpc::string inproc_pfx(INPROC_NAME_PREFIX); |
|
if (target.find(inproc_pfx) != 0) { |
|
channel_ = CreateTestChannel( |
|
target, type, config.security_params().server_host_override(), |
|
!config.security_params().use_test_ca(), |
|
std::shared_ptr<CallCredentials>(), args); |
|
gpr_log(GPR_INFO, "Connecting to %s", target.c_str()); |
|
is_inproc_ = false; |
|
} else { |
|
grpc::string tgt = target; |
|
tgt.erase(0, inproc_pfx.length()); |
|
int srv_num = std::stoi(tgt); |
|
channel_ = (*g_inproc_servers)[srv_num]->InProcessChannel(args); |
|
is_inproc_ = true; |
|
} |
|
stub_ = create_stub(channel_); |
|
} |
|
Channel* get_channel() { return channel_.get(); } |
|
StubType* get_stub() { return stub_.get(); } |
|
|
|
std::unique_ptr<std::thread> WaitForReady() { |
|
return std::unique_ptr<std::thread>(new std::thread([this]() { |
|
if (!is_inproc_) { |
|
int connect_deadline = 10; |
|
/* Allow optionally overriding connect_deadline in order |
|
* to deal with benchmark environments in which the server |
|
* can take a long time to become ready. */ |
|
char* channel_connect_timeout_str = |
|
gpr_getenv("QPS_WORKER_CHANNEL_CONNECT_TIMEOUT"); |
|
if (channel_connect_timeout_str != nullptr && |
|
strcmp(channel_connect_timeout_str, "") != 0) { |
|
connect_deadline = atoi(channel_connect_timeout_str); |
|
} |
|
gpr_log(GPR_INFO, |
|
"Waiting for up to %d seconds for the channel %p to connect", |
|
connect_deadline, channel_.get()); |
|
gpr_free(channel_connect_timeout_str); |
|
GPR_ASSERT(channel_->WaitForConnected(gpr_time_add( |
|
gpr_now(GPR_CLOCK_REALTIME), |
|
gpr_time_from_seconds(connect_deadline, GPR_TIMESPAN)))); |
|
gpr_log(GPR_INFO, "Channel %p connected!", channel_.get()); |
|
} |
|
})); |
|
} |
|
|
|
private: |
|
void set_channel_args(const ClientConfig& config, ChannelArguments* args) { |
|
for (const auto& channel_arg : config.channel_args()) { |
|
if (channel_arg.value_case() == ChannelArg::kStrValue) { |
|
args->SetString(channel_arg.name(), channel_arg.str_value()); |
|
} else if (channel_arg.value_case() == ChannelArg::kIntValue) { |
|
args->SetInt(channel_arg.name(), channel_arg.int_value()); |
|
} else { |
|
gpr_log(GPR_ERROR, "Empty channel arg value."); |
|
} |
|
} |
|
} |
|
|
|
std::shared_ptr<Channel> channel_; |
|
std::unique_ptr<StubType> stub_; |
|
bool is_inproc_; |
|
}; |
|
std::vector<ClientChannelInfo> channels_; |
|
std::function<std::unique_ptr<StubType>(const std::shared_ptr<Channel>&)> |
|
create_stub_; |
|
}; |
|
|
|
std::unique_ptr<Client> CreateSynchronousClient(const ClientConfig& args); |
|
std::unique_ptr<Client> CreateAsyncClient(const ClientConfig& args); |
|
std::unique_ptr<Client> CreateGenericAsyncStreamingClient( |
|
const ClientConfig& args); |
|
|
|
} // namespace testing |
|
} // namespace grpc |
|
|
|
#endif
|
|
|