mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5580 lines
205 KiB
5580 lines
205 KiB
/* |
|
* xxHash - Extremely Fast Hash algorithm |
|
* Header File |
|
* Copyright (C) 2012-2020 Yann Collet |
|
* |
|
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are |
|
* met: |
|
* |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above |
|
* copyright notice, this list of conditions and the following disclaimer |
|
* in the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
* You can contact the author at: |
|
* - xxHash homepage: https://www.xxhash.com |
|
* - xxHash source repository: https://github.com/Cyan4973/xxHash |
|
*/ |
|
/*! |
|
* @mainpage xxHash |
|
* |
|
* @file xxhash.h |
|
* xxHash prototypes and implementation |
|
*/ |
|
/* TODO: update */ |
|
/* Notice extracted from xxHash homepage: |
|
|
|
xxHash is an extremely fast hash algorithm, running at RAM speed limits. |
|
It also successfully passes all tests from the SMHasher suite. |
|
|
|
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) |
|
|
|
Name Speed Q.Score Author |
|
xxHash 5.4 GB/s 10 |
|
CrapWow 3.2 GB/s 2 Andrew |
|
MurmurHash 3a 2.7 GB/s 10 Austin Appleby |
|
SpookyHash 2.0 GB/s 10 Bob Jenkins |
|
SBox 1.4 GB/s 9 Bret Mulvey |
|
Lookup3 1.2 GB/s 9 Bob Jenkins |
|
SuperFastHash 1.2 GB/s 1 Paul Hsieh |
|
CityHash64 1.05 GB/s 10 Pike & Alakuijala |
|
FNV 0.55 GB/s 5 Fowler, Noll, Vo |
|
CRC32 0.43 GB/s 9 |
|
MD5-32 0.33 GB/s 10 Ronald L. Rivest |
|
SHA1-32 0.28 GB/s 10 |
|
|
|
Q.Score is a measure of quality of the hash function. |
|
It depends on successfully passing SMHasher test set. |
|
10 is a perfect score. |
|
|
|
Note: SMHasher's CRC32 implementation is not the fastest one. |
|
Other speed-oriented implementations can be faster, |
|
especially in combination with PCLMUL instruction: |
|
https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 |
|
|
|
A 64-bit version, named XXH64, is available since r35. |
|
It offers much better speed, but for 64-bit applications only. |
|
Name Speed on 64 bits Speed on 32 bits |
|
XXH64 13.8 GB/s 1.9 GB/s |
|
XXH32 6.8 GB/s 6.0 GB/s |
|
*/ |
|
|
|
#if defined (__cplusplus) |
|
extern "C" { |
|
#endif |
|
|
|
/* **************************** |
|
* INLINE mode |
|
******************************/ |
|
/*! |
|
* XXH_INLINE_ALL (and XXH_PRIVATE_API) |
|
* Use these build macros to inline xxhash into the target unit. |
|
* Inlining improves performance on small inputs, especially when the length is |
|
* expressed as a compile-time constant: |
|
* |
|
* https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
|
* |
|
* It also keeps xxHash symbols private to the unit, so they are not exported. |
|
* |
|
* Usage: |
|
* #define XXH_INLINE_ALL |
|
* #include "xxhash.h" |
|
* |
|
* Do not compile and link xxhash.o as a separate object, as it is not useful. |
|
*/ |
|
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ |
|
&& !defined(XXH_INLINE_ALL_31684351384) |
|
/* this section should be traversed only once */ |
|
# define XXH_INLINE_ALL_31684351384 |
|
/* give access to the advanced API, required to compile implementations */ |
|
# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
|
# define XXH_STATIC_LINKING_ONLY |
|
/* make all functions private */ |
|
# undef XXH_PUBLIC_API |
|
# if defined(__GNUC__) |
|
# define XXH_PUBLIC_API static __inline __attribute__((unused)) |
|
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
|
# define XXH_PUBLIC_API static inline |
|
# elif defined(_MSC_VER) |
|
# define XXH_PUBLIC_API static __inline |
|
# else |
|
/* note: this version may generate warnings for unused static functions */ |
|
# define XXH_PUBLIC_API static |
|
# endif |
|
|
|
/* |
|
* This part deals with the special case where a unit wants to inline xxHash, |
|
* but "xxhash.h" has previously been included without XXH_INLINE_ALL, |
|
* such as part of some previously included *.h header file. |
|
* Without further action, the new include would just be ignored, |
|
* and functions would effectively _not_ be inlined (silent failure). |
|
* The following macros solve this situation by prefixing all inlined names, |
|
* avoiding naming collision with previous inclusions. |
|
*/ |
|
/* Before that, we unconditionally #undef all symbols, |
|
* in case they were already defined with XXH_NAMESPACE. |
|
* They will then be redefined for XXH_INLINE_ALL |
|
*/ |
|
# undef XXH_versionNumber |
|
/* XXH32 */ |
|
# undef XXH32 |
|
# undef XXH32_createState |
|
# undef XXH32_freeState |
|
# undef XXH32_reset |
|
# undef XXH32_update |
|
# undef XXH32_digest |
|
# undef XXH32_copyState |
|
# undef XXH32_canonicalFromHash |
|
# undef XXH32_hashFromCanonical |
|
/* XXH64 */ |
|
# undef XXH64 |
|
# undef XXH64_createState |
|
# undef XXH64_freeState |
|
# undef XXH64_reset |
|
# undef XXH64_update |
|
# undef XXH64_digest |
|
# undef XXH64_copyState |
|
# undef XXH64_canonicalFromHash |
|
# undef XXH64_hashFromCanonical |
|
/* XXH3_64bits */ |
|
# undef XXH3_64bits |
|
# undef XXH3_64bits_withSecret |
|
# undef XXH3_64bits_withSeed |
|
# undef XXH3_64bits_withSecretandSeed |
|
# undef XXH3_createState |
|
# undef XXH3_freeState |
|
# undef XXH3_copyState |
|
# undef XXH3_64bits_reset |
|
# undef XXH3_64bits_reset_withSeed |
|
# undef XXH3_64bits_reset_withSecret |
|
# undef XXH3_64bits_update |
|
# undef XXH3_64bits_digest |
|
# undef XXH3_generateSecret |
|
/* XXH3_128bits */ |
|
# undef XXH128 |
|
# undef XXH3_128bits |
|
# undef XXH3_128bits_withSeed |
|
# undef XXH3_128bits_withSecret |
|
# undef XXH3_128bits_reset |
|
# undef XXH3_128bits_reset_withSeed |
|
# undef XXH3_128bits_reset_withSecret |
|
# undef XXH3_128bits_reset_withSecretandSeed |
|
# undef XXH3_128bits_update |
|
# undef XXH3_128bits_digest |
|
# undef XXH128_isEqual |
|
# undef XXH128_cmp |
|
# undef XXH128_canonicalFromHash |
|
# undef XXH128_hashFromCanonical |
|
/* Finally, free the namespace itself */ |
|
# undef XXH_NAMESPACE |
|
|
|
/* employ the namespace for XXH_INLINE_ALL */ |
|
# define XXH_NAMESPACE XXH_INLINE_ |
|
/* |
|
* Some identifiers (enums, type names) are not symbols, |
|
* but they must nonetheless be renamed to avoid redeclaration. |
|
* Alternative solution: do not redeclare them. |
|
* However, this requires some #ifdefs, and has a more dispersed impact. |
|
* Meanwhile, renaming can be achieved in a single place. |
|
*/ |
|
# define XXH_IPREF(Id) XXH_NAMESPACE ## Id |
|
# define XXH_OK XXH_IPREF(XXH_OK) |
|
# define XXH_ERROR XXH_IPREF(XXH_ERROR) |
|
# define XXH_errorcode XXH_IPREF(XXH_errorcode) |
|
# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
|
# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
|
# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
|
# define XXH32_state_s XXH_IPREF(XXH32_state_s) |
|
# define XXH32_state_t XXH_IPREF(XXH32_state_t) |
|
# define XXH64_state_s XXH_IPREF(XXH64_state_s) |
|
# define XXH64_state_t XXH_IPREF(XXH64_state_t) |
|
# define XXH3_state_s XXH_IPREF(XXH3_state_s) |
|
# define XXH3_state_t XXH_IPREF(XXH3_state_t) |
|
# define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
|
/* Ensure the header is parsed again, even if it was previously included */ |
|
# undef XXHASH_H_5627135585666179 |
|
# undef XXHASH_H_STATIC_13879238742 |
|
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
|
|
|
|
|
|
|
/* **************************************************************** |
|
* Stable API |
|
*****************************************************************/ |
|
#ifndef XXHASH_H_5627135585666179 |
|
#define XXHASH_H_5627135585666179 1 |
|
|
|
|
|
/*! |
|
* @defgroup public Public API |
|
* Contains details on the public xxHash functions. |
|
* @{ |
|
*/ |
|
/* specific declaration modes for Windows */ |
|
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
|
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
|
# ifdef XXH_EXPORT |
|
# define XXH_PUBLIC_API __declspec(dllexport) |
|
# elif XXH_IMPORT |
|
# define XXH_PUBLIC_API __declspec(dllimport) |
|
# endif |
|
# else |
|
# define XXH_PUBLIC_API /* do nothing */ |
|
# endif |
|
#endif |
|
|
|
#ifdef XXH_DOXYGEN |
|
/*! |
|
* @brief Emulate a namespace by transparently prefixing all symbols. |
|
* |
|
* If you want to include _and expose_ xxHash functions from within your own |
|
* library, but also want to avoid symbol collisions with other libraries which |
|
* may also include xxHash, you can use XXH_NAMESPACE to automatically prefix |
|
* any public symbol from xxhash library with the value of XXH_NAMESPACE |
|
* (therefore, avoid empty or numeric values). |
|
* |
|
* Note that no change is required within the calling program as long as it |
|
* includes `xxhash.h`: Regular symbol names will be automatically translated |
|
* by this header. |
|
*/ |
|
# define XXH_NAMESPACE /* YOUR NAME HERE */ |
|
# undef XXH_NAMESPACE |
|
#endif |
|
|
|
#ifdef XXH_NAMESPACE |
|
# define XXH_CAT(A,B) A##B |
|
# define XXH_NAME2(A,B) XXH_CAT(A,B) |
|
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
|
/* XXH32 */ |
|
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
|
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
|
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
|
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
|
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
|
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
|
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
|
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
|
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
|
/* XXH64 */ |
|
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
|
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
|
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
|
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
|
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
|
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
|
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
|
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
|
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
|
/* XXH3_64bits */ |
|
# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
|
# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
|
# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
|
# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) |
|
# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
|
# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
|
# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
|
# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
|
# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
|
# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
|
# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) |
|
# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
|
# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
|
# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
|
# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) |
|
/* XXH3_128bits */ |
|
# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
|
# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
|
# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
|
# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
|
# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) |
|
# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
|
# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
|
# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
|
# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) |
|
# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
|
# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
|
# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
|
# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
|
# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
|
# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
|
#endif |
|
|
|
|
|
/* ************************************* |
|
* Version |
|
***************************************/ |
|
#define XXH_VERSION_MAJOR 0 |
|
#define XXH_VERSION_MINOR 8 |
|
#define XXH_VERSION_RELEASE 1 |
|
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
|
|
|
/*! |
|
* @brief Obtains the xxHash version. |
|
* |
|
* This is mostly useful when xxHash is compiled as a shared library, |
|
* since the returned value comes from the library, as opposed to header file. |
|
* |
|
* @return `XXH_VERSION_NUMBER` of the invoked library. |
|
*/ |
|
XXH_PUBLIC_API unsigned XXH_versionNumber (void); |
|
|
|
|
|
/* **************************** |
|
* Common basic types |
|
******************************/ |
|
#include <stddef.h> /* size_t */ |
|
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; |
|
|
|
|
|
/*-********************************************************************** |
|
* 32-bit hash |
|
************************************************************************/ |
|
#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */ |
|
/*! |
|
* @brief An unsigned 32-bit integer. |
|
* |
|
* Not necessarily defined to `uint32_t` but functionally equivalent. |
|
*/ |
|
typedef uint32_t XXH32_hash_t; |
|
|
|
#elif !defined (__VMS) \ |
|
&& (defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
|
# include <stdint.h> |
|
typedef uint32_t XXH32_hash_t; |
|
|
|
#else |
|
# include <limits.h> |
|
# if UINT_MAX == 0xFFFFFFFFUL |
|
typedef unsigned int XXH32_hash_t; |
|
# else |
|
# if ULONG_MAX == 0xFFFFFFFFUL |
|
typedef unsigned long XXH32_hash_t; |
|
# else |
|
# error "unsupported platform: need a 32-bit type" |
|
# endif |
|
# endif |
|
#endif |
|
|
|
/*! |
|
* @} |
|
* |
|
* @defgroup xxh32_family XXH32 family |
|
* @ingroup public |
|
* Contains functions used in the classic 32-bit xxHash algorithm. |
|
* |
|
* @note |
|
* XXH32 is useful for older platforms, with no or poor 64-bit performance. |
|
* Note that @ref xxh3_family provides competitive speed |
|
* for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results. |
|
* |
|
* @see @ref xxh64_family, @ref xxh3_family : Other xxHash families |
|
* @see @ref xxh32_impl for implementation details |
|
* @{ |
|
*/ |
|
|
|
/*! |
|
* @brief Calculates the 32-bit hash of @p input using xxHash32. |
|
* |
|
* Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s |
|
* |
|
* @param input The block of data to be hashed, at least @p length bytes in size. |
|
* @param length The length of @p input, in bytes. |
|
* @param seed The 32-bit seed to alter the hash's output predictably. |
|
* |
|
* @pre |
|
* The memory between @p input and @p input + @p length must be valid, |
|
* readable, contiguous memory. However, if @p length is `0`, @p input may be |
|
* `NULL`. In C++, this also must be *TriviallyCopyable*. |
|
* |
|
* @return The calculated 32-bit hash value. |
|
* |
|
* @see |
|
* XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
|
* Direct equivalents for the other variants of xxHash. |
|
* @see |
|
* XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version. |
|
*/ |
|
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); |
|
|
|
/*! |
|
* Streaming functions generate the xxHash value from an incremental input. |
|
* This method is slower than single-call functions, due to state management. |
|
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
|
* |
|
* An XXH state must first be allocated using `XXH*_createState()`. |
|
* |
|
* Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
|
* |
|
* Then, feed the hash state by calling `XXH*_update()` as many times as necessary. |
|
* |
|
* The function returns an error code, with 0 meaning OK, and any other value |
|
* meaning there is an error. |
|
* |
|
* Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
|
* This function returns the nn-bits hash as an int or long long. |
|
* |
|
* It's still possible to continue inserting input into the hash state after a |
|
* digest, and generate new hash values later on by invoking `XXH*_digest()`. |
|
* |
|
* When done, release the state using `XXH*_freeState()`. |
|
* |
|
* Example code for incrementally hashing a file: |
|
* @code{.c} |
|
* #include <stdio.h> |
|
* #include <xxhash.h> |
|
* #define BUFFER_SIZE 256 |
|
* |
|
* // Note: XXH64 and XXH3 use the same interface. |
|
* XXH32_hash_t |
|
* hashFile(FILE* stream) |
|
* { |
|
* XXH32_state_t* state; |
|
* unsigned char buf[BUFFER_SIZE]; |
|
* size_t amt; |
|
* XXH32_hash_t hash; |
|
* |
|
* state = XXH32_createState(); // Create a state |
|
* assert(state != NULL); // Error check here |
|
* XXH32_reset(state, 0xbaad5eed); // Reset state with our seed |
|
* while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) { |
|
* XXH32_update(state, buf, amt); // Hash the file in chunks |
|
* } |
|
* hash = XXH32_digest(state); // Finalize the hash |
|
* XXH32_freeState(state); // Clean up |
|
* return hash; |
|
* } |
|
* @endcode |
|
*/ |
|
|
|
/*! |
|
* @typedef struct XXH32_state_s XXH32_state_t |
|
* @brief The opaque state struct for the XXH32 streaming API. |
|
* |
|
* @see XXH32_state_s for details. |
|
*/ |
|
typedef struct XXH32_state_s XXH32_state_t; |
|
|
|
/*! |
|
* @brief Allocates an @ref XXH32_state_t. |
|
* |
|
* Must be freed with XXH32_freeState(). |
|
* @return An allocated XXH32_state_t on success, `NULL` on failure. |
|
*/ |
|
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); |
|
/*! |
|
* @brief Frees an @ref XXH32_state_t. |
|
* |
|
* Must be allocated with XXH32_createState(). |
|
* @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). |
|
* @return XXH_OK. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
|
/*! |
|
* @brief Copies one @ref XXH32_state_t to another. |
|
* |
|
* @param dst_state The state to copy to. |
|
* @param src_state The state to copy from. |
|
* @pre |
|
* @p dst_state and @p src_state must not be `NULL` and must not overlap. |
|
*/ |
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); |
|
|
|
/*! |
|
* @brief Resets an @ref XXH32_state_t to begin a new hash. |
|
* |
|
* This function resets and seeds a state. Call it before @ref XXH32_update(). |
|
* |
|
* @param statePtr The state struct to reset. |
|
* @param seed The 32-bit seed to alter the hash result predictably. |
|
* |
|
* @pre |
|
* @p statePtr must not be `NULL`. |
|
* |
|
* @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); |
|
|
|
/*! |
|
* @brief Consumes a block of @p input to an @ref XXH32_state_t. |
|
* |
|
* Call this to incrementally consume blocks of data. |
|
* |
|
* @param statePtr The state struct to update. |
|
* @param input The block of data to be hashed, at least @p length bytes in size. |
|
* @param length The length of @p input, in bytes. |
|
* |
|
* @pre |
|
* @p statePtr must not be `NULL`. |
|
* @pre |
|
* The memory between @p input and @p input + @p length must be valid, |
|
* readable, contiguous memory. However, if @p length is `0`, @p input may be |
|
* `NULL`. In C++, this also must be *TriviallyCopyable*. |
|
* |
|
* @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
|
|
|
/*! |
|
* @brief Returns the calculated hash value from an @ref XXH32_state_t. |
|
* |
|
* @note |
|
* Calling XXH32_digest() will not affect @p statePtr, so you can update, |
|
* digest, and update again. |
|
* |
|
* @param statePtr The state struct to calculate the hash from. |
|
* |
|
* @pre |
|
* @p statePtr must not be `NULL`. |
|
* |
|
* @return The calculated xxHash32 value from that state. |
|
*/ |
|
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
|
|
|
/******* Canonical representation *******/ |
|
|
|
/* |
|
* The default return values from XXH functions are unsigned 32 and 64 bit |
|
* integers. |
|
* This the simplest and fastest format for further post-processing. |
|
* |
|
* However, this leaves open the question of what is the order on the byte level, |
|
* since little and big endian conventions will store the same number differently. |
|
* |
|
* The canonical representation settles this issue by mandating big-endian |
|
* convention, the same convention as human-readable numbers (large digits first). |
|
* |
|
* When writing hash values to storage, sending them over a network, or printing |
|
* them, it's highly recommended to use the canonical representation to ensure |
|
* portability across a wider range of systems, present and future. |
|
* |
|
* The following functions allow transformation of hash values to and from |
|
* canonical format. |
|
*/ |
|
|
|
/*! |
|
* @brief Canonical (big endian) representation of @ref XXH32_hash_t. |
|
*/ |
|
typedef struct { |
|
unsigned char digest[4]; /*!< Hash bytes, big endian */ |
|
} XXH32_canonical_t; |
|
|
|
/*! |
|
* @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. |
|
* |
|
* @param dst The @ref XXH32_canonical_t pointer to be stored to. |
|
* @param hash The @ref XXH32_hash_t to be converted. |
|
* |
|
* @pre |
|
* @p dst must not be `NULL`. |
|
*/ |
|
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
|
|
|
/*! |
|
* @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. |
|
* |
|
* @param src The @ref XXH32_canonical_t to convert. |
|
* |
|
* @pre |
|
* @p src must not be `NULL`. |
|
* |
|
* @return The converted hash. |
|
*/ |
|
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
|
|
|
|
|
#ifdef __has_attribute |
|
# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) |
|
#else |
|
# define XXH_HAS_ATTRIBUTE(x) 0 |
|
#endif |
|
|
|
/* C-language Attributes are added in C23. */ |
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute) |
|
# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) |
|
#else |
|
# define XXH_HAS_C_ATTRIBUTE(x) 0 |
|
#endif |
|
|
|
#if defined(__cplusplus) && defined(__has_cpp_attribute) |
|
# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) |
|
#else |
|
# define XXH_HAS_CPP_ATTRIBUTE(x) 0 |
|
#endif |
|
|
|
/* |
|
Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute |
|
introduced in CPP17 and C23. |
|
CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough |
|
C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough |
|
*/ |
|
#if XXH_HAS_C_ATTRIBUTE(x) |
|
# define XXH_FALLTHROUGH [[fallthrough]] |
|
#elif XXH_HAS_CPP_ATTRIBUTE(x) |
|
# define XXH_FALLTHROUGH [[fallthrough]] |
|
#elif XXH_HAS_ATTRIBUTE(__fallthrough__) |
|
# define XXH_FALLTHROUGH __attribute__ ((fallthrough)) |
|
#else |
|
# define XXH_FALLTHROUGH |
|
#endif |
|
|
|
/*! |
|
* @} |
|
* @ingroup public |
|
* @{ |
|
*/ |
|
|
|
#ifndef XXH_NO_LONG_LONG |
|
/*-********************************************************************** |
|
* 64-bit hash |
|
************************************************************************/ |
|
#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */ |
|
/*! |
|
* @brief An unsigned 64-bit integer. |
|
* |
|
* Not necessarily defined to `uint64_t` but functionally equivalent. |
|
*/ |
|
typedef uint64_t XXH64_hash_t; |
|
#elif !defined (__VMS) \ |
|
&& (defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
|
# include <stdint.h> |
|
typedef uint64_t XXH64_hash_t; |
|
#else |
|
# include <limits.h> |
|
# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL |
|
/* LP64 ABI says uint64_t is unsigned long */ |
|
typedef unsigned long XXH64_hash_t; |
|
# else |
|
/* the following type must have a width of 64-bit */ |
|
typedef unsigned long long XXH64_hash_t; |
|
# endif |
|
#endif |
|
|
|
/*! |
|
* @} |
|
* |
|
* @defgroup xxh64_family XXH64 family |
|
* @ingroup public |
|
* @{ |
|
* Contains functions used in the classic 64-bit xxHash algorithm. |
|
* |
|
* @note |
|
* XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
|
* and offers true 64/128 bit hash results. |
|
* It provides better speed for systems with vector processing capabilities. |
|
*/ |
|
|
|
|
|
/*! |
|
* @brief Calculates the 64-bit hash of @p input using xxHash64. |
|
* |
|
* This function usually runs faster on 64-bit systems, but slower on 32-bit |
|
* systems (see benchmark). |
|
* |
|
* @param input The block of data to be hashed, at least @p length bytes in size. |
|
* @param length The length of @p input, in bytes. |
|
* @param seed The 64-bit seed to alter the hash's output predictably. |
|
* |
|
* @pre |
|
* The memory between @p input and @p input + @p length must be valid, |
|
* readable, contiguous memory. However, if @p length is `0`, @p input may be |
|
* `NULL`. In C++, this also must be *TriviallyCopyable*. |
|
* |
|
* @return The calculated 64-bit hash. |
|
* |
|
* @see |
|
* XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
|
* Direct equivalents for the other variants of xxHash. |
|
* @see |
|
* XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version. |
|
*/ |
|
XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed); |
|
|
|
/******* Streaming *******/ |
|
/*! |
|
* @brief The opaque state struct for the XXH64 streaming API. |
|
* |
|
* @see XXH64_state_s for details. |
|
*/ |
|
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
|
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); |
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
|
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed); |
|
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); |
|
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); |
|
|
|
/******* Canonical representation *******/ |
|
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; |
|
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); |
|
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); |
|
|
|
/*! |
|
* @} |
|
* ************************************************************************ |
|
* @defgroup xxh3_family XXH3 family |
|
* @ingroup public |
|
* @{ |
|
* |
|
* XXH3 is a more recent hash algorithm featuring: |
|
* - Improved speed for both small and large inputs |
|
* - True 64-bit and 128-bit outputs |
|
* - SIMD acceleration |
|
* - Improved 32-bit viability |
|
* |
|
* Speed analysis methodology is explained here: |
|
* |
|
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
|
* |
|
* Compared to XXH64, expect XXH3 to run approximately |
|
* ~2x faster on large inputs and >3x faster on small ones, |
|
* exact differences vary depending on platform. |
|
* |
|
* XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, |
|
* but does not require it. |
|
* Any 32-bit and 64-bit targets that can run XXH32 smoothly |
|
* can run XXH3 at competitive speeds, even without vector support. |
|
* Further details are explained in the implementation. |
|
* |
|
* Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, |
|
* ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro. |
|
* |
|
* XXH3 implementation is portable: |
|
* it has a generic C90 formulation that can be compiled on any platform, |
|
* all implementations generage exactly the same hash value on all platforms. |
|
* Starting from v0.8.0, it's also labelled "stable", meaning that |
|
* any future version will also generate the same hash value. |
|
* |
|
* XXH3 offers 2 variants, _64bits and _128bits. |
|
* |
|
* When only 64 bits are needed, prefer invoking the _64bits variant, as it |
|
* reduces the amount of mixing, resulting in faster speed on small inputs. |
|
* It's also generally simpler to manipulate a scalar return type than a struct. |
|
* |
|
* The API supports one-shot hashing, streaming mode, and custom secrets. |
|
*/ |
|
|
|
/*-********************************************************************** |
|
* XXH3 64-bit variant |
|
************************************************************************/ |
|
|
|
/* XXH3_64bits(): |
|
* default 64-bit variant, using default secret and default seed of 0. |
|
* It's the fastest variant. */ |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len); |
|
|
|
/* |
|
* XXH3_64bits_withSeed(): |
|
* This variant generates a custom secret on the fly |
|
* based on default secret altered using the `seed` value. |
|
* While this operation is decently fast, note that it's not completely free. |
|
* Note: seed==0 produces the same results as XXH3_64bits(). |
|
*/ |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
|
|
|
/*! |
|
* The bare minimum size for a custom secret. |
|
* |
|
* @see |
|
* XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), |
|
* XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). |
|
*/ |
|
#define XXH3_SECRET_SIZE_MIN 136 |
|
|
|
/* |
|
* XXH3_64bits_withSecret(): |
|
* It's possible to provide any blob of bytes as a "secret" to generate the hash. |
|
* This makes it more difficult for an external actor to prepare an intentional collision. |
|
* The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). |
|
* However, the quality of the secret impacts the dispersion of the hash algorithm. |
|
* Therefore, the secret _must_ look like a bunch of random bytes. |
|
* Avoid "trivial" or structured data such as repeated sequences or a text document. |
|
* Whenever in doubt about the "randomness" of the blob of bytes, |
|
* consider employing "XXH3_generateSecret()" instead (see below). |
|
* It will generate a proper high entropy secret derived from the blob of bytes. |
|
* Another advantage of using XXH3_generateSecret() is that |
|
* it guarantees that all bits within the initial blob of bytes |
|
* will impact every bit of the output. |
|
* This is not necessarily the case when using the blob of bytes directly |
|
* because, when hashing _small_ inputs, only a portion of the secret is employed. |
|
*/ |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
|
|
|
|
|
/******* Streaming *******/ |
|
/* |
|
* Streaming requires state maintenance. |
|
* This operation costs memory and CPU. |
|
* As a consequence, streaming is slower than one-shot hashing. |
|
* For better performance, prefer one-shot functions whenever applicable. |
|
*/ |
|
|
|
/*! |
|
* @brief The state struct for the XXH3 streaming API. |
|
* |
|
* @see XXH3_state_s for details. |
|
*/ |
|
typedef struct XXH3_state_s XXH3_state_t; |
|
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void); |
|
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); |
|
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); |
|
|
|
/* |
|
* XXH3_64bits_reset(): |
|
* Initialize with default parameters. |
|
* digest will be equivalent to `XXH3_64bits()`. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); |
|
/* |
|
* XXH3_64bits_reset_withSeed(): |
|
* Generate a custom secret from `seed`, and store it into `statePtr`. |
|
* digest will be equivalent to `XXH3_64bits_withSeed()`. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
|
/* |
|
* XXH3_64bits_reset_withSecret(): |
|
* `secret` is referenced, it _must outlive_ the hash streaming session. |
|
* Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, |
|
* and the quality of produced hash values depends on secret's entropy |
|
* (secret's content should look like a bunch of random bytes). |
|
* When in doubt about the randomness of a candidate `secret`, |
|
* consider employing `XXH3_generateSecret()` instead (see below). |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr); |
|
|
|
/* note : canonical representation of XXH3 is the same as XXH64 |
|
* since they both produce XXH64_hash_t values */ |
|
|
|
|
|
/*-********************************************************************** |
|
* XXH3 128-bit variant |
|
************************************************************************/ |
|
|
|
/*! |
|
* @brief The return value from 128-bit hashes. |
|
* |
|
* Stored in little endian order, although the fields themselves are in native |
|
* endianness. |
|
*/ |
|
typedef struct { |
|
XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ |
|
XXH64_hash_t high64; /*!< `value >> 64` */ |
|
} XXH128_hash_t; |
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len); |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
|
|
|
/******* Streaming *******/ |
|
/* |
|
* Streaming requires state maintenance. |
|
* This operation costs memory and CPU. |
|
* As a consequence, streaming is slower than one-shot hashing. |
|
* For better performance, prefer one-shot functions whenever applicable. |
|
* |
|
* XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). |
|
* Use already declared XXH3_createState() and XXH3_freeState(). |
|
* |
|
* All reset and streaming functions have same meaning as their 64-bit counterpart. |
|
*/ |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); |
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); |
|
|
|
/* Following helper functions make it possible to compare XXH128_hast_t values. |
|
* Since XXH128_hash_t is a structure, this capability is not offered by the language. |
|
* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ |
|
|
|
/*! |
|
* XXH128_isEqual(): |
|
* Return: 1 if `h1` and `h2` are equal, 0 if they are not. |
|
*/ |
|
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
|
|
|
/*! |
|
* XXH128_cmp(): |
|
* |
|
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
|
* |
|
* return: >0 if *h128_1 > *h128_2 |
|
* =0 if *h128_1 == *h128_2 |
|
* <0 if *h128_1 < *h128_2 |
|
*/ |
|
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2); |
|
|
|
|
|
/******* Canonical representation *******/ |
|
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; |
|
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); |
|
XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); |
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */ |
|
|
|
/*! |
|
* @} |
|
*/ |
|
#endif /* XXHASH_H_5627135585666179 */ |
|
|
|
|
|
|
|
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
|
#define XXHASH_H_STATIC_13879238742 |
|
/* **************************************************************************** |
|
* This section contains declarations which are not guaranteed to remain stable. |
|
* They may change in future versions, becoming incompatible with a different |
|
* version of the library. |
|
* These declarations should only be used with static linking. |
|
* Never use them in association with dynamic linking! |
|
***************************************************************************** */ |
|
|
|
/* |
|
* These definitions are only present to allow static allocation |
|
* of XXH states, on stack or in a struct, for example. |
|
* Never **ever** access their members directly. |
|
*/ |
|
|
|
/*! |
|
* @internal |
|
* @brief Structure for XXH32 streaming API. |
|
* |
|
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
|
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
|
* an opaque type. This allows fields to safely be changed. |
|
* |
|
* Typedef'd to @ref XXH32_state_t. |
|
* Do not access the members of this struct directly. |
|
* @see XXH64_state_s, XXH3_state_s |
|
*/ |
|
struct XXH32_state_s { |
|
XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ |
|
XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ |
|
XXH32_hash_t v[4]; /*!< Accumulator lanes */ |
|
XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ |
|
XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ |
|
XXH32_hash_t reserved; /*!< Reserved field. Do not read or write to it, it may be removed. */ |
|
}; /* typedef'd to XXH32_state_t */ |
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
|
|
|
/*! |
|
* @internal |
|
* @brief Structure for XXH64 streaming API. |
|
* |
|
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
|
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
|
* an opaque type. This allows fields to safely be changed. |
|
* |
|
* Typedef'd to @ref XXH64_state_t. |
|
* Do not access the members of this struct directly. |
|
* @see XXH32_state_s, XXH3_state_s |
|
*/ |
|
struct XXH64_state_s { |
|
XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ |
|
XXH64_hash_t v[4]; /*!< Accumulator lanes */ |
|
XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ |
|
XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ |
|
XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ |
|
XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it, it may be removed. */ |
|
}; /* typedef'd to XXH64_state_t */ |
|
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ |
|
# include <stdalign.h> |
|
# define XXH_ALIGN(n) alignas(n) |
|
#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ |
|
/* In C++ alignas() is a keyword */ |
|
# define XXH_ALIGN(n) alignas(n) |
|
#elif defined(__GNUC__) |
|
# define XXH_ALIGN(n) __attribute__ ((aligned(n))) |
|
#elif defined(_MSC_VER) |
|
# define XXH_ALIGN(n) __declspec(align(n)) |
|
#else |
|
# define XXH_ALIGN(n) /* disabled */ |
|
#endif |
|
|
|
/* Old GCC versions only accept the attribute after the type in structures. */ |
|
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
|
&& ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ |
|
&& defined(__GNUC__) |
|
# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
|
#else |
|
# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
|
#endif |
|
|
|
/*! |
|
* @brief The size of the internal XXH3 buffer. |
|
* |
|
* This is the optimal update size for incremental hashing. |
|
* |
|
* @see XXH3_64b_update(), XXH3_128b_update(). |
|
*/ |
|
#define XXH3_INTERNALBUFFER_SIZE 256 |
|
|
|
/*! |
|
* @brief Default size of the secret buffer (and @ref XXH3_kSecret). |
|
* |
|
* This is the size used in @ref XXH3_kSecret and the seeded functions. |
|
* |
|
* Not to be confused with @ref XXH3_SECRET_SIZE_MIN. |
|
*/ |
|
#define XXH3_SECRET_DEFAULT_SIZE 192 |
|
|
|
/*! |
|
* @internal |
|
* @brief Structure for XXH3 streaming API. |
|
* |
|
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
|
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. |
|
* Otherwise it is an opaque type. |
|
* Never use this definition in combination with dynamic library. |
|
* This allows fields to safely be changed in the future. |
|
* |
|
* @note ** This structure has a strict alignment requirement of 64 bytes!! ** |
|
* Do not allocate this with `malloc()` or `new`, |
|
* it will not be sufficiently aligned. |
|
* Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. |
|
* |
|
* Typedef'd to @ref XXH3_state_t. |
|
* Do never access the members of this struct directly. |
|
* |
|
* @see XXH3_INITSTATE() for stack initialization. |
|
* @see XXH3_createState(), XXH3_freeState(). |
|
* @see XXH32_state_s, XXH64_state_s |
|
*/ |
|
struct XXH3_state_s { |
|
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
|
/*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */ |
|
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
|
/*!< Used to store a custom secret generated from a seed. */ |
|
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
|
/*!< The internal buffer. @see XXH32_state_s::mem32 */ |
|
XXH32_hash_t bufferedSize; |
|
/*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ |
|
XXH32_hash_t useSeed; |
|
/*!< Reserved field. Needed for padding on 64-bit. */ |
|
size_t nbStripesSoFar; |
|
/*!< Number or stripes processed. */ |
|
XXH64_hash_t totalLen; |
|
/*!< Total length hashed. 64-bit even on 32-bit targets. */ |
|
size_t nbStripesPerBlock; |
|
/*!< Number of stripes per block. */ |
|
size_t secretLimit; |
|
/*!< Size of @ref customSecret or @ref extSecret */ |
|
XXH64_hash_t seed; |
|
/*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ |
|
XXH64_hash_t reserved64; |
|
/*!< Reserved field. */ |
|
const unsigned char* extSecret; |
|
/*!< Reference to an external secret for the _withSecret variants, NULL |
|
* for other variants. */ |
|
/* note: there may be some padding at the end due to alignment on 64 bytes */ |
|
}; /* typedef'd to XXH3_state_t */ |
|
|
|
#undef XXH_ALIGN_MEMBER |
|
|
|
/*! |
|
* @brief Initializes a stack-allocated `XXH3_state_s`. |
|
* |
|
* When the @ref XXH3_state_t structure is merely emplaced on stack, |
|
* it should be initialized with XXH3_INITSTATE() or a memset() |
|
* in case its first reset uses XXH3_NNbits_reset_withSeed(). |
|
* This init can be omitted if the first reset uses default or _withSecret mode. |
|
* This operation isn't necessary when the state is created with XXH3_createState(). |
|
* Note that this doesn't prepare the state for a streaming operation, |
|
* it's still necessary to use XXH3_NNbits_reset*() afterwards. |
|
*/ |
|
#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } |
|
|
|
|
|
/* XXH128() : |
|
* simple alias to pre-selected XXH3_128bits variant |
|
*/ |
|
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); |
|
|
|
|
|
/* === Experimental API === */ |
|
/* Symbols defined below must be considered tied to a specific library version. */ |
|
|
|
/* |
|
* XXH3_generateSecret(): |
|
* |
|
* Derive a high-entropy secret from any user-defined content, named customSeed. |
|
* The generated secret can be used in combination with `*_withSecret()` functions. |
|
* The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed, |
|
* as it becomes much more difficult for an external actor to guess how to impact the calculation logic. |
|
* |
|
* The function accepts as input a custom seed of any length and any content, |
|
* and derives from it a high-entropy secret of length @secretSize |
|
* into an already allocated buffer @secretBuffer. |
|
* @secretSize must be >= XXH3_SECRET_SIZE_MIN |
|
* |
|
* The generated secret can then be used with any `*_withSecret()` variant. |
|
* Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, |
|
* `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` |
|
* are part of this list. They all accept a `secret` parameter |
|
* which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN) |
|
* _and_ feature very high entropy (consist of random-looking bytes). |
|
* These conditions can be a high bar to meet, so |
|
* XXH3_generateSecret() can be employed to ensure proper quality. |
|
* |
|
* customSeed can be anything. It can have any size, even small ones, |
|
* and its content can be anything, even "poor entropy" sources such as a bunch of zeroes. |
|
* The resulting `secret` will nonetheless provide all required qualities. |
|
* |
|
* When customSeedSize > 0, supplying NULL as customSeed is undefined behavior. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize); |
|
|
|
|
|
/* |
|
* XXH3_generateSecret_fromSeed(): |
|
* |
|
* Generate the same secret as the _withSeed() variants. |
|
* |
|
* The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily). |
|
* @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes. |
|
* |
|
* The generated secret can be used in combination with |
|
*`*_withSecret()` and `_withSecretandSeed()` variants. |
|
* This generator is notably useful in combination with `_withSecretandSeed()`, |
|
* as a way to emulate a faster `_withSeed()` variant. |
|
*/ |
|
XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed); |
|
|
|
/* |
|
* *_withSecretandSeed() : |
|
* These variants generate hash values using either |
|
* @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes) |
|
* or @secret for "large" keys (>= XXH3_MIDSIZE_MAX). |
|
* |
|
* This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. |
|
* `_withSeed()` has to generate the secret on the fly for "large" keys. |
|
* It's fast, but can be perceptible for "not so large" keys (< 1 KB). |
|
* `_withSecret()` has to generate the masks on the fly for "small" keys, |
|
* which requires more instructions than _withSeed() variants. |
|
* Therefore, _withSecretandSeed variant combines the best of both worlds. |
|
* |
|
* When @secret has been generated by XXH3_generateSecret_fromSeed(), |
|
* this variant produces *exactly* the same results as `_withSeed()` variant, |
|
* hence offering only a pure speed benefit on "large" input, |
|
* by skipping the need to regenerate the secret for every large input. |
|
* |
|
* Another usage scenario is to hash the secret to a 64-bit hash value, |
|
* for example with XXH3_64bits(), which then becomes the seed, |
|
* and then employ both the seed and the secret in _withSecretandSeed(). |
|
* On top of speed, an added benefit is that each bit in the secret |
|
* has a 50% chance to swap each bit in the output, |
|
* via its impact to the seed. |
|
* This is not guaranteed when using the secret directly in "small data" scenarios, |
|
* because only portions of the secret are employed for small data. |
|
*/ |
|
XXH_PUBLIC_API XXH64_hash_t |
|
XXH3_64bits_withSecretandSeed(const void* data, size_t len, |
|
const void* secret, size_t secretSize, |
|
XXH64_hash_t seed); |
|
|
|
XXH_PUBLIC_API XXH128_hash_t |
|
XXH3_128bits_withSecretandSeed(const void* data, size_t len, |
|
const void* secret, size_t secretSize, |
|
XXH64_hash_t seed64); |
|
|
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, |
|
const void* secret, size_t secretSize, |
|
XXH64_hash_t seed64); |
|
|
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, |
|
const void* secret, size_t secretSize, |
|
XXH64_hash_t seed64); |
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */ |
|
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
|
# define XXH_IMPLEMENTATION |
|
#endif |
|
|
|
#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ |
|
|
|
|
|
/* ======================================================================== */ |
|
/* ======================================================================== */ |
|
/* ======================================================================== */ |
|
|
|
|
|
/*-********************************************************************** |
|
* xxHash implementation |
|
*-********************************************************************** |
|
* xxHash's implementation used to be hosted inside xxhash.c. |
|
* |
|
* However, inlining requires implementation to be visible to the compiler, |
|
* hence be included alongside the header. |
|
* Previously, implementation was hosted inside xxhash.c, |
|
* which was then #included when inlining was activated. |
|
* This construction created issues with a few build and install systems, |
|
* as it required xxhash.c to be stored in /include directory. |
|
* |
|
* xxHash implementation is now directly integrated within xxhash.h. |
|
* As a consequence, xxhash.c is no longer needed in /include. |
|
* |
|
* xxhash.c is still available and is still useful. |
|
* In a "normal" setup, when xxhash is not inlined, |
|
* xxhash.h only exposes the prototypes and public symbols, |
|
* while xxhash.c can be built into an object file xxhash.o |
|
* which can then be linked into the final binary. |
|
************************************************************************/ |
|
|
|
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ |
|
|| defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) |
|
# define XXH_IMPLEM_13a8737387 |
|
|
|
/* ************************************* |
|
* Tuning parameters |
|
***************************************/ |
|
|
|
/*! |
|
* @defgroup tuning Tuning parameters |
|
* @{ |
|
* |
|
* Various macros to control xxHash's behavior. |
|
*/ |
|
#ifdef XXH_DOXYGEN |
|
/*! |
|
* @brief Define this to disable 64-bit code. |
|
* |
|
* Useful if only using the @ref xxh32_family and you have a strict C90 compiler. |
|
*/ |
|
# define XXH_NO_LONG_LONG |
|
# undef XXH_NO_LONG_LONG /* don't actually */ |
|
/*! |
|
* @brief Controls how unaligned memory is accessed. |
|
* |
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is |
|
* safe and portable. |
|
* |
|
* Unfortunately, on some target/compiler combinations, the generated assembly |
|
* is sub-optimal. |
|
* |
|
* The below switch allow selection of a different access method |
|
* in the search for improved performance. |
|
* |
|
* @par Possible options: |
|
* |
|
* - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` |
|
* @par |
|
* Use `memcpy()`. Safe and portable. Note that most modern compilers will |
|
* eliminate the function call and treat it as an unaligned access. |
|
* |
|
* - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))` |
|
* @par |
|
* Depends on compiler extensions and is therefore not portable. |
|
* This method is safe _if_ your compiler supports it, |
|
* and *generally* as fast or faster than `memcpy`. |
|
* |
|
* - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast |
|
* @par |
|
* Casts directly and dereferences. This method doesn't depend on the |
|
* compiler, but it violates the C standard as it directly dereferences an |
|
* unaligned pointer. It can generate buggy code on targets which do not |
|
* support unaligned memory accesses, but in some circumstances, it's the |
|
* only known way to get the most performance. |
|
* |
|
* - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift |
|
* @par |
|
* Also portable. This can generate the best code on old compilers which don't |
|
* inline small `memcpy()` calls, and it might also be faster on big-endian |
|
* systems which lack a native byteswap instruction. However, some compilers |
|
* will emit literal byteshifts even if the target supports unaligned access. |
|
* . |
|
* |
|
* @warning |
|
* Methods 1 and 2 rely on implementation-defined behavior. Use these with |
|
* care, as what works on one compiler/platform/optimization level may cause |
|
* another to read garbage data or even crash. |
|
* |
|
* See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. |
|
* |
|
* Prefer these methods in priority order (0 > 3 > 1 > 2) |
|
*/ |
|
# define XXH_FORCE_MEMORY_ACCESS 0 |
|
|
|
/*! |
|
* @def XXH_FORCE_ALIGN_CHECK |
|
* @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() |
|
* and XXH64() only). |
|
* |
|
* This is an important performance trick for architectures without decent |
|
* unaligned memory access performance. |
|
* |
|
* It checks for input alignment, and when conditions are met, uses a "fast |
|
* path" employing direct 32-bit/64-bit reads, resulting in _dramatically |
|
* faster_ read speed. |
|
* |
|
* The check costs one initial branch per hash, which is generally negligible, |
|
* but not zero. |
|
* |
|
* Moreover, it's not useful to generate an additional code path if memory |
|
* access uses the same instruction for both aligned and unaligned |
|
* addresses (e.g. x86 and aarch64). |
|
* |
|
* In these cases, the alignment check can be removed by setting this macro to 0. |
|
* Then the code will always use unaligned memory access. |
|
* Align check is automatically disabled on x86, x64 & arm64, |
|
* which are platforms known to offer good unaligned memory accesses performance. |
|
* |
|
* This option does not affect XXH3 (only XXH32 and XXH64). |
|
*/ |
|
# define XXH_FORCE_ALIGN_CHECK 0 |
|
|
|
/*! |
|
* @def XXH_NO_INLINE_HINTS |
|
* @brief When non-zero, sets all functions to `static`. |
|
* |
|
* By default, xxHash tries to force the compiler to inline almost all internal |
|
* functions. |
|
* |
|
* This can usually improve performance due to reduced jumping and improved |
|
* constant folding, but significantly increases the size of the binary which |
|
* might not be favorable. |
|
* |
|
* Additionally, sometimes the forced inlining can be detrimental to performance, |
|
* depending on the architecture. |
|
* |
|
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
|
* compiler full control on whether to inline or not. |
|
* |
|
* When not optimizing (-O0), optimizing for size (-Os, -Oz), or using |
|
* -fno-inline with GCC or Clang, this will automatically be defined. |
|
*/ |
|
# define XXH_NO_INLINE_HINTS 0 |
|
|
|
/*! |
|
* @def XXH32_ENDJMP |
|
* @brief Whether to use a jump for `XXH32_finalize`. |
|
* |
|
* For performance, `XXH32_finalize` uses multiple branches in the finalizer. |
|
* This is generally preferable for performance, |
|
* but depending on exact architecture, a jmp may be preferable. |
|
* |
|
* This setting is only possibly making a difference for very small inputs. |
|
*/ |
|
# define XXH32_ENDJMP 0 |
|
|
|
/*! |
|
* @internal |
|
* @brief Redefines old internal names. |
|
* |
|
* For compatibility with code that uses xxHash's internals before the names |
|
* were changed to improve namespacing. There is no other reason to use this. |
|
*/ |
|
# define XXH_OLD_NAMES |
|
# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ |
|
#endif /* XXH_DOXYGEN */ |
|
/*! |
|
* @} |
|
*/ |
|
|
|
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
|
/* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */ |
|
# if !defined(__clang__) && \ |
|
( \ |
|
(defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
|
( \ |
|
defined(__GNUC__) && ( \ |
|
(defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \ |
|
( \ |
|
defined(__mips__) && \ |
|
(__mips <= 5 || __mips_isa_rev < 6) && \ |
|
(!defined(__mips16) || defined(__mips_mips16e2)) \ |
|
) \ |
|
) \ |
|
) \ |
|
) |
|
# define XXH_FORCE_MEMORY_ACCESS 1 |
|
# endif |
|
#endif |
|
|
|
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
|
# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \ |
|
|| defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ |
|
# define XXH_FORCE_ALIGN_CHECK 0 |
|
# else |
|
# define XXH_FORCE_ALIGN_CHECK 1 |
|
# endif |
|
#endif |
|
|
|
#ifndef XXH_NO_INLINE_HINTS |
|
# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ |
|
|| defined(__NO_INLINE__) /* -O0, -fno-inline */ |
|
# define XXH_NO_INLINE_HINTS 1 |
|
# else |
|
# define XXH_NO_INLINE_HINTS 0 |
|
# endif |
|
#endif |
|
|
|
#ifndef XXH32_ENDJMP |
|
/* generally preferable for performance */ |
|
# define XXH32_ENDJMP 0 |
|
#endif |
|
|
|
/*! |
|
* @defgroup impl Implementation |
|
* @{ |
|
*/ |
|
|
|
|
|
/* ************************************* |
|
* Includes & Memory related functions |
|
***************************************/ |
|
/* |
|
* Modify the local functions below should you wish to use |
|
* different memory routines for malloc() and free() |
|
*/ |
|
#include <stdlib.h> |
|
|
|
/*! |
|
* @internal |
|
* @brief Modify this function to use a different routine than malloc(). |
|
*/ |
|
static void* XXH_malloc(size_t s) { return malloc(s); } |
|
|
|
/*! |
|
* @internal |
|
* @brief Modify this function to use a different routine than free(). |
|
*/ |
|
static void XXH_free(void* p) { free(p); } |
|
|
|
#include <string.h> |
|
|
|
/*! |
|
* @internal |
|
* @brief Modify this function to use a different routine than memcpy(). |
|
*/ |
|
static void* XXH_memcpy(void* dest, const void* src, size_t size) |
|
{ |
|
return memcpy(dest,src,size); |
|
} |
|
|
|
#include <limits.h> /* ULLONG_MAX */ |
|
|
|
|
|
/* ************************************* |
|
* Compiler Specific Options |
|
***************************************/ |
|
#ifdef _MSC_VER /* Visual Studio warning fix */ |
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
|
#endif |
|
|
|
#if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
|
# if defined(__GNUC__) || defined(__clang__) |
|
# define XXH_FORCE_INLINE static __attribute__((unused)) |
|
# else |
|
# define XXH_FORCE_INLINE static |
|
# endif |
|
# define XXH_NO_INLINE static |
|
/* enable inlining hints */ |
|
#elif defined(__GNUC__) || defined(__clang__) |
|
# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) |
|
# define XXH_NO_INLINE static __attribute__((noinline)) |
|
#elif defined(_MSC_VER) /* Visual Studio */ |
|
# define XXH_FORCE_INLINE static __forceinline |
|
# define XXH_NO_INLINE static __declspec(noinline) |
|
#elif defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
|
# define XXH_FORCE_INLINE static inline |
|
# define XXH_NO_INLINE static |
|
#else |
|
# define XXH_FORCE_INLINE static |
|
# define XXH_NO_INLINE static |
|
#endif |
|
|
|
|
|
|
|
/* ************************************* |
|
* Debug |
|
***************************************/ |
|
/*! |
|
* @ingroup tuning |
|
* @def XXH_DEBUGLEVEL |
|
* @brief Sets the debugging level. |
|
* |
|
* XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
|
* compiler's command line options. The value must be a number. |
|
*/ |
|
#ifndef XXH_DEBUGLEVEL |
|
# ifdef DEBUGLEVEL /* backwards compat */ |
|
# define XXH_DEBUGLEVEL DEBUGLEVEL |
|
# else |
|
# define XXH_DEBUGLEVEL 0 |
|
# endif |
|
#endif |
|
|
|
#if (XXH_DEBUGLEVEL>=1) |
|
# include <assert.h> /* note: can still be disabled with NDEBUG */ |
|
# define XXH_ASSERT(c) assert(c) |
|
#else |
|
# define XXH_ASSERT(c) ((void)0) |
|
#endif |
|
|
|
/* note: use after variable declarations */ |
|
#ifndef XXH_STATIC_ASSERT |
|
# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ |
|
# include <assert.h> |
|
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) |
|
# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ |
|
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) |
|
# else |
|
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) |
|
# endif |
|
# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) |
|
#endif |
|
|
|
/*! |
|
* @internal |
|
* @def XXH_COMPILER_GUARD(var) |
|
* @brief Used to prevent unwanted optimizations for @p var. |
|
* |
|
* It uses an empty GCC inline assembly statement with a register constraint |
|
* which forces @p var into a general purpose register (eg eax, ebx, ecx |
|
* on x86) and marks it as modified. |
|
* |
|
* This is used in a few places to avoid unwanted autovectorization (e.g. |
|
* XXH32_round()). All vectorization we want is explicit via intrinsics, |
|
* and _usually_ isn't wanted elsewhere. |
|
* |
|
* We also use it to prevent unwanted constant folding for AArch64 in |
|
* XXH3_initCustomSecret_scalar(). |
|
*/ |
|
#if defined(__GNUC__) || defined(__clang__) |
|
# define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var)) |
|
#else |
|
# define XXH_COMPILER_GUARD(var) ((void)0) |
|
#endif |
|
|
|
/* ************************************* |
|
* Basic Types |
|
***************************************/ |
|
#if !defined (__VMS) \ |
|
&& (defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
|
# include <stdint.h> |
|
typedef uint8_t xxh_u8; |
|
#else |
|
typedef unsigned char xxh_u8; |
|
#endif |
|
typedef XXH32_hash_t xxh_u32; |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define BYTE xxh_u8 |
|
# define U8 xxh_u8 |
|
# define U32 xxh_u32 |
|
#endif |
|
|
|
/* *** Memory access *** */ |
|
|
|
/*! |
|
* @internal |
|
* @fn xxh_u32 XXH_read32(const void* ptr) |
|
* @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. |
|
* |
|
* Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
|
* |
|
* @param ptr The pointer to read from. |
|
* @return The 32-bit native endian integer from the bytes at @p ptr. |
|
*/ |
|
|
|
/*! |
|
* @internal |
|
* @fn xxh_u32 XXH_readLE32(const void* ptr) |
|
* @brief Reads an unaligned 32-bit little endian integer from @p ptr. |
|
* |
|
* Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
|
* |
|
* @param ptr The pointer to read from. |
|
* @return The 32-bit little endian integer from the bytes at @p ptr. |
|
*/ |
|
|
|
/*! |
|
* @internal |
|
* @fn xxh_u32 XXH_readBE32(const void* ptr) |
|
* @brief Reads an unaligned 32-bit big endian integer from @p ptr. |
|
* |
|
* Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
|
* |
|
* @param ptr The pointer to read from. |
|
* @return The 32-bit big endian integer from the bytes at @p ptr. |
|
*/ |
|
|
|
/*! |
|
* @internal |
|
* @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) |
|
* @brief Like @ref XXH_readLE32(), but has an option for aligned reads. |
|
* |
|
* Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
|
* Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is |
|
* always @ref XXH_alignment::XXH_unaligned. |
|
* |
|
* @param ptr The pointer to read from. |
|
* @param align Whether @p ptr is aligned. |
|
* @pre |
|
* If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte |
|
* aligned. |
|
* @return The 32-bit little endian integer from the bytes at @p ptr. |
|
*/ |
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
/* |
|
* Manual byteshift. Best for old compilers which don't inline memcpy. |
|
* We actually directly use XXH_readLE32 and XXH_readBE32. |
|
*/ |
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
|
|
|
/* |
|
* Force direct memory access. Only works on CPU which support unaligned memory |
|
* access in hardware. |
|
*/ |
|
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } |
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
|
|
|
/* |
|
* __pack instructions are safer but compiler specific, hence potentially |
|
* problematic for some compilers. |
|
* |
|
* Currently only defined for GCC and ICC. |
|
*/ |
|
#ifdef XXH_OLD_NAMES |
|
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; |
|
#endif |
|
static xxh_u32 XXH_read32(const void* ptr) |
|
{ |
|
typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign; |
|
return ((const xxh_unalign*)ptr)->u32; |
|
} |
|
|
|
#else |
|
|
|
/* |
|
* Portable and safe solution. Generally efficient. |
|
* see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
|
*/ |
|
static xxh_u32 XXH_read32(const void* memPtr) |
|
{ |
|
xxh_u32 val; |
|
XXH_memcpy(&val, memPtr, sizeof(val)); |
|
return val; |
|
} |
|
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
|
|
|
|
|
/* *** Endianness *** */ |
|
|
|
/*! |
|
* @ingroup tuning |
|
* @def XXH_CPU_LITTLE_ENDIAN |
|
* @brief Whether the target is little endian. |
|
* |
|
* Defined to 1 if the target is little endian, or 0 if it is big endian. |
|
* It can be defined externally, for example on the compiler command line. |
|
* |
|
* If it is not defined, |
|
* a runtime check (which is usually constant folded) is used instead. |
|
* |
|
* @note |
|
* This is not necessarily defined to an integer constant. |
|
* |
|
* @see XXH_isLittleEndian() for the runtime check. |
|
*/ |
|
#ifndef XXH_CPU_LITTLE_ENDIAN |
|
/* |
|
* Try to detect endianness automatically, to avoid the nonstandard behavior |
|
* in `XXH_isLittleEndian()` |
|
*/ |
|
# if defined(_WIN32) /* Windows is always little endian */ \ |
|
|| defined(__LITTLE_ENDIAN__) \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
|
# define XXH_CPU_LITTLE_ENDIAN 1 |
|
# elif defined(__BIG_ENDIAN__) \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
|
# define XXH_CPU_LITTLE_ENDIAN 0 |
|
# else |
|
/*! |
|
* @internal |
|
* @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. |
|
* |
|
* Most compilers will constant fold this. |
|
*/ |
|
static int XXH_isLittleEndian(void) |
|
{ |
|
/* |
|
* Portable and well-defined behavior. |
|
* Don't use static: it is detrimental to performance. |
|
*/ |
|
const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; |
|
return one.c[0]; |
|
} |
|
# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
|
# endif |
|
#endif |
|
|
|
|
|
|
|
|
|
/* **************************************** |
|
* Compiler-specific Functions and Macros |
|
******************************************/ |
|
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
|
|
|
#ifdef __has_builtin |
|
# define XXH_HAS_BUILTIN(x) __has_builtin(x) |
|
#else |
|
# define XXH_HAS_BUILTIN(x) 0 |
|
#endif |
|
|
|
/*! |
|
* @internal |
|
* @def XXH_rotl32(x,r) |
|
* @brief 32-bit rotate left. |
|
* |
|
* @param x The 32-bit integer to be rotated. |
|
* @param r The number of bits to rotate. |
|
* @pre |
|
* @p r > 0 && @p r < 32 |
|
* @note |
|
* @p x and @p r may be evaluated multiple times. |
|
* @return The rotated result. |
|
*/ |
|
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ |
|
&& XXH_HAS_BUILTIN(__builtin_rotateleft64) |
|
# define XXH_rotl32 __builtin_rotateleft32 |
|
# define XXH_rotl64 __builtin_rotateleft64 |
|
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ |
|
#elif defined(_MSC_VER) |
|
# define XXH_rotl32(x,r) _rotl(x,r) |
|
# define XXH_rotl64(x,r) _rotl64(x,r) |
|
#else |
|
# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
|
# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) |
|
#endif |
|
|
|
/*! |
|
* @internal |
|
* @fn xxh_u32 XXH_swap32(xxh_u32 x) |
|
* @brief A 32-bit byteswap. |
|
* |
|
* @param x The 32-bit integer to byteswap. |
|
* @return @p x, byteswapped. |
|
*/ |
|
#if defined(_MSC_VER) /* Visual Studio */ |
|
# define XXH_swap32 _byteswap_ulong |
|
#elif XXH_GCC_VERSION >= 403 |
|
# define XXH_swap32 __builtin_bswap32 |
|
#else |
|
static xxh_u32 XXH_swap32 (xxh_u32 x) |
|
{ |
|
return ((x << 24) & 0xff000000 ) | |
|
((x << 8) & 0x00ff0000 ) | |
|
((x >> 8) & 0x0000ff00 ) | |
|
((x >> 24) & 0x000000ff ); |
|
} |
|
#endif |
|
|
|
|
|
/* *************************** |
|
* Memory reads |
|
*****************************/ |
|
|
|
/*! |
|
* @internal |
|
* @brief Enum to indicate whether a pointer is aligned. |
|
*/ |
|
typedef enum { |
|
XXH_aligned, /*!< Aligned */ |
|
XXH_unaligned /*!< Possibly unaligned */ |
|
} XXH_alignment; |
|
|
|
/* |
|
* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
|
* |
|
* This is ideal for older compilers which don't inline memcpy. |
|
*/ |
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
|
|
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[0] |
|
| ((xxh_u32)bytePtr[1] << 8) |
|
| ((xxh_u32)bytePtr[2] << 16) |
|
| ((xxh_u32)bytePtr[3] << 24); |
|
} |
|
|
|
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[3] |
|
| ((xxh_u32)bytePtr[2] << 8) |
|
| ((xxh_u32)bytePtr[1] << 16) |
|
| ((xxh_u32)bytePtr[0] << 24); |
|
} |
|
|
|
#else |
|
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
|
} |
|
|
|
static xxh_u32 XXH_readBE32(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
|
} |
|
#endif |
|
|
|
XXH_FORCE_INLINE xxh_u32 |
|
XXH_readLE32_align(const void* ptr, XXH_alignment align) |
|
{ |
|
if (align==XXH_unaligned) { |
|
return XXH_readLE32(ptr); |
|
} else { |
|
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); |
|
} |
|
} |
|
|
|
|
|
/* ************************************* |
|
* Misc |
|
***************************************/ |
|
/*! @ingroup public */ |
|
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
|
|
|
|
|
/* ******************************************************************* |
|
* 32-bit hash functions |
|
*********************************************************************/ |
|
/*! |
|
* @} |
|
* @defgroup xxh32_impl XXH32 implementation |
|
* @ingroup impl |
|
* @{ |
|
*/ |
|
/* #define instead of static const, to be used as initializers */ |
|
#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ |
|
#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ |
|
#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ |
|
#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ |
|
#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PRIME32_1 XXH_PRIME32_1 |
|
# define PRIME32_2 XXH_PRIME32_2 |
|
# define PRIME32_3 XXH_PRIME32_3 |
|
# define PRIME32_4 XXH_PRIME32_4 |
|
# define PRIME32_5 XXH_PRIME32_5 |
|
#endif |
|
|
|
/*! |
|
* @internal |
|
* @brief Normal stripe processing routine. |
|
* |
|
* This shuffles the bits so that any bit from @p input impacts several bits in |
|
* @p acc. |
|
* |
|
* @param acc The accumulator lane. |
|
* @param input The stripe of input to mix. |
|
* @return The mixed accumulator lane. |
|
*/ |
|
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) |
|
{ |
|
acc += input * XXH_PRIME32_2; |
|
acc = XXH_rotl32(acc, 13); |
|
acc *= XXH_PRIME32_1; |
|
#if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
|
/* |
|
* UGLY HACK: |
|
* A compiler fence is the only thing that prevents GCC and Clang from |
|
* autovectorizing the XXH32 loop (pragmas and attributes don't work for some |
|
* reason) without globally disabling SSE4.1. |
|
* |
|
* The reason we want to avoid vectorization is because despite working on |
|
* 4 integers at a time, there are multiple factors slowing XXH32 down on |
|
* SSE4: |
|
* - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
|
* newer chips!) making it slightly slower to multiply four integers at |
|
* once compared to four integers independently. Even when pmulld was |
|
* fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
|
* just to multiply unless doing a long operation. |
|
* |
|
* - Four instructions are required to rotate, |
|
* movqda tmp, v // not required with VEX encoding |
|
* pslld tmp, 13 // tmp <<= 13 |
|
* psrld v, 19 // x >>= 19 |
|
* por v, tmp // x |= tmp |
|
* compared to one for scalar: |
|
* roll v, 13 // reliably fast across the board |
|
* shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
|
* |
|
* - Instruction level parallelism is actually more beneficial here because |
|
* the SIMD actually serializes this operation: While v1 is rotating, v2 |
|
* can load data, while v3 can multiply. SSE forces them to operate |
|
* together. |
|
* |
|
* This is also enabled on AArch64, as Clang autovectorizes it incorrectly |
|
* and it is pointless writing a NEON implementation that is basically the |
|
* same speed as scalar for XXH32. |
|
*/ |
|
XXH_COMPILER_GUARD(acc); |
|
#endif |
|
return acc; |
|
} |
|
|
|
/*! |
|
* @internal |
|
* @brief Mixes all bits to finalize the hash. |
|
* |
|
* The final mix ensures that all input bits have a chance to impact any bit in |
|
* the output digest, resulting in an unbiased distribution. |
|
* |
|
* @param h32 The hash to avalanche. |
|
* @return The avalanched hash. |
|
*/ |
|
static xxh_u32 XXH32_avalanche(xxh_u32 h32) |
|
{ |
|
h32 ^= h32 >> 15; |
|
h32 *= XXH_PRIME32_2; |
|
h32 ^= h32 >> 13; |
|
h32 *= XXH_PRIME32_3; |
|
h32 ^= h32 >> 16; |
|
return(h32); |
|
} |
|
|
|
#define XXH_get32bits(p) XXH_readLE32_align(p, align) |
|
|
|
/*! |
|
* @internal |
|
* @brief Processes the last 0-15 bytes of @p ptr. |
|
* |
|
* There may be up to 15 bytes remaining to consume from the input. |
|
* This final stage will digest them to ensure that all input bytes are present |
|
* in the final mix. |
|
* |
|
* @param h32 The hash to finalize. |
|
* @param ptr The pointer to the remaining input. |
|
* @param len The remaining length, modulo 16. |
|
* @param align Whether @p ptr is aligned. |
|
* @return The finalized hash. |
|
*/ |
|
static xxh_u32 |
|
XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align) |
|
{ |
|
#define XXH_PROCESS1 do { \ |
|
h32 += (*ptr++) * XXH_PRIME32_5; \ |
|
h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ |
|
} while (0) |
|
|
|
#define XXH_PROCESS4 do { \ |
|
h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
|
ptr += 4; \ |
|
h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ |
|
} while (0) |
|
|
|
if (ptr==NULL) XXH_ASSERT(len == 0); |
|
|
|
/* Compact rerolled version; generally faster */ |
|
if (!XXH32_ENDJMP) { |
|
len &= 15; |
|
while (len >= 4) { |
|
XXH_PROCESS4; |
|
len -= 4; |
|
} |
|
while (len > 0) { |
|
XXH_PROCESS1; |
|
--len; |
|
} |
|
return XXH32_avalanche(h32); |
|
} else { |
|
switch(len&15) /* or switch(bEnd - p) */ { |
|
case 12: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 8: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 4: XXH_PROCESS4; |
|
return XXH32_avalanche(h32); |
|
|
|
case 13: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 9: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 5: XXH_PROCESS4; |
|
XXH_PROCESS1; |
|
return XXH32_avalanche(h32); |
|
|
|
case 14: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 10: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 6: XXH_PROCESS4; |
|
XXH_PROCESS1; |
|
XXH_PROCESS1; |
|
return XXH32_avalanche(h32); |
|
|
|
case 15: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 11: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 7: XXH_PROCESS4; |
|
XXH_FALLTHROUGH; |
|
case 3: XXH_PROCESS1; |
|
XXH_FALLTHROUGH; |
|
case 2: XXH_PROCESS1; |
|
XXH_FALLTHROUGH; |
|
case 1: XXH_PROCESS1; |
|
XXH_FALLTHROUGH; |
|
case 0: return XXH32_avalanche(h32); |
|
} |
|
XXH_ASSERT(0); |
|
return h32; /* reaching this point is deemed impossible */ |
|
} |
|
} |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PROCESS1 XXH_PROCESS1 |
|
# define PROCESS4 XXH_PROCESS4 |
|
#else |
|
# undef XXH_PROCESS1 |
|
# undef XXH_PROCESS4 |
|
#endif |
|
|
|
/*! |
|
* @internal |
|
* @brief The implementation for @ref XXH32(). |
|
* |
|
* @param input , len , seed Directly passed from @ref XXH32(). |
|
* @param align Whether @p input is aligned. |
|
* @return The calculated hash. |
|
*/ |
|
XXH_FORCE_INLINE xxh_u32 |
|
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) |
|
{ |
|
xxh_u32 h32; |
|
|
|
if (input==NULL) XXH_ASSERT(len == 0); |
|
|
|
if (len>=16) { |
|
const xxh_u8* const bEnd = input + len; |
|
const xxh_u8* const limit = bEnd - 15; |
|
xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
|
xxh_u32 v2 = seed + XXH_PRIME32_2; |
|
xxh_u32 v3 = seed + 0; |
|
xxh_u32 v4 = seed - XXH_PRIME32_1; |
|
|
|
do { |
|
v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; |
|
v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; |
|
v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; |
|
v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; |
|
} while (input < limit); |
|
|
|
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
|
+ XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
|
} else { |
|
h32 = seed + XXH_PRIME32_5; |
|
} |
|
|
|
h32 += (xxh_u32)len; |
|
|
|
return XXH32_finalize(h32, input, len&15, align); |
|
} |
|
|
|
/*! @ingroup xxh32_family */ |
|
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) |
|
{ |
|
#if 0 |
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
|
XXH32_state_t state; |
|
XXH32_reset(&state, seed); |
|
XXH32_update(&state, (const xxh_u8*)input, len); |
|
return XXH32_digest(&state); |
|
#else |
|
if (XXH_FORCE_ALIGN_CHECK) { |
|
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
|
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
|
} } |
|
|
|
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
|
#endif |
|
} |
|
|
|
|
|
|
|
/******* Hash streaming *******/ |
|
/*! |
|
* @ingroup xxh32_family |
|
*/ |
|
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
|
{ |
|
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
|
} |
|
/*! @ingroup xxh32_family */ |
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
|
{ |
|
XXH_free(statePtr); |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh32_family */ |
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
|
{ |
|
XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
|
} |
|
|
|
/*! @ingroup xxh32_family */ |
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) |
|
{ |
|
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
|
memset(&state, 0, sizeof(state)); |
|
state.v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
|
state.v[1] = seed + XXH_PRIME32_2; |
|
state.v[2] = seed + 0; |
|
state.v[3] = seed - XXH_PRIME32_1; |
|
/* do not write into reserved, planned to be removed in a future version */ |
|
XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
|
return XXH_OK; |
|
} |
|
|
|
|
|
/*! @ingroup xxh32_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH32_update(XXH32_state_t* state, const void* input, size_t len) |
|
{ |
|
if (input==NULL) { |
|
XXH_ASSERT(len == 0); |
|
return XXH_OK; |
|
} |
|
|
|
{ const xxh_u8* p = (const xxh_u8*)input; |
|
const xxh_u8* const bEnd = p + len; |
|
|
|
state->total_len_32 += (XXH32_hash_t)len; |
|
state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); |
|
|
|
if (state->memsize + len < 16) { /* fill in tmp buffer */ |
|
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); |
|
state->memsize += (XXH32_hash_t)len; |
|
return XXH_OK; |
|
} |
|
|
|
if (state->memsize) { /* some data left from previous update */ |
|
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); |
|
{ const xxh_u32* p32 = state->mem32; |
|
state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; |
|
state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; |
|
state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; |
|
state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); |
|
} |
|
p += 16-state->memsize; |
|
state->memsize = 0; |
|
} |
|
|
|
if (p <= bEnd-16) { |
|
const xxh_u8* const limit = bEnd - 16; |
|
|
|
do { |
|
state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; |
|
state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; |
|
state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; |
|
state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; |
|
} while (p<=limit); |
|
|
|
} |
|
|
|
if (p < bEnd) { |
|
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
|
state->memsize = (unsigned)(bEnd-p); |
|
} |
|
} |
|
|
|
return XXH_OK; |
|
} |
|
|
|
|
|
/*! @ingroup xxh32_family */ |
|
XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) |
|
{ |
|
xxh_u32 h32; |
|
|
|
if (state->large_len) { |
|
h32 = XXH_rotl32(state->v[0], 1) |
|
+ XXH_rotl32(state->v[1], 7) |
|
+ XXH_rotl32(state->v[2], 12) |
|
+ XXH_rotl32(state->v[3], 18); |
|
} else { |
|
h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; |
|
} |
|
|
|
h32 += state->total_len_32; |
|
|
|
return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); |
|
} |
|
|
|
|
|
/******* Canonical representation *******/ |
|
|
|
/*! |
|
* @ingroup xxh32_family |
|
* The default return values from XXH functions are unsigned 32 and 64 bit |
|
* integers. |
|
* |
|
* The canonical representation uses big endian convention, the same convention |
|
* as human-readable numbers (large digits first). |
|
* |
|
* This way, hash values can be written into a file or buffer, remaining |
|
* comparable across different systems. |
|
* |
|
* The following functions allow transformation of hash values to and from their |
|
* canonical format. |
|
*/ |
|
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
|
{ |
|
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
|
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
|
XXH_memcpy(dst, &hash, sizeof(*dst)); |
|
} |
|
/*! @ingroup xxh32_family */ |
|
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
|
{ |
|
return XXH_readBE32(src); |
|
} |
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG |
|
|
|
/* ******************************************************************* |
|
* 64-bit hash functions |
|
*********************************************************************/ |
|
/*! |
|
* @} |
|
* @ingroup impl |
|
* @{ |
|
*/ |
|
/******* Memory access *******/ |
|
|
|
typedef XXH64_hash_t xxh_u64; |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define U64 xxh_u64 |
|
#endif |
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
/* |
|
* Manual byteshift. Best for old compilers which don't inline memcpy. |
|
* We actually directly use XXH_readLE64 and XXH_readBE64. |
|
*/ |
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
|
|
|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
|
static xxh_u64 XXH_read64(const void* memPtr) |
|
{ |
|
return *(const xxh_u64*) memPtr; |
|
} |
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
|
|
|
/* |
|
* __pack instructions are safer, but compiler specific, hence potentially |
|
* problematic for some compilers. |
|
* |
|
* Currently only defined for GCC and ICC. |
|
*/ |
|
#ifdef XXH_OLD_NAMES |
|
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; |
|
#endif |
|
static xxh_u64 XXH_read64(const void* ptr) |
|
{ |
|
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64; |
|
return ((const xxh_unalign64*)ptr)->u64; |
|
} |
|
|
|
#else |
|
|
|
/* |
|
* Portable and safe solution. Generally efficient. |
|
* see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
|
*/ |
|
static xxh_u64 XXH_read64(const void* memPtr) |
|
{ |
|
xxh_u64 val; |
|
XXH_memcpy(&val, memPtr, sizeof(val)); |
|
return val; |
|
} |
|
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
|
|
|
#if defined(_MSC_VER) /* Visual Studio */ |
|
# define XXH_swap64 _byteswap_uint64 |
|
#elif XXH_GCC_VERSION >= 403 |
|
# define XXH_swap64 __builtin_bswap64 |
|
#else |
|
static xxh_u64 XXH_swap64(xxh_u64 x) |
|
{ |
|
return ((x << 56) & 0xff00000000000000ULL) | |
|
((x << 40) & 0x00ff000000000000ULL) | |
|
((x << 24) & 0x0000ff0000000000ULL) | |
|
((x << 8) & 0x000000ff00000000ULL) | |
|
((x >> 8) & 0x00000000ff000000ULL) | |
|
((x >> 24) & 0x0000000000ff0000ULL) | |
|
((x >> 40) & 0x000000000000ff00ULL) | |
|
((x >> 56) & 0x00000000000000ffULL); |
|
} |
|
#endif |
|
|
|
|
|
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
|
|
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[0] |
|
| ((xxh_u64)bytePtr[1] << 8) |
|
| ((xxh_u64)bytePtr[2] << 16) |
|
| ((xxh_u64)bytePtr[3] << 24) |
|
| ((xxh_u64)bytePtr[4] << 32) |
|
| ((xxh_u64)bytePtr[5] << 40) |
|
| ((xxh_u64)bytePtr[6] << 48) |
|
| ((xxh_u64)bytePtr[7] << 56); |
|
} |
|
|
|
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[7] |
|
| ((xxh_u64)bytePtr[6] << 8) |
|
| ((xxh_u64)bytePtr[5] << 16) |
|
| ((xxh_u64)bytePtr[4] << 24) |
|
| ((xxh_u64)bytePtr[3] << 32) |
|
| ((xxh_u64)bytePtr[2] << 40) |
|
| ((xxh_u64)bytePtr[1] << 48) |
|
| ((xxh_u64)bytePtr[0] << 56); |
|
} |
|
|
|
#else |
|
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
|
} |
|
|
|
static xxh_u64 XXH_readBE64(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
|
} |
|
#endif |
|
|
|
XXH_FORCE_INLINE xxh_u64 |
|
XXH_readLE64_align(const void* ptr, XXH_alignment align) |
|
{ |
|
if (align==XXH_unaligned) |
|
return XXH_readLE64(ptr); |
|
else |
|
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); |
|
} |
|
|
|
|
|
/******* xxh64 *******/ |
|
/*! |
|
* @} |
|
* @defgroup xxh64_impl XXH64 implementation |
|
* @ingroup impl |
|
* @{ |
|
*/ |
|
/* #define rather that static const, to be used as initializers */ |
|
#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
|
#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
|
#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
|
#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ |
|
#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PRIME64_1 XXH_PRIME64_1 |
|
# define PRIME64_2 XXH_PRIME64_2 |
|
# define PRIME64_3 XXH_PRIME64_3 |
|
# define PRIME64_4 XXH_PRIME64_4 |
|
# define PRIME64_5 XXH_PRIME64_5 |
|
#endif |
|
|
|
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) |
|
{ |
|
acc += input * XXH_PRIME64_2; |
|
acc = XXH_rotl64(acc, 31); |
|
acc *= XXH_PRIME64_1; |
|
return acc; |
|
} |
|
|
|
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) |
|
{ |
|
val = XXH64_round(0, val); |
|
acc ^= val; |
|
acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
|
return acc; |
|
} |
|
|
|
static xxh_u64 XXH64_avalanche(xxh_u64 h64) |
|
{ |
|
h64 ^= h64 >> 33; |
|
h64 *= XXH_PRIME64_2; |
|
h64 ^= h64 >> 29; |
|
h64 *= XXH_PRIME64_3; |
|
h64 ^= h64 >> 32; |
|
return h64; |
|
} |
|
|
|
|
|
#define XXH_get64bits(p) XXH_readLE64_align(p, align) |
|
|
|
static xxh_u64 |
|
XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align) |
|
{ |
|
if (ptr==NULL) XXH_ASSERT(len == 0); |
|
len &= 31; |
|
while (len >= 8) { |
|
xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); |
|
ptr += 8; |
|
h64 ^= k1; |
|
h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; |
|
len -= 8; |
|
} |
|
if (len >= 4) { |
|
h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; |
|
ptr += 4; |
|
h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; |
|
len -= 4; |
|
} |
|
while (len > 0) { |
|
h64 ^= (*ptr++) * XXH_PRIME64_5; |
|
h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; |
|
--len; |
|
} |
|
return XXH64_avalanche(h64); |
|
} |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PROCESS1_64 XXH_PROCESS1_64 |
|
# define PROCESS4_64 XXH_PROCESS4_64 |
|
# define PROCESS8_64 XXH_PROCESS8_64 |
|
#else |
|
# undef XXH_PROCESS1_64 |
|
# undef XXH_PROCESS4_64 |
|
# undef XXH_PROCESS8_64 |
|
#endif |
|
|
|
XXH_FORCE_INLINE xxh_u64 |
|
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) |
|
{ |
|
xxh_u64 h64; |
|
if (input==NULL) XXH_ASSERT(len == 0); |
|
|
|
if (len>=32) { |
|
const xxh_u8* const bEnd = input + len; |
|
const xxh_u8* const limit = bEnd - 31; |
|
xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
|
xxh_u64 v2 = seed + XXH_PRIME64_2; |
|
xxh_u64 v3 = seed + 0; |
|
xxh_u64 v4 = seed - XXH_PRIME64_1; |
|
|
|
do { |
|
v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; |
|
v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; |
|
v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; |
|
v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; |
|
} while (input<limit); |
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
|
h64 = XXH64_mergeRound(h64, v1); |
|
h64 = XXH64_mergeRound(h64, v2); |
|
h64 = XXH64_mergeRound(h64, v3); |
|
h64 = XXH64_mergeRound(h64, v4); |
|
|
|
} else { |
|
h64 = seed + XXH_PRIME64_5; |
|
} |
|
|
|
h64 += (xxh_u64) len; |
|
|
|
return XXH64_finalize(h64, input, len, align); |
|
} |
|
|
|
|
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) |
|
{ |
|
#if 0 |
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
|
XXH64_state_t state; |
|
XXH64_reset(&state, seed); |
|
XXH64_update(&state, (const xxh_u8*)input, len); |
|
return XXH64_digest(&state); |
|
#else |
|
if (XXH_FORCE_ALIGN_CHECK) { |
|
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
|
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
|
} } |
|
|
|
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
|
|
|
#endif |
|
} |
|
|
|
/******* Hash Streaming *******/ |
|
|
|
/*! @ingroup xxh64_family*/ |
|
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
|
{ |
|
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
|
} |
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
|
{ |
|
XXH_free(statePtr); |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
|
{ |
|
XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
|
} |
|
|
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) |
|
{ |
|
XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */ |
|
memset(&state, 0, sizeof(state)); |
|
state.v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
|
state.v[1] = seed + XXH_PRIME64_2; |
|
state.v[2] = seed + 0; |
|
state.v[3] = seed - XXH_PRIME64_1; |
|
/* do not write into reserved64, might be removed in a future version */ |
|
XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH64_update (XXH64_state_t* state, const void* input, size_t len) |
|
{ |
|
if (input==NULL) { |
|
XXH_ASSERT(len == 0); |
|
return XXH_OK; |
|
} |
|
|
|
{ const xxh_u8* p = (const xxh_u8*)input; |
|
const xxh_u8* const bEnd = p + len; |
|
|
|
state->total_len += len; |
|
|
|
if (state->memsize + len < 32) { /* fill in tmp buffer */ |
|
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); |
|
state->memsize += (xxh_u32)len; |
|
return XXH_OK; |
|
} |
|
|
|
if (state->memsize) { /* tmp buffer is full */ |
|
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); |
|
state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); |
|
state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); |
|
state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); |
|
state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); |
|
p += 32 - state->memsize; |
|
state->memsize = 0; |
|
} |
|
|
|
if (p+32 <= bEnd) { |
|
const xxh_u8* const limit = bEnd - 32; |
|
|
|
do { |
|
state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; |
|
state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; |
|
state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; |
|
state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; |
|
} while (p<=limit); |
|
|
|
} |
|
|
|
if (p < bEnd) { |
|
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
|
state->memsize = (unsigned)(bEnd-p); |
|
} |
|
} |
|
|
|
return XXH_OK; |
|
} |
|
|
|
|
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state) |
|
{ |
|
xxh_u64 h64; |
|
|
|
if (state->total_len >= 32) { |
|
h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); |
|
h64 = XXH64_mergeRound(h64, state->v[0]); |
|
h64 = XXH64_mergeRound(h64, state->v[1]); |
|
h64 = XXH64_mergeRound(h64, state->v[2]); |
|
h64 = XXH64_mergeRound(h64, state->v[3]); |
|
} else { |
|
h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; |
|
} |
|
|
|
h64 += (xxh_u64) state->total_len; |
|
|
|
return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); |
|
} |
|
|
|
|
|
/******* Canonical representation *******/ |
|
|
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
|
{ |
|
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
|
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
|
XXH_memcpy(dst, &hash, sizeof(*dst)); |
|
} |
|
|
|
/*! @ingroup xxh64_family */ |
|
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
|
{ |
|
return XXH_readBE64(src); |
|
} |
|
|
|
#ifndef XXH_NO_XXH3 |
|
|
|
/* ********************************************************************* |
|
* XXH3 |
|
* New generation hash designed for speed on small keys and vectorization |
|
************************************************************************ */ |
|
/*! |
|
* @} |
|
* @defgroup xxh3_impl XXH3 implementation |
|
* @ingroup impl |
|
* @{ |
|
*/ |
|
|
|
/* === Compiler specifics === */ |
|
|
|
#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ |
|
# define XXH_RESTRICT /* disable */ |
|
#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
|
# define XXH_RESTRICT restrict |
|
#else |
|
/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ |
|
# define XXH_RESTRICT /* disable */ |
|
#endif |
|
|
|
#if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
|
|| (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
|
|| defined(__clang__) |
|
# define XXH_likely(x) __builtin_expect(x, 1) |
|
# define XXH_unlikely(x) __builtin_expect(x, 0) |
|
#else |
|
# define XXH_likely(x) (x) |
|
# define XXH_unlikely(x) (x) |
|
#endif |
|
|
|
#if defined(__GNUC__) |
|
# if defined(__AVX2__) |
|
# include <immintrin.h> |
|
# elif defined(__SSE2__) |
|
# include <emmintrin.h> |
|
# elif defined(__ARM_NEON__) || defined(__ARM_NEON) |
|
# define inline __inline__ /* circumvent a clang bug */ |
|
# include <arm_neon.h> |
|
# undef inline |
|
# endif |
|
#elif defined(_MSC_VER) |
|
# include <intrin.h> |
|
#endif |
|
|
|
/* |
|
* One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
|
* remaining a true 64-bit/128-bit hash function. |
|
* |
|
* This is done by prioritizing a subset of 64-bit operations that can be |
|
* emulated without too many steps on the average 32-bit machine. |
|
* |
|
* For example, these two lines seem similar, and run equally fast on 64-bit: |
|
* |
|
* xxh_u64 x; |
|
* x ^= (x >> 47); // good |
|
* x ^= (x >> 13); // bad |
|
* |
|
* However, to a 32-bit machine, there is a major difference. |
|
* |
|
* x ^= (x >> 47) looks like this: |
|
* |
|
* x.lo ^= (x.hi >> (47 - 32)); |
|
* |
|
* while x ^= (x >> 13) looks like this: |
|
* |
|
* // note: funnel shifts are not usually cheap. |
|
* x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
|
* x.hi ^= (x.hi >> 13); |
|
* |
|
* The first one is significantly faster than the second, simply because the |
|
* shift is larger than 32. This means: |
|
* - All the bits we need are in the upper 32 bits, so we can ignore the lower |
|
* 32 bits in the shift. |
|
* - The shift result will always fit in the lower 32 bits, and therefore, |
|
* we can ignore the upper 32 bits in the xor. |
|
* |
|
* Thanks to this optimization, XXH3 only requires these features to be efficient: |
|
* |
|
* - Usable unaligned access |
|
* - A 32-bit or 64-bit ALU |
|
* - If 32-bit, a decent ADC instruction |
|
* - A 32 or 64-bit multiply with a 64-bit result |
|
* - For the 128-bit variant, a decent byteswap helps short inputs. |
|
* |
|
* The first two are already required by XXH32, and almost all 32-bit and 64-bit |
|
* platforms which can run XXH32 can run XXH3 efficiently. |
|
* |
|
* Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
|
* notable exception. |
|
* |
|
* First of all, Thumb-1 lacks support for the UMULL instruction which |
|
* performs the important long multiply. This means numerous __aeabi_lmul |
|
* calls. |
|
* |
|
* Second of all, the 8 functional registers are just not enough. |
|
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
|
* Lo registers, and this shuffling results in thousands more MOVs than A32. |
|
* |
|
* A32 and T32 don't have this limitation. They can access all 14 registers, |
|
* do a 32->64 multiply with UMULL, and the flexible operand allowing free |
|
* shifts is helpful, too. |
|
* |
|
* Therefore, we do a quick sanity check. |
|
* |
|
* If compiling Thumb-1 for a target which supports ARM instructions, we will |
|
* emit a warning, as it is not a "sane" platform to compile for. |
|
* |
|
* Usually, if this happens, it is because of an accident and you probably need |
|
* to specify -march, as you likely meant to compile for a newer architecture. |
|
* |
|
* Credit: large sections of the vectorial and asm source code paths |
|
* have been contributed by @easyaspi314 |
|
*/ |
|
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
|
# warning "XXH3 is highly inefficient without ARM or Thumb-2." |
|
#endif |
|
|
|
/* ========================================== |
|
* Vectorization detection |
|
* ========================================== */ |
|
|
|
#ifdef XXH_DOXYGEN |
|
/*! |
|
* @ingroup tuning |
|
* @brief Overrides the vectorization implementation chosen for XXH3. |
|
* |
|
* Can be defined to 0 to disable SIMD or any of the values mentioned in |
|
* @ref XXH_VECTOR_TYPE. |
|
* |
|
* If this is not defined, it uses predefined macros to determine the best |
|
* implementation. |
|
*/ |
|
# define XXH_VECTOR XXH_SCALAR |
|
/*! |
|
* @ingroup tuning |
|
* @brief Possible values for @ref XXH_VECTOR. |
|
* |
|
* Note that these are actually implemented as macros. |
|
* |
|
* If this is not defined, it is detected automatically. |
|
* @ref XXH_X86DISPATCH overrides this. |
|
*/ |
|
enum XXH_VECTOR_TYPE /* fake enum */ { |
|
XXH_SCALAR = 0, /*!< Portable scalar version */ |
|
XXH_SSE2 = 1, /*!< |
|
* SSE2 for Pentium 4, Opteron, all x86_64. |
|
* |
|
* @note SSE2 is also guaranteed on Windows 10, macOS, and |
|
* Android x86. |
|
*/ |
|
XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ |
|
XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ |
|
XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */ |
|
XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ |
|
}; |
|
/*! |
|
* @ingroup tuning |
|
* @brief Selects the minimum alignment for XXH3's accumulators. |
|
* |
|
* When using SIMD, this should match the alignment reqired for said vector |
|
* type, so, for example, 32 for AVX2. |
|
* |
|
* Default: Auto detected. |
|
*/ |
|
# define XXH_ACC_ALIGN 8 |
|
#endif |
|
|
|
/* Actual definition */ |
|
#ifndef XXH_DOXYGEN |
|
# define XXH_SCALAR 0 |
|
# define XXH_SSE2 1 |
|
# define XXH_AVX2 2 |
|
# define XXH_AVX512 3 |
|
# define XXH_NEON 4 |
|
# define XXH_VSX 5 |
|
#endif |
|
|
|
#ifndef XXH_VECTOR /* can be defined on command line */ |
|
# if defined(__AVX512F__) |
|
# define XXH_VECTOR XXH_AVX512 |
|
# elif defined(__AVX2__) |
|
# define XXH_VECTOR XXH_AVX2 |
|
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
|
# define XXH_VECTOR XXH_SSE2 |
|
# elif ( \ |
|
defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ |
|
|| defined(_M_ARM64) || defined(_M_ARM_ARMV7VE) /* msvc */ \ |
|
) && ( \ |
|
defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
|
) |
|
# define XXH_VECTOR XXH_NEON |
|
# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
|
|| (defined(__s390x__) && defined(__VEC__)) \ |
|
&& defined(__GNUC__) /* TODO: IBM XL */ |
|
# define XXH_VECTOR XXH_VSX |
|
# else |
|
# define XXH_VECTOR XXH_SCALAR |
|
# endif |
|
#endif |
|
|
|
/* |
|
* Controls the alignment of the accumulator, |
|
* for compatibility with aligned vector loads, which are usually faster. |
|
*/ |
|
#ifndef XXH_ACC_ALIGN |
|
# if defined(XXH_X86DISPATCH) |
|
# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
|
# elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
|
# define XXH_ACC_ALIGN 8 |
|
# elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
|
# define XXH_ACC_ALIGN 16 |
|
# elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
|
# define XXH_ACC_ALIGN 32 |
|
# elif XXH_VECTOR == XXH_NEON /* neon */ |
|
# define XXH_ACC_ALIGN 16 |
|
# elif XXH_VECTOR == XXH_VSX /* vsx */ |
|
# define XXH_ACC_ALIGN 16 |
|
# elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
|
# define XXH_ACC_ALIGN 64 |
|
# endif |
|
#endif |
|
|
|
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
|
|| XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
|
# define XXH_SEC_ALIGN XXH_ACC_ALIGN |
|
#else |
|
# define XXH_SEC_ALIGN 8 |
|
#endif |
|
|
|
/* |
|
* UGLY HACK: |
|
* GCC usually generates the best code with -O3 for xxHash. |
|
* |
|
* However, when targeting AVX2, it is overzealous in its unrolling resulting |
|
* in code roughly 3/4 the speed of Clang. |
|
* |
|
* There are other issues, such as GCC splitting _mm256_loadu_si256 into |
|
* _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
|
* only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
|
* |
|
* That is why when compiling the AVX2 version, it is recommended to use either |
|
* -O2 -mavx2 -march=haswell |
|
* or |
|
* -O2 -mavx2 -mno-avx256-split-unaligned-load |
|
* for decent performance, or to use Clang instead. |
|
* |
|
* Fortunately, we can control the first one with a pragma that forces GCC into |
|
* -O2, but the other one we can't control without "failed to inline always |
|
* inline function due to target mismatch" warnings. |
|
*/ |
|
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
|
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
|
&& defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
|
# pragma GCC push_options |
|
# pragma GCC optimize("-O2") |
|
#endif |
|
|
|
|
|
#if XXH_VECTOR == XXH_NEON |
|
/* |
|
* NEON's setup for vmlal_u32 is a little more complicated than it is on |
|
* SSE2, AVX2, and VSX. |
|
* |
|
* While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. |
|
* |
|
* To do the same operation, the 128-bit 'Q' register needs to be split into |
|
* two 64-bit 'D' registers, performing this operation:: |
|
* |
|
* [ a | b ] |
|
* | '---------. .--------' | |
|
* | x | |
|
* | .---------' '--------. | |
|
* [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] |
|
* |
|
* Due to significant changes in aarch64, the fastest method for aarch64 is |
|
* completely different than the fastest method for ARMv7-A. |
|
* |
|
* ARMv7-A treats D registers as unions overlaying Q registers, so modifying |
|
* D11 will modify the high half of Q5. This is similar to how modifying AH |
|
* will only affect bits 8-15 of AX on x86. |
|
* |
|
* VZIP takes two registers, and puts even lanes in one register and odd lanes |
|
* in the other. |
|
* |
|
* On ARMv7-A, this strangely modifies both parameters in place instead of |
|
* taking the usual 3-operand form. |
|
* |
|
* Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the |
|
* lower and upper halves of the Q register to end up with the high and low |
|
* halves where we want - all in one instruction. |
|
* |
|
* vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } |
|
* |
|
* Unfortunately we need inline assembly for this: Instructions modifying two |
|
* registers at once is not possible in GCC or Clang's IR, and they have to |
|
* create a copy. |
|
* |
|
* aarch64 requires a different approach. |
|
* |
|
* In order to make it easier to write a decent compiler for aarch64, many |
|
* quirks were removed, such as conditional execution. |
|
* |
|
* NEON was also affected by this. |
|
* |
|
* aarch64 cannot access the high bits of a Q-form register, and writes to a |
|
* D-form register zero the high bits, similar to how writes to W-form scalar |
|
* registers (or DWORD registers on x86_64) work. |
|
* |
|
* The formerly free vget_high intrinsics now require a vext (with a few |
|
* exceptions) |
|
* |
|
* Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent |
|
* of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one |
|
* operand. |
|
* |
|
* The equivalent of the VZIP.32 on the lower and upper halves would be this |
|
* mess: |
|
* |
|
* ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } |
|
* zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } |
|
* zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } |
|
* |
|
* Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): |
|
* |
|
* shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); |
|
* xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); |
|
* |
|
* This is available on ARMv7-A, but is less efficient than a single VZIP.32. |
|
*/ |
|
|
|
/*! |
|
* Function-like macro: |
|
* void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) |
|
* { |
|
* outLo = (uint32x2_t)(in & 0xFFFFFFFF); |
|
* outHi = (uint32x2_t)(in >> 32); |
|
* in = UNDEFINED; |
|
* } |
|
*/ |
|
# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ |
|
&& defined(__GNUC__) \ |
|
&& !defined(__aarch64__) && !defined(__arm64__) && !defined(_M_ARM64) |
|
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
|
do { \ |
|
/* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ |
|
/* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ |
|
/* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ |
|
__asm__("vzip.32 %e0, %f0" : "+w" (in)); \ |
|
(outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ |
|
(outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ |
|
} while (0) |
|
# else |
|
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
|
do { \ |
|
(outLo) = vmovn_u64 (in); \ |
|
(outHi) = vshrn_n_u64 ((in), 32); \ |
|
} while (0) |
|
# endif |
|
#endif /* XXH_VECTOR == XXH_NEON */ |
|
|
|
/* |
|
* VSX and Z Vector helpers. |
|
* |
|
* This is very messy, and any pull requests to clean this up are welcome. |
|
* |
|
* There are a lot of problems with supporting VSX and s390x, due to |
|
* inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
|
*/ |
|
#if XXH_VECTOR == XXH_VSX |
|
# if defined(__s390x__) |
|
# include <s390intrin.h> |
|
# else |
|
/* gcc's altivec.h can have the unwanted consequence to unconditionally |
|
* #define bool, vector, and pixel keywords, |
|
* with bad consequences for programs already using these keywords for other purposes. |
|
* The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. |
|
* __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, |
|
* but it seems that, in some cases, it isn't. |
|
* Force the build macro to be defined, so that keywords are not altered. |
|
*/ |
|
# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) |
|
# define __APPLE_ALTIVEC__ |
|
# endif |
|
# include <altivec.h> |
|
# endif |
|
|
|
typedef __vector unsigned long long xxh_u64x2; |
|
typedef __vector unsigned char xxh_u8x16; |
|
typedef __vector unsigned xxh_u32x4; |
|
|
|
# ifndef XXH_VSX_BE |
|
# if defined(__BIG_ENDIAN__) \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
|
# define XXH_VSX_BE 1 |
|
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
|
# warning "-maltivec=be is not recommended. Please use native endianness." |
|
# define XXH_VSX_BE 1 |
|
# else |
|
# define XXH_VSX_BE 0 |
|
# endif |
|
# endif /* !defined(XXH_VSX_BE) */ |
|
|
|
# if XXH_VSX_BE |
|
# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
|
# define XXH_vec_revb vec_revb |
|
# else |
|
/*! |
|
* A polyfill for POWER9's vec_revb(). |
|
*/ |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
|
{ |
|
xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
|
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
|
return vec_perm(val, val, vByteSwap); |
|
} |
|
# endif |
|
# endif /* XXH_VSX_BE */ |
|
|
|
/*! |
|
* Performs an unaligned vector load and byte swaps it on big endian. |
|
*/ |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
|
{ |
|
xxh_u64x2 ret; |
|
XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
|
# if XXH_VSX_BE |
|
ret = XXH_vec_revb(ret); |
|
# endif |
|
return ret; |
|
} |
|
|
|
/* |
|
* vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
|
* |
|
* These intrinsics weren't added until GCC 8, despite existing for a while, |
|
* and they are endian dependent. Also, their meaning swap depending on version. |
|
* */ |
|
# if defined(__s390x__) |
|
/* s390x is always big endian, no issue on this platform */ |
|
# define XXH_vec_mulo vec_mulo |
|
# define XXH_vec_mule vec_mule |
|
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) |
|
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
|
# define XXH_vec_mulo __builtin_altivec_vmulouw |
|
# define XXH_vec_mule __builtin_altivec_vmuleuw |
|
# else |
|
/* gcc needs inline assembly */ |
|
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
|
{ |
|
xxh_u64x2 result; |
|
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
|
return result; |
|
} |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
|
{ |
|
xxh_u64x2 result; |
|
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
|
return result; |
|
} |
|
# endif /* XXH_vec_mulo, XXH_vec_mule */ |
|
#endif /* XXH_VECTOR == XXH_VSX */ |
|
|
|
|
|
/* prefetch |
|
* can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
|
#if defined(XXH_NO_PREFETCH) |
|
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
|
#else |
|
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ |
|
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
|
# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
|
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
|
# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
|
# else |
|
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
|
# endif |
|
#endif /* XXH_NO_PREFETCH */ |
|
|
|
|
|
/* ========================================== |
|
* XXH3 default settings |
|
* ========================================== */ |
|
|
|
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
|
|
|
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
|
# error "default keyset is not large enough" |
|
#endif |
|
|
|
/*! Pseudorandom secret taken directly from FARSH. */ |
|
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
|
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
|
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
|
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
|
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
|
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
|
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
|
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
|
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
|
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
|
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
|
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
|
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
|
}; |
|
|
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define kSecret XXH3_kSecret |
|
#endif |
|
|
|
#ifdef XXH_DOXYGEN |
|
/*! |
|
* @brief Calculates a 32-bit to 64-bit long multiply. |
|
* |
|
* Implemented as a macro. |
|
* |
|
* Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't |
|
* need to (but it shouldn't need to anyways, it is about 7 instructions to do |
|
* a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we |
|
* use that instead of the normal method. |
|
* |
|
* If you are compiling for platforms like Thumb-1 and don't have a better option, |
|
* you may also want to write your own long multiply routine here. |
|
* |
|
* @param x, y Numbers to be multiplied |
|
* @return 64-bit product of the low 32 bits of @p x and @p y. |
|
*/ |
|
XXH_FORCE_INLINE xxh_u64 |
|
XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
|
{ |
|
return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
|
} |
|
#elif defined(_MSC_VER) && defined(_M_IX86) |
|
# include <intrin.h> |
|
# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
|
#else |
|
/* |
|
* Downcast + upcast is usually better than masking on older compilers like |
|
* GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
|
* |
|
* The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
|
* and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
|
*/ |
|
# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
|
#endif |
|
|
|
/*! |
|
* @brief Calculates a 64->128-bit long multiply. |
|
* |
|
* Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar |
|
* version. |
|
* |
|
* @param lhs , rhs The 64-bit integers to be multiplied |
|
* @return The 128-bit result represented in an @ref XXH128_hash_t. |
|
*/ |
|
static XXH128_hash_t |
|
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
|
{ |
|
/* |
|
* GCC/Clang __uint128_t method. |
|
* |
|
* On most 64-bit targets, GCC and Clang define a __uint128_t type. |
|
* This is usually the best way as it usually uses a native long 64-bit |
|
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
|
* |
|
* Usually. |
|
* |
|
* Despite being a 32-bit platform, Clang (and emscripten) define this type |
|
* despite not having the arithmetic for it. This results in a laggy |
|
* compiler builtin call which calculates a full 128-bit multiply. |
|
* In that case it is best to use the portable one. |
|
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
|
*/ |
|
#if defined(__GNUC__) && !defined(__wasm__) \ |
|
&& defined(__SIZEOF_INT128__) \ |
|
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
|
|
|
__uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
|
XXH128_hash_t r128; |
|
r128.low64 = (xxh_u64)(product); |
|
r128.high64 = (xxh_u64)(product >> 64); |
|
return r128; |
|
|
|
/* |
|
* MSVC for x64's _umul128 method. |
|
* |
|
* xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); |
|
* |
|
* This compiles to single operand MUL on x64. |
|
*/ |
|
#elif defined(_M_X64) || defined(_M_IA64) |
|
|
|
#ifndef _MSC_VER |
|
# pragma intrinsic(_umul128) |
|
#endif |
|
xxh_u64 product_high; |
|
xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); |
|
XXH128_hash_t r128; |
|
r128.low64 = product_low; |
|
r128.high64 = product_high; |
|
return r128; |
|
|
|
/* |
|
* MSVC for ARM64's __umulh method. |
|
* |
|
* This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. |
|
*/ |
|
#elif defined(_M_ARM64) |
|
|
|
#ifndef _MSC_VER |
|
# pragma intrinsic(__umulh) |
|
#endif |
|
XXH128_hash_t r128; |
|
r128.low64 = lhs * rhs; |
|
r128.high64 = __umulh(lhs, rhs); |
|
return r128; |
|
|
|
#else |
|
/* |
|
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
|
* |
|
* This is a fast and simple grade school multiply, which is shown below |
|
* with base 10 arithmetic instead of base 0x100000000. |
|
* |
|
* 9 3 // D2 lhs = 93 |
|
* x 7 5 // D2 rhs = 75 |
|
* ---------- |
|
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
|
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
|
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
|
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
|
* --------- |
|
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
|
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
|
* --------- |
|
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
|
* |
|
* The reasons for adding the products like this are: |
|
* 1. It avoids manual carry tracking. Just like how |
|
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
|
* This avoids a lot of complexity. |
|
* |
|
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
|
* instruction available in ARM's Digital Signal Processing extension |
|
* in 32-bit ARMv6 and later, which is shown below: |
|
* |
|
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
|
* { |
|
* xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; |
|
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
|
* *RdHi = (xxh_u32)(product >> 32); |
|
* } |
|
* |
|
* This instruction was designed for efficient long multiplication, and |
|
* allows this to be calculated in only 4 instructions at speeds |
|
* comparable to some 64-bit ALUs. |
|
* |
|
* 3. It isn't terrible on other platforms. Usually this will be a couple |
|
* of 32-bit ADD/ADCs. |
|
*/ |
|
|
|
/* First calculate all of the cross products. */ |
|
xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
|
xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
|
xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
|
xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
|
|
|
/* Now add the products together. These will never overflow. */ |
|
xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
|
xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
|
xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
|
|
|
XXH128_hash_t r128; |
|
r128.low64 = lower; |
|
r128.high64 = upper; |
|
return r128; |
|
#endif |
|
} |
|
|
|
/*! |
|
* @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. |
|
* |
|
* The reason for the separate function is to prevent passing too many structs |
|
* around by value. This will hopefully inline the multiply, but we don't force it. |
|
* |
|
* @param lhs , rhs The 64-bit integers to multiply |
|
* @return The low 64 bits of the product XOR'd by the high 64 bits. |
|
* @see XXH_mult64to128() |
|
*/ |
|
static xxh_u64 |
|
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) |
|
{ |
|
XXH128_hash_t product = XXH_mult64to128(lhs, rhs); |
|
return product.low64 ^ product.high64; |
|
} |
|
|
|
/*! Seems to produce slightly better code on GCC for some reason. */ |
|
XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) |
|
{ |
|
XXH_ASSERT(0 <= shift && shift < 64); |
|
return v64 ^ (v64 >> shift); |
|
} |
|
|
|
/* |
|
* This is a fast avalanche stage, |
|
* suitable when input bits are already partially mixed |
|
*/ |
|
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) |
|
{ |
|
h64 = XXH_xorshift64(h64, 37); |
|
h64 *= 0x165667919E3779F9ULL; |
|
h64 = XXH_xorshift64(h64, 32); |
|
return h64; |
|
} |
|
|
|
/* |
|
* This is a stronger avalanche, |
|
* inspired by Pelle Evensen's rrmxmx |
|
* preferable when input has not been previously mixed |
|
*/ |
|
static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) |
|
{ |
|
/* this mix is inspired by Pelle Evensen's rrmxmx */ |
|
h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); |
|
h64 *= 0x9FB21C651E98DF25ULL; |
|
h64 ^= (h64 >> 35) + len ; |
|
h64 *= 0x9FB21C651E98DF25ULL; |
|
return XXH_xorshift64(h64, 28); |
|
} |
|
|
|
|
|
/* ========================================== |
|
* Short keys |
|
* ========================================== |
|
* One of the shortcomings of XXH32 and XXH64 was that their performance was |
|
* sub-optimal on short lengths. It used an iterative algorithm which strongly |
|
* favored lengths that were a multiple of 4 or 8. |
|
* |
|
* Instead of iterating over individual inputs, we use a set of single shot |
|
* functions which piece together a range of lengths and operate in constant time. |
|
* |
|
* Additionally, the number of multiplies has been significantly reduced. This |
|
* reduces latency, especially when emulating 64-bit multiplies on 32-bit. |
|
* |
|
* Depending on the platform, this may or may not be faster than XXH32, but it |
|
* is almost guaranteed to be faster than XXH64. |
|
*/ |
|
|
|
/* |
|
* At very short lengths, there isn't enough input to fully hide secrets, or use |
|
* the entire secret. |
|
* |
|
* There is also only a limited amount of mixing we can do before significantly |
|
* impacting performance. |
|
* |
|
* Therefore, we use different sections of the secret and always mix two secret |
|
* samples with an XOR. This should have no effect on performance on the |
|
* seedless or withSeed variants because everything _should_ be constant folded |
|
* by modern compilers. |
|
* |
|
* The XOR mixing hides individual parts of the secret and increases entropy. |
|
* |
|
* This adds an extra layer of strength for custom secrets. |
|
*/ |
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(input != NULL); |
|
XXH_ASSERT(1 <= len && len <= 3); |
|
XXH_ASSERT(secret != NULL); |
|
/* |
|
* len = 1: combined = { input[0], 0x01, input[0], input[0] } |
|
* len = 2: combined = { input[1], 0x02, input[0], input[1] } |
|
* len = 3: combined = { input[2], 0x03, input[0], input[1] } |
|
*/ |
|
{ xxh_u8 const c1 = input[0]; |
|
xxh_u8 const c2 = input[len >> 1]; |
|
xxh_u8 const c3 = input[len - 1]; |
|
xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
|
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
|
xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
|
xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; |
|
return XXH64_avalanche(keyed); |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(input != NULL); |
|
XXH_ASSERT(secret != NULL); |
|
XXH_ASSERT(4 <= len && len <= 8); |
|
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
|
{ xxh_u32 const input1 = XXH_readLE32(input); |
|
xxh_u32 const input2 = XXH_readLE32(input + len - 4); |
|
xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; |
|
xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); |
|
xxh_u64 const keyed = input64 ^ bitflip; |
|
return XXH3_rrmxmx(keyed, len); |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(input != NULL); |
|
XXH_ASSERT(secret != NULL); |
|
XXH_ASSERT(9 <= len && len <= 16); |
|
{ xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; |
|
xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; |
|
xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; |
|
xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; |
|
xxh_u64 const acc = len |
|
+ XXH_swap64(input_lo) + input_hi |
|
+ XXH3_mul128_fold64(input_lo, input_hi); |
|
return XXH3_avalanche(acc); |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(len <= 16); |
|
{ if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); |
|
if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); |
|
if (len) return XXH3_len_1to3_64b(input, len, secret, seed); |
|
return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); |
|
} |
|
} |
|
|
|
/* |
|
* DISCLAIMER: There are known *seed-dependent* multicollisions here due to |
|
* multiplication by zero, affecting hashes of lengths 17 to 240. |
|
* |
|
* However, they are very unlikely. |
|
* |
|
* Keep this in mind when using the unseeded XXH3_64bits() variant: As with all |
|
* unseeded non-cryptographic hashes, it does not attempt to defend itself |
|
* against specially crafted inputs, only random inputs. |
|
* |
|
* Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes |
|
* cancelling out the secret is taken an arbitrary number of times (addressed |
|
* in XXH3_accumulate_512), this collision is very unlikely with random inputs |
|
* and/or proper seeding: |
|
* |
|
* This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a |
|
* function that is only called up to 16 times per hash with up to 240 bytes of |
|
* input. |
|
* |
|
* This is not too bad for a non-cryptographic hash function, especially with |
|
* only 64 bit outputs. |
|
* |
|
* The 128-bit variant (which trades some speed for strength) is NOT affected |
|
* by this, although it is always a good idea to use a proper seed if you care |
|
* about strength. |
|
*/ |
|
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, |
|
const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) |
|
{ |
|
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
|
&& defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ |
|
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ |
|
/* |
|
* UGLY HACK: |
|
* GCC for x86 tends to autovectorize the 128-bit multiply, resulting in |
|
* slower code. |
|
* |
|
* By forcing seed64 into a register, we disrupt the cost model and |
|
* cause it to scalarize. See `XXH32_round()` |
|
* |
|
* FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, |
|
* XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on |
|
* GCC 9.2, despite both emitting scalar code. |
|
* |
|
* GCC generates much better scalar code than Clang for the rest of XXH3, |
|
* which is why finding a more optimal codepath is an interest. |
|
*/ |
|
XXH_COMPILER_GUARD(seed64); |
|
#endif |
|
{ xxh_u64 const input_lo = XXH_readLE64(input); |
|
xxh_u64 const input_hi = XXH_readLE64(input+8); |
|
return XXH3_mul128_fold64( |
|
input_lo ^ (XXH_readLE64(secret) + seed64), |
|
input_hi ^ (XXH_readLE64(secret+8) - seed64) |
|
); |
|
} |
|
} |
|
|
|
/* For mid range keys, XXH3 uses a Mum-hash variant. */ |
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
|
const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
|
XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
|
XXH_ASSERT(16 < len && len <= 128); |
|
|
|
{ xxh_u64 acc = len * XXH_PRIME64_1; |
|
if (len > 32) { |
|
if (len > 64) { |
|
if (len > 96) { |
|
acc += XXH3_mix16B(input+48, secret+96, seed); |
|
acc += XXH3_mix16B(input+len-64, secret+112, seed); |
|
} |
|
acc += XXH3_mix16B(input+32, secret+64, seed); |
|
acc += XXH3_mix16B(input+len-48, secret+80, seed); |
|
} |
|
acc += XXH3_mix16B(input+16, secret+32, seed); |
|
acc += XXH3_mix16B(input+len-32, secret+48, seed); |
|
} |
|
acc += XXH3_mix16B(input+0, secret+0, seed); |
|
acc += XXH3_mix16B(input+len-16, secret+16, seed); |
|
|
|
return XXH3_avalanche(acc); |
|
} |
|
} |
|
|
|
#define XXH3_MIDSIZE_MAX 240 |
|
|
|
XXH_NO_INLINE XXH64_hash_t |
|
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
|
const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
|
XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
|
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
|
|
|
#define XXH3_MIDSIZE_STARTOFFSET 3 |
|
#define XXH3_MIDSIZE_LASTOFFSET 17 |
|
|
|
{ xxh_u64 acc = len * XXH_PRIME64_1; |
|
int const nbRounds = (int)len / 16; |
|
int i; |
|
for (i=0; i<8; i++) { |
|
acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); |
|
} |
|
acc = XXH3_avalanche(acc); |
|
XXH_ASSERT(nbRounds >= 8); |
|
#if defined(__clang__) /* Clang */ \ |
|
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
|
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
|
/* |
|
* UGLY HACK: |
|
* Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. |
|
* In everywhere else, it uses scalar code. |
|
* |
|
* For 64->128-bit multiplies, even if the NEON was 100% optimal, it |
|
* would still be slower than UMAAL (see XXH_mult64to128). |
|
* |
|
* Unfortunately, Clang doesn't handle the long multiplies properly and |
|
* converts them to the nonexistent "vmulq_u64" intrinsic, which is then |
|
* scalarized into an ugly mess of VMOV.32 instructions. |
|
* |
|
* This mess is difficult to avoid without turning autovectorization |
|
* off completely, but they are usually relatively minor and/or not |
|
* worth it to fix. |
|
* |
|
* This loop is the easiest to fix, as unlike XXH32, this pragma |
|
* _actually works_ because it is a loop vectorization instead of an |
|
* SLP vectorization. |
|
*/ |
|
#pragma clang loop vectorize(disable) |
|
#endif |
|
for (i=8 ; i < nbRounds; i++) { |
|
acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); |
|
} |
|
/* last bytes */ |
|
acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
|
return XXH3_avalanche(acc); |
|
} |
|
} |
|
|
|
|
|
/* ======= Long Keys ======= */ |
|
|
|
#define XXH_STRIPE_LEN 64 |
|
#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ |
|
#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define STRIPE_LEN XXH_STRIPE_LEN |
|
# define ACC_NB XXH_ACC_NB |
|
#endif |
|
|
|
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) |
|
{ |
|
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); |
|
XXH_memcpy(dst, &v64, sizeof(v64)); |
|
} |
|
|
|
/* Several intrinsic functions below are supposed to accept __int64 as argument, |
|
* as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . |
|
* However, several environments do not define __int64 type, |
|
* requiring a workaround. |
|
*/ |
|
#if !defined (__VMS) \ |
|
&& (defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
|
typedef int64_t xxh_i64; |
|
#else |
|
/* the following type must have a width of 64-bit */ |
|
typedef long long xxh_i64; |
|
#endif |
|
|
|
/* |
|
* XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. |
|
* |
|
* It is a hardened version of UMAC, based off of FARSH's implementation. |
|
* |
|
* This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD |
|
* implementations, and it is ridiculously fast. |
|
* |
|
* We harden it by mixing the original input to the accumulators as well as the product. |
|
* |
|
* This means that in the (relatively likely) case of a multiply by zero, the |
|
* original input is preserved. |
|
* |
|
* On 128-bit inputs, we swap 64-bit pairs when we add the input to improve |
|
* cross-pollination, as otherwise the upper and lower halves would be |
|
* essentially independent. |
|
* |
|
* This doesn't matter on 64-bit hashes since they all get merged together in |
|
* the end, so we skip the extra step. |
|
* |
|
* Both XXH3_64bits and XXH3_128bits use this subroutine. |
|
*/ |
|
|
|
#if (XXH_VECTOR == XXH_AVX512) \ |
|
|| (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) |
|
|
|
#ifndef XXH_TARGET_AVX512 |
|
# define XXH_TARGET_AVX512 /* disable attribute target */ |
|
#endif |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
|
XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, |
|
const void* XXH_RESTRICT input, |
|
const void* XXH_RESTRICT secret) |
|
{ |
|
__m512i* const xacc = (__m512i *) acc; |
|
XXH_ASSERT((((size_t)acc) & 63) == 0); |
|
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
|
|
|
{ |
|
/* data_vec = input[0]; */ |
|
__m512i const data_vec = _mm512_loadu_si512 (input); |
|
/* key_vec = secret[0]; */ |
|
__m512i const key_vec = _mm512_loadu_si512 (secret); |
|
/* data_key = data_vec ^ key_vec; */ |
|
__m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
|
/* data_key_lo = data_key >> 32; */ |
|
__m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
|
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
|
__m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); |
|
/* xacc[0] += swap(data_vec); */ |
|
__m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); |
|
__m512i const sum = _mm512_add_epi64(*xacc, data_swap); |
|
/* xacc[0] += product; */ |
|
*xacc = _mm512_add_epi64(product, sum); |
|
} |
|
} |
|
|
|
/* |
|
* XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. |
|
* |
|
* Multiplication isn't perfect, as explained by Google in HighwayHash: |
|
* |
|
* // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to |
|
* // varying degrees. In descending order of goodness, bytes |
|
* // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. |
|
* // As expected, the upper and lower bytes are much worse. |
|
* |
|
* Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 |
|
* |
|
* Since our algorithm uses a pseudorandom secret to add some variance into the |
|
* mix, we don't need to (or want to) mix as often or as much as HighwayHash does. |
|
* |
|
* This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid |
|
* extraction. |
|
* |
|
* Both XXH3_64bits and XXH3_128bits use this subroutine. |
|
*/ |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
|
XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
|
{ |
|
XXH_ASSERT((((size_t)acc) & 63) == 0); |
|
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
|
{ __m512i* const xacc = (__m512i*) acc; |
|
const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); |
|
|
|
/* xacc[0] ^= (xacc[0] >> 47) */ |
|
__m512i const acc_vec = *xacc; |
|
__m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); |
|
__m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); |
|
/* xacc[0] ^= secret; */ |
|
__m512i const key_vec = _mm512_loadu_si512 (secret); |
|
__m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
|
|
|
/* xacc[0] *= XXH_PRIME32_1; */ |
|
__m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
|
__m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); |
|
__m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); |
|
*xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
|
XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
|
{ |
|
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); |
|
XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); |
|
XXH_ASSERT(((size_t)customSecret & 63) == 0); |
|
(void)(&XXH_writeLE64); |
|
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); |
|
__m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64)); |
|
|
|
const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); |
|
__m512i* const dest = ( __m512i*) customSecret; |
|
int i; |
|
XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ |
|
XXH_ASSERT(((size_t)dest & 63) == 0); |
|
for (i=0; i < nbRounds; ++i) { |
|
/* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', |
|
* this will warn "discards 'const' qualifier". */ |
|
union { |
|
const __m512i* cp; |
|
void* p; |
|
} remote_const_void; |
|
remote_const_void.cp = src + i; |
|
dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); |
|
} } |
|
} |
|
|
|
#endif |
|
|
|
#if (XXH_VECTOR == XXH_AVX2) \ |
|
|| (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) |
|
|
|
#ifndef XXH_TARGET_AVX2 |
|
# define XXH_TARGET_AVX2 /* disable attribute target */ |
|
#endif |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
|
XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, |
|
const void* XXH_RESTRICT input, |
|
const void* XXH_RESTRICT secret) |
|
{ |
|
XXH_ASSERT((((size_t)acc) & 31) == 0); |
|
{ __m256i* const xacc = (__m256i *) acc; |
|
/* Unaligned. This is mainly for pointer arithmetic, and because |
|
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
|
const __m256i* const xinput = (const __m256i *) input; |
|
/* Unaligned. This is mainly for pointer arithmetic, and because |
|
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
|
const __m256i* const xsecret = (const __m256i *) secret; |
|
|
|
size_t i; |
|
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
|
/* data_vec = xinput[i]; */ |
|
__m256i const data_vec = _mm256_loadu_si256 (xinput+i); |
|
/* key_vec = xsecret[i]; */ |
|
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
|
/* data_key = data_vec ^ key_vec; */ |
|
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
|
/* data_key_lo = data_key >> 32; */ |
|
__m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
|
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
|
__m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); |
|
/* xacc[i] += swap(data_vec); */ |
|
__m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
|
__m256i const sum = _mm256_add_epi64(xacc[i], data_swap); |
|
/* xacc[i] += product; */ |
|
xacc[i] = _mm256_add_epi64(product, sum); |
|
} } |
|
} |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
|
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
|
{ |
|
XXH_ASSERT((((size_t)acc) & 31) == 0); |
|
{ __m256i* const xacc = (__m256i*) acc; |
|
/* Unaligned. This is mainly for pointer arithmetic, and because |
|
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
|
const __m256i* const xsecret = (const __m256i *) secret; |
|
const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); |
|
|
|
size_t i; |
|
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
|
/* xacc[i] ^= (xacc[i] >> 47) */ |
|
__m256i const acc_vec = xacc[i]; |
|
__m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); |
|
__m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); |
|
/* xacc[i] ^= xsecret; */ |
|
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
|
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
|
|
|
/* xacc[i] *= XXH_PRIME32_1; */ |
|
__m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
|
__m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); |
|
__m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); |
|
xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); |
|
} |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
|
{ |
|
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); |
|
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); |
|
XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); |
|
(void)(&XXH_writeLE64); |
|
XXH_PREFETCH(customSecret); |
|
{ __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); |
|
|
|
const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); |
|
__m256i* dest = ( __m256i*) customSecret; |
|
|
|
# if defined(__GNUC__) || defined(__clang__) |
|
/* |
|
* On GCC & Clang, marking 'dest' as modified will cause the compiler: |
|
* - do not extract the secret from sse registers in the internal loop |
|
* - use less common registers, and avoid pushing these reg into stack |
|
*/ |
|
XXH_COMPILER_GUARD(dest); |
|
# endif |
|
XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ |
|
XXH_ASSERT(((size_t)dest & 31) == 0); |
|
|
|
/* GCC -O2 need unroll loop manually */ |
|
dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); |
|
dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); |
|
dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); |
|
dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); |
|
dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); |
|
dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
/* x86dispatch always generates SSE2 */ |
|
#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) |
|
|
|
#ifndef XXH_TARGET_SSE2 |
|
# define XXH_TARGET_SSE2 /* disable attribute target */ |
|
#endif |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
|
XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, |
|
const void* XXH_RESTRICT input, |
|
const void* XXH_RESTRICT secret) |
|
{ |
|
/* SSE2 is just a half-scale version of the AVX2 version. */ |
|
XXH_ASSERT((((size_t)acc) & 15) == 0); |
|
{ __m128i* const xacc = (__m128i *) acc; |
|
/* Unaligned. This is mainly for pointer arithmetic, and because |
|
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
|
const __m128i* const xinput = (const __m128i *) input; |
|
/* Unaligned. This is mainly for pointer arithmetic, and because |
|
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
|
const __m128i* const xsecret = (const __m128i *) secret; |
|
|
|
size_t i; |
|
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
|
/* data_vec = xinput[i]; */ |
|
__m128i const data_vec = _mm_loadu_si128 (xinput+i); |
|
/* key_vec = xsecret[i]; */ |
|
__m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
|
/* data_key = data_vec ^ key_vec; */ |
|
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
|
/* data_key_lo = data_key >> 32; */ |
|
__m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
|
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
|
__m128i const product = _mm_mul_epu32 (data_key, data_key_lo); |
|
/* xacc[i] += swap(data_vec); */ |
|
__m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); |
|
__m128i const sum = _mm_add_epi64(xacc[i], data_swap); |
|
/* xacc[i] += product; */ |
|
xacc[i] = _mm_add_epi64(product, sum); |
|
} } |
|
} |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
|
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
|
{ |
|
XXH_ASSERT((((size_t)acc) & 15) == 0); |
|
{ __m128i* const xacc = (__m128i*) acc; |
|
/* Unaligned. This is mainly for pointer arithmetic, and because |
|
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
|
const __m128i* const xsecret = (const __m128i *) secret; |
|
const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); |
|
|
|
size_t i; |
|
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
|
/* xacc[i] ^= (xacc[i] >> 47) */ |
|
__m128i const acc_vec = xacc[i]; |
|
__m128i const shifted = _mm_srli_epi64 (acc_vec, 47); |
|
__m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); |
|
/* xacc[i] ^= xsecret[i]; */ |
|
__m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
|
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
|
|
|
/* xacc[i] *= XXH_PRIME32_1; */ |
|
__m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
|
__m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); |
|
__m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); |
|
xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); |
|
} |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
|
{ |
|
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
|
(void)(&XXH_writeLE64); |
|
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); |
|
|
|
# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 |
|
/* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ |
|
XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; |
|
__m128i const seed = _mm_load_si128((__m128i const*)seed64x2); |
|
# else |
|
__m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); |
|
# endif |
|
int i; |
|
|
|
const void* const src16 = XXH3_kSecret; |
|
__m128i* dst16 = (__m128i*) customSecret; |
|
# if defined(__GNUC__) || defined(__clang__) |
|
/* |
|
* On GCC & Clang, marking 'dest' as modified will cause the compiler: |
|
* - do not extract the secret from sse registers in the internal loop |
|
* - use less common registers, and avoid pushing these reg into stack |
|
*/ |
|
XXH_COMPILER_GUARD(dst16); |
|
# endif |
|
XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ |
|
XXH_ASSERT(((size_t)dst16 & 15) == 0); |
|
|
|
for (i=0; i < nbRounds; ++i) { |
|
dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); |
|
} } |
|
} |
|
|
|
#endif |
|
|
|
#if (XXH_VECTOR == XXH_NEON) |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, |
|
const void* XXH_RESTRICT input, |
|
const void* XXH_RESTRICT secret) |
|
{ |
|
XXH_ASSERT((((size_t)acc) & 15) == 0); |
|
{ |
|
uint64x2_t* const xacc = (uint64x2_t *) acc; |
|
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ |
|
uint8_t const* const xinput = (const uint8_t *) input; |
|
uint8_t const* const xsecret = (const uint8_t *) secret; |
|
|
|
size_t i; |
|
for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { |
|
/* data_vec = xinput[i]; */ |
|
uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); |
|
/* key_vec = xsecret[i]; */ |
|
uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); |
|
uint64x2_t data_key; |
|
uint32x2_t data_key_lo, data_key_hi; |
|
/* xacc[i] += swap(data_vec); */ |
|
uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); |
|
uint64x2_t const swapped = vextq_u64(data64, data64, 1); |
|
xacc[i] = vaddq_u64 (xacc[i], swapped); |
|
/* data_key = data_vec ^ key_vec; */ |
|
data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); |
|
/* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); |
|
* data_key_hi = (uint32x2_t) (data_key >> 32); |
|
* data_key = UNDEFINED; */ |
|
XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
|
/* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ |
|
xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); |
|
|
|
} |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
|
{ |
|
XXH_ASSERT((((size_t)acc) & 15) == 0); |
|
|
|
{ uint64x2_t* xacc = (uint64x2_t*) acc; |
|
uint8_t const* xsecret = (uint8_t const*) secret; |
|
uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); |
|
|
|
size_t i; |
|
for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) { |
|
/* xacc[i] ^= (xacc[i] >> 47); */ |
|
uint64x2_t acc_vec = xacc[i]; |
|
uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); |
|
uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); |
|
|
|
/* xacc[i] ^= xsecret[i]; */ |
|
uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16)); |
|
uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec)); |
|
|
|
/* xacc[i] *= XXH_PRIME32_1 */ |
|
uint32x2_t data_key_lo, data_key_hi; |
|
/* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); |
|
* data_key_hi = (uint32x2_t) (xacc[i] >> 32); |
|
* xacc[i] = UNDEFINED; */ |
|
XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
|
{ /* |
|
* prod_hi = (data_key >> 32) * XXH_PRIME32_1; |
|
* |
|
* Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will |
|
* incorrectly "optimize" this: |
|
* tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); |
|
* shifted = vshll_n_u32(tmp, 32); |
|
* to this: |
|
* tmp = "vmulq_u64"(a, b); // no such thing! |
|
* shifted = vshlq_n_u64(tmp, 32); |
|
* |
|
* However, unlike SSE, Clang lacks a 64-bit multiply routine |
|
* for NEON, and it scalarizes two 64-bit multiplies instead. |
|
* |
|
* vmull_u32 has the same timing as vmul_u32, and it avoids |
|
* this bug completely. |
|
* See https://bugs.llvm.org/show_bug.cgi?id=39967 |
|
*/ |
|
uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); |
|
/* xacc[i] = prod_hi << 32; */ |
|
xacc[i] = vshlq_n_u64(prod_hi, 32); |
|
/* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ |
|
xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); |
|
} |
|
} } |
|
} |
|
|
|
#endif |
|
|
|
#if (XXH_VECTOR == XXH_VSX) |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, |
|
const void* XXH_RESTRICT input, |
|
const void* XXH_RESTRICT secret) |
|
{ |
|
/* presumed aligned */ |
|
unsigned long long* const xacc = (unsigned long long*) acc; |
|
xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ |
|
xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ |
|
xxh_u64x2 const v32 = { 32, 32 }; |
|
size_t i; |
|
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
|
/* data_vec = xinput[i]; */ |
|
xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); |
|
/* key_vec = xsecret[i]; */ |
|
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
|
xxh_u64x2 const data_key = data_vec ^ key_vec; |
|
/* shuffled = (data_key << 32) | (data_key >> 32); */ |
|
xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); |
|
/* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ |
|
xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); |
|
/* acc_vec = xacc[i]; */ |
|
xxh_u64x2 acc_vec = vec_xl(0, xacc + 2 * i); |
|
acc_vec += product; |
|
|
|
/* swap high and low halves */ |
|
#ifdef __s390x__ |
|
acc_vec += vec_permi(data_vec, data_vec, 2); |
|
#else |
|
acc_vec += vec_xxpermdi(data_vec, data_vec, 2); |
|
#endif |
|
/* xacc[i] = acc_vec; */ |
|
vec_xst(acc_vec, 0, xacc + 2 * i); |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
|
{ |
|
XXH_ASSERT((((size_t)acc) & 15) == 0); |
|
|
|
{ xxh_u64x2* const xacc = (xxh_u64x2*) acc; |
|
const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; |
|
/* constants */ |
|
xxh_u64x2 const v32 = { 32, 32 }; |
|
xxh_u64x2 const v47 = { 47, 47 }; |
|
xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; |
|
size_t i; |
|
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
|
/* xacc[i] ^= (xacc[i] >> 47); */ |
|
xxh_u64x2 const acc_vec = xacc[i]; |
|
xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); |
|
|
|
/* xacc[i] ^= xsecret[i]; */ |
|
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
|
xxh_u64x2 const data_key = data_vec ^ key_vec; |
|
|
|
/* xacc[i] *= XXH_PRIME32_1 */ |
|
/* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ |
|
xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); |
|
/* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ |
|
xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); |
|
xacc[i] = prod_odd + (prod_even << v32); |
|
} } |
|
} |
|
|
|
#endif |
|
|
|
/* scalar variants - universal */ |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, |
|
const void* XXH_RESTRICT input, |
|
const void* XXH_RESTRICT secret) |
|
{ |
|
xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
|
const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */ |
|
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
|
size_t i; |
|
XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); |
|
for (i=0; i < XXH_ACC_NB; i++) { |
|
xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); |
|
xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); |
|
xacc[i ^ 1] += data_val; /* swap adjacent lanes */ |
|
xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
|
{ |
|
xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
|
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
|
size_t i; |
|
XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); |
|
for (i=0; i < XXH_ACC_NB; i++) { |
|
xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); |
|
xxh_u64 acc64 = xacc[i]; |
|
acc64 = XXH_xorshift64(acc64, 47); |
|
acc64 ^= key64; |
|
acc64 *= XXH_PRIME32_1; |
|
xacc[i] = acc64; |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
|
{ |
|
/* |
|
* We need a separate pointer for the hack below, |
|
* which requires a non-const pointer. |
|
* Any decent compiler will optimize this out otherwise. |
|
*/ |
|
const xxh_u8* kSecretPtr = XXH3_kSecret; |
|
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
|
|
|
#if defined(__clang__) && defined(__aarch64__) |
|
/* |
|
* UGLY HACK: |
|
* Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are |
|
* placed sequentially, in order, at the top of the unrolled loop. |
|
* |
|
* While MOVK is great for generating constants (2 cycles for a 64-bit |
|
* constant compared to 4 cycles for LDR), long MOVK chains stall the |
|
* integer pipelines: |
|
* I L S |
|
* MOVK |
|
* MOVK |
|
* MOVK |
|
* MOVK |
|
* ADD |
|
* SUB STR |
|
* STR |
|
* By forcing loads from memory (as the asm line causes Clang to assume |
|
* that XXH3_kSecretPtr has been changed), the pipelines are used more |
|
* efficiently: |
|
* I L S |
|
* LDR |
|
* ADD LDR |
|
* SUB STR |
|
* STR |
|
* XXH3_64bits_withSeed, len == 256, Snapdragon 835 |
|
* without hack: 2654.4 MB/s |
|
* with hack: 3202.9 MB/s |
|
*/ |
|
XXH_COMPILER_GUARD(kSecretPtr); |
|
#endif |
|
/* |
|
* Note: in debug mode, this overrides the asm optimization |
|
* and Clang will emit MOVK chains again. |
|
*/ |
|
XXH_ASSERT(kSecretPtr == XXH3_kSecret); |
|
|
|
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; |
|
int i; |
|
for (i=0; i < nbRounds; i++) { |
|
/* |
|
* The asm hack causes Clang to assume that kSecretPtr aliases with |
|
* customSecret, and on aarch64, this prevented LDP from merging two |
|
* loads together for free. Putting the loads together before the stores |
|
* properly generates LDP. |
|
*/ |
|
xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; |
|
xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; |
|
XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); |
|
XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); |
|
} } |
|
} |
|
|
|
|
|
typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); |
|
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); |
|
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); |
|
|
|
|
|
#if (XXH_VECTOR == XXH_AVX512) |
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_avx512 |
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 |
|
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 |
|
|
|
#elif (XXH_VECTOR == XXH_AVX2) |
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_avx2 |
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 |
|
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 |
|
|
|
#elif (XXH_VECTOR == XXH_SSE2) |
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_sse2 |
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 |
|
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 |
|
|
|
#elif (XXH_VECTOR == XXH_NEON) |
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_neon |
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
|
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
|
|
|
#elif (XXH_VECTOR == XXH_VSX) |
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_vsx |
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx |
|
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
|
|
|
#else /* scalar */ |
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
|
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef XXH_PREFETCH_DIST |
|
# ifdef __clang__ |
|
# define XXH_PREFETCH_DIST 320 |
|
# else |
|
# if (XXH_VECTOR == XXH_AVX512) |
|
# define XXH_PREFETCH_DIST 512 |
|
# else |
|
# define XXH_PREFETCH_DIST 384 |
|
# endif |
|
# endif /* __clang__ */ |
|
#endif /* XXH_PREFETCH_DIST */ |
|
|
|
/* |
|
* XXH3_accumulate() |
|
* Loops over XXH3_accumulate_512(). |
|
* Assumption: nbStripes will not overflow the secret size |
|
*/ |
|
XXH_FORCE_INLINE void |
|
XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, |
|
const xxh_u8* XXH_RESTRICT input, |
|
const xxh_u8* XXH_RESTRICT secret, |
|
size_t nbStripes, |
|
XXH3_f_accumulate_512 f_acc512) |
|
{ |
|
size_t n; |
|
for (n = 0; n < nbStripes; n++ ) { |
|
const xxh_u8* const in = input + n*XXH_STRIPE_LEN; |
|
XXH_PREFETCH(in + XXH_PREFETCH_DIST); |
|
f_acc512(acc, |
|
in, |
|
secret + n*XXH_SECRET_CONSUME_RATE); |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, |
|
const xxh_u8* XXH_RESTRICT input, size_t len, |
|
const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
|
XXH3_f_accumulate_512 f_acc512, |
|
XXH3_f_scrambleAcc f_scramble) |
|
{ |
|
size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
|
size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
|
size_t const nb_blocks = (len - 1) / block_len; |
|
|
|
size_t n; |
|
|
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
|
|
|
for (n = 0; n < nb_blocks; n++) { |
|
XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); |
|
f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); |
|
} |
|
|
|
/* last partial block */ |
|
XXH_ASSERT(len > XXH_STRIPE_LEN); |
|
{ size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
|
XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); |
|
XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); |
|
|
|
/* last stripe */ |
|
{ const xxh_u8* const p = input + len - XXH_STRIPE_LEN; |
|
#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ |
|
f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); |
|
} } |
|
} |
|
|
|
XXH_FORCE_INLINE xxh_u64 |
|
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) |
|
{ |
|
return XXH3_mul128_fold64( |
|
acc[0] ^ XXH_readLE64(secret), |
|
acc[1] ^ XXH_readLE64(secret+8) ); |
|
} |
|
|
|
static XXH64_hash_t |
|
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) |
|
{ |
|
xxh_u64 result64 = start; |
|
size_t i = 0; |
|
|
|
for (i = 0; i < 4; i++) { |
|
result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); |
|
#if defined(__clang__) /* Clang */ \ |
|
&& (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ |
|
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
|
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
|
/* |
|
* UGLY HACK: |
|
* Prevent autovectorization on Clang ARMv7-a. Exact same problem as |
|
* the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. |
|
* XXH3_64bits, len == 256, Snapdragon 835: |
|
* without hack: 2063.7 MB/s |
|
* with hack: 2560.7 MB/s |
|
*/ |
|
XXH_COMPILER_GUARD(result64); |
|
#endif |
|
} |
|
|
|
return XXH3_avalanche(result64); |
|
} |
|
|
|
#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ |
|
XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } |
|
|
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, |
|
const void* XXH_RESTRICT secret, size_t secretSize, |
|
XXH3_f_accumulate_512 f_acc512, |
|
XXH3_f_scrambleAcc f_scramble) |
|
{ |
|
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
|
|
|
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble); |
|
|
|
/* converge into final hash */ |
|
XXH_STATIC_ASSERT(sizeof(acc) == 64); |
|
/* do not align on 8, so that the secret is different from the accumulator */ |
|
#define XXH_SECRET_MERGEACCS_START 11 |
|
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
|
return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); |
|
} |
|
|
|
/* |
|
* It's important for performance to transmit secret's size (when it's static) |
|
* so that the compiler can properly optimize the vectorized loop. |
|
* This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. |
|
*/ |
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, |
|
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
|
{ |
|
(void)seed64; |
|
return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); |
|
} |
|
|
|
/* |
|
* It's preferable for performance that XXH3_hashLong is not inlined, |
|
* as it results in a smaller function for small data, easier to the instruction cache. |
|
* Note that inside this no_inline function, we do inline the internal loop, |
|
* and provide a statically defined secret size to allow optimization of vector loop. |
|
*/ |
|
XXH_NO_INLINE XXH64_hash_t |
|
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, |
|
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
|
{ |
|
(void)seed64; (void)secret; (void)secretLen; |
|
return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); |
|
} |
|
|
|
/* |
|
* XXH3_hashLong_64b_withSeed(): |
|
* Generate a custom key based on alteration of default XXH3_kSecret with the seed, |
|
* and then use this key for long mode hashing. |
|
* |
|
* This operation is decently fast but nonetheless costs a little bit of time. |
|
* Try to avoid it whenever possible (typically when seed==0). |
|
* |
|
* It's important for performance that XXH3_hashLong is not inlined. Not sure |
|
* why (uop cache maybe?), but the difference is large and easily measurable. |
|
*/ |
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, |
|
XXH64_hash_t seed, |
|
XXH3_f_accumulate_512 f_acc512, |
|
XXH3_f_scrambleAcc f_scramble, |
|
XXH3_f_initCustomSecret f_initSec) |
|
{ |
|
if (seed == 0) |
|
return XXH3_hashLong_64b_internal(input, len, |
|
XXH3_kSecret, sizeof(XXH3_kSecret), |
|
f_acc512, f_scramble); |
|
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
|
f_initSec(secret, seed); |
|
return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), |
|
f_acc512, f_scramble); |
|
} |
|
} |
|
|
|
/* |
|
* It's important for performance that XXH3_hashLong is not inlined. |
|
*/ |
|
XXH_NO_INLINE XXH64_hash_t |
|
XXH3_hashLong_64b_withSeed(const void* input, size_t len, |
|
XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) |
|
{ |
|
(void)secret; (void)secretLen; |
|
return XXH3_hashLong_64b_withSeed_internal(input, len, seed, |
|
XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
|
} |
|
|
|
|
|
typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, |
|
XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
|
|
|
XXH_FORCE_INLINE XXH64_hash_t |
|
XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, |
|
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
|
XXH3_hashLong64_f f_hashLong) |
|
{ |
|
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
|
/* |
|
* If an action is to be taken if `secretLen` condition is not respected, |
|
* it should be done here. |
|
* For now, it's a contract pre-condition. |
|
* Adding a check and a branch here would cost performance at every hash. |
|
* Also, note that function signature doesn't offer room to return an error. |
|
*/ |
|
if (len <= 16) |
|
return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
|
if (len <= 128) |
|
return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
|
if (len <= XXH3_MIDSIZE_MAX) |
|
return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
|
return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); |
|
} |
|
|
|
|
|
/* === Public entry point === */ |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) |
|
{ |
|
return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH64_hash_t |
|
XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
|
{ |
|
return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH64_hash_t |
|
XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
|
{ |
|
return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); |
|
} |
|
|
|
XXH_PUBLIC_API XXH64_hash_t |
|
XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed) |
|
{ |
|
if (len <= XXH3_MIDSIZE_MAX) |
|
return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
|
return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize); |
|
} |
|
|
|
|
|
/* === XXH3 streaming === */ |
|
|
|
/* |
|
* Malloc's a pointer that is always aligned to align. |
|
* |
|
* This must be freed with `XXH_alignedFree()`. |
|
* |
|
* malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte |
|
* alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 |
|
* or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. |
|
* |
|
* This underalignment previously caused a rather obvious crash which went |
|
* completely unnoticed due to XXH3_createState() not actually being tested. |
|
* Credit to RedSpah for noticing this bug. |
|
* |
|
* The alignment is done manually: Functions like posix_memalign or _mm_malloc |
|
* are avoided: To maintain portability, we would have to write a fallback |
|
* like this anyways, and besides, testing for the existence of library |
|
* functions without relying on external build tools is impossible. |
|
* |
|
* The method is simple: Overallocate, manually align, and store the offset |
|
* to the original behind the returned pointer. |
|
* |
|
* Align must be a power of 2 and 8 <= align <= 128. |
|
*/ |
|
static void* XXH_alignedMalloc(size_t s, size_t align) |
|
{ |
|
XXH_ASSERT(align <= 128 && align >= 8); /* range check */ |
|
XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ |
|
XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ |
|
{ /* Overallocate to make room for manual realignment and an offset byte */ |
|
xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); |
|
if (base != NULL) { |
|
/* |
|
* Get the offset needed to align this pointer. |
|
* |
|
* Even if the returned pointer is aligned, there will always be |
|
* at least one byte to store the offset to the original pointer. |
|
*/ |
|
size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ |
|
/* Add the offset for the now-aligned pointer */ |
|
xxh_u8* ptr = base + offset; |
|
|
|
XXH_ASSERT((size_t)ptr % align == 0); |
|
|
|
/* Store the offset immediately before the returned pointer. */ |
|
ptr[-1] = (xxh_u8)offset; |
|
return ptr; |
|
} |
|
return NULL; |
|
} |
|
} |
|
/* |
|
* Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass |
|
* normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. |
|
*/ |
|
static void XXH_alignedFree(void* p) |
|
{ |
|
if (p != NULL) { |
|
xxh_u8* ptr = (xxh_u8*)p; |
|
/* Get the offset byte we added in XXH_malloc. */ |
|
xxh_u8 offset = ptr[-1]; |
|
/* Free the original malloc'd pointer */ |
|
xxh_u8* base = ptr - offset; |
|
XXH_free(base); |
|
} |
|
} |
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) |
|
{ |
|
XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); |
|
if (state==NULL) return NULL; |
|
XXH3_INITSTATE(state); |
|
return state; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) |
|
{ |
|
XXH_alignedFree(statePtr); |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API void |
|
XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) |
|
{ |
|
XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); |
|
} |
|
|
|
static void |
|
XXH3_reset_internal(XXH3_state_t* statePtr, |
|
XXH64_hash_t seed, |
|
const void* secret, size_t secretSize) |
|
{ |
|
size_t const initStart = offsetof(XXH3_state_t, bufferedSize); |
|
size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; |
|
XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); |
|
XXH_ASSERT(statePtr != NULL); |
|
/* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ |
|
memset((char*)statePtr + initStart, 0, initLength); |
|
statePtr->acc[0] = XXH_PRIME32_3; |
|
statePtr->acc[1] = XXH_PRIME64_1; |
|
statePtr->acc[2] = XXH_PRIME64_2; |
|
statePtr->acc[3] = XXH_PRIME64_3; |
|
statePtr->acc[4] = XXH_PRIME64_4; |
|
statePtr->acc[5] = XXH_PRIME32_2; |
|
statePtr->acc[6] = XXH_PRIME64_5; |
|
statePtr->acc[7] = XXH_PRIME32_1; |
|
statePtr->seed = seed; |
|
statePtr->useSeed = (seed != 0); |
|
statePtr->extSecret = (const unsigned char*)secret; |
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
|
statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; |
|
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_64bits_reset(XXH3_state_t* statePtr) |
|
{ |
|
if (statePtr == NULL) return XXH_ERROR; |
|
XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
|
{ |
|
if (statePtr == NULL) return XXH_ERROR; |
|
XXH3_reset_internal(statePtr, 0, secret, secretSize); |
|
if (secret == NULL) return XXH_ERROR; |
|
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
|
{ |
|
if (statePtr == NULL) return XXH_ERROR; |
|
if (seed==0) return XXH3_64bits_reset(statePtr); |
|
if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) |
|
XXH3_initCustomSecret(statePtr->customSecret, seed); |
|
XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64) |
|
{ |
|
if (statePtr == NULL) return XXH_ERROR; |
|
if (secret == NULL) return XXH_ERROR; |
|
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
|
XXH3_reset_internal(statePtr, seed64, secret, secretSize); |
|
statePtr->useSeed = 1; /* always, even if seed64==0 */ |
|
return XXH_OK; |
|
} |
|
|
|
/* Note : when XXH3_consumeStripes() is invoked, |
|
* there must be a guarantee that at least one more byte must be consumed from input |
|
* so that the function can blindly consume all stripes using the "normal" secret segment */ |
|
XXH_FORCE_INLINE void |
|
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, |
|
size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, |
|
const xxh_u8* XXH_RESTRICT input, size_t nbStripes, |
|
const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, |
|
XXH3_f_accumulate_512 f_acc512, |
|
XXH3_f_scrambleAcc f_scramble) |
|
{ |
|
XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ |
|
XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); |
|
if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { |
|
/* need a scrambling operation */ |
|
size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; |
|
size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; |
|
XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); |
|
f_scramble(acc, secret + secretLimit); |
|
XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); |
|
*nbStripesSoFarPtr = nbStripesAfterBlock; |
|
} else { |
|
XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); |
|
*nbStripesSoFarPtr += nbStripes; |
|
} |
|
} |
|
|
|
#ifndef XXH3_STREAM_USE_STACK |
|
# ifndef __clang__ /* clang doesn't need additional stack space */ |
|
# define XXH3_STREAM_USE_STACK 1 |
|
# endif |
|
#endif |
|
/* |
|
* Both XXH3_64bits_update and XXH3_128bits_update use this routine. |
|
*/ |
|
XXH_FORCE_INLINE XXH_errorcode |
|
XXH3_update(XXH3_state_t* XXH_RESTRICT const state, |
|
const xxh_u8* XXH_RESTRICT input, size_t len, |
|
XXH3_f_accumulate_512 f_acc512, |
|
XXH3_f_scrambleAcc f_scramble) |
|
{ |
|
if (input==NULL) { |
|
XXH_ASSERT(len == 0); |
|
return XXH_OK; |
|
} |
|
|
|
XXH_ASSERT(state != NULL); |
|
{ const xxh_u8* const bEnd = input + len; |
|
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
|
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
|
/* For some reason, gcc and MSVC seem to suffer greatly |
|
* when operating accumulators directly into state. |
|
* Operating into stack space seems to enable proper optimization. |
|
* clang, on the other hand, doesn't seem to need this trick */ |
|
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc)); |
|
#else |
|
xxh_u64* XXH_RESTRICT const acc = state->acc; |
|
#endif |
|
state->totalLen += len; |
|
XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); |
|
|
|
/* small input : just fill in tmp buffer */ |
|
if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { |
|
XXH_memcpy(state->buffer + state->bufferedSize, input, len); |
|
state->bufferedSize += (XXH32_hash_t)len; |
|
return XXH_OK; |
|
} |
|
|
|
/* total input is now > XXH3_INTERNALBUFFER_SIZE */ |
|
#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) |
|
XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ |
|
|
|
/* |
|
* Internal buffer is partially filled (always, except at beginning) |
|
* Complete it, then consume it. |
|
*/ |
|
if (state->bufferedSize) { |
|
size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; |
|
XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); |
|
input += loadSize; |
|
XXH3_consumeStripes(acc, |
|
&state->nbStripesSoFar, state->nbStripesPerBlock, |
|
state->buffer, XXH3_INTERNALBUFFER_STRIPES, |
|
secret, state->secretLimit, |
|
f_acc512, f_scramble); |
|
state->bufferedSize = 0; |
|
} |
|
XXH_ASSERT(input < bEnd); |
|
|
|
/* large input to consume : ingest per full block */ |
|
if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) { |
|
size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; |
|
XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar); |
|
/* join to current block's end */ |
|
{ size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar; |
|
XXH_ASSERT(nbStripes <= nbStripes); |
|
XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512); |
|
f_scramble(acc, secret + state->secretLimit); |
|
state->nbStripesSoFar = 0; |
|
input += nbStripesToEnd * XXH_STRIPE_LEN; |
|
nbStripes -= nbStripesToEnd; |
|
} |
|
/* consume per entire blocks */ |
|
while(nbStripes >= state->nbStripesPerBlock) { |
|
XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512); |
|
f_scramble(acc, secret + state->secretLimit); |
|
input += state->nbStripesPerBlock * XXH_STRIPE_LEN; |
|
nbStripes -= state->nbStripesPerBlock; |
|
} |
|
/* consume last partial block */ |
|
XXH3_accumulate(acc, input, secret, nbStripes, f_acc512); |
|
input += nbStripes * XXH_STRIPE_LEN; |
|
XXH_ASSERT(input < bEnd); /* at least some bytes left */ |
|
state->nbStripesSoFar = nbStripes; |
|
/* buffer predecessor of last partial stripe */ |
|
XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
|
XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN); |
|
} else { |
|
/* content to consume <= block size */ |
|
/* Consume input by a multiple of internal buffer size */ |
|
if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { |
|
const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; |
|
do { |
|
XXH3_consumeStripes(acc, |
|
&state->nbStripesSoFar, state->nbStripesPerBlock, |
|
input, XXH3_INTERNALBUFFER_STRIPES, |
|
secret, state->secretLimit, |
|
f_acc512, f_scramble); |
|
input += XXH3_INTERNALBUFFER_SIZE; |
|
} while (input<limit); |
|
/* buffer predecessor of last partial stripe */ |
|
XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
|
} |
|
} |
|
|
|
/* Some remaining input (always) : buffer it */ |
|
XXH_ASSERT(input < bEnd); |
|
XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); |
|
XXH_ASSERT(state->bufferedSize == 0); |
|
XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); |
|
state->bufferedSize = (XXH32_hash_t)(bEnd-input); |
|
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
|
/* save stack accumulators into state */ |
|
memcpy(state->acc, acc, sizeof(acc)); |
|
#endif |
|
} |
|
|
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) |
|
{ |
|
return XXH3_update(state, (const xxh_u8*)input, len, |
|
XXH3_accumulate_512, XXH3_scrambleAcc); |
|
} |
|
|
|
|
|
XXH_FORCE_INLINE void |
|
XXH3_digest_long (XXH64_hash_t* acc, |
|
const XXH3_state_t* state, |
|
const unsigned char* secret) |
|
{ |
|
/* |
|
* Digest on a local copy. This way, the state remains unaltered, and it can |
|
* continue ingesting more input afterwards. |
|
*/ |
|
XXH_memcpy(acc, state->acc, sizeof(state->acc)); |
|
if (state->bufferedSize >= XXH_STRIPE_LEN) { |
|
size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; |
|
size_t nbStripesSoFar = state->nbStripesSoFar; |
|
XXH3_consumeStripes(acc, |
|
&nbStripesSoFar, state->nbStripesPerBlock, |
|
state->buffer, nbStripes, |
|
secret, state->secretLimit, |
|
XXH3_accumulate_512, XXH3_scrambleAcc); |
|
/* last stripe */ |
|
XXH3_accumulate_512(acc, |
|
state->buffer + state->bufferedSize - XXH_STRIPE_LEN, |
|
secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
|
} else { /* bufferedSize < XXH_STRIPE_LEN */ |
|
xxh_u8 lastStripe[XXH_STRIPE_LEN]; |
|
size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; |
|
XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ |
|
XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); |
|
XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); |
|
XXH3_accumulate_512(acc, |
|
lastStripe, |
|
secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
|
} |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) |
|
{ |
|
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
|
if (state->totalLen > XXH3_MIDSIZE_MAX) { |
|
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
|
XXH3_digest_long(acc, state, secret); |
|
return XXH3_mergeAccs(acc, |
|
secret + XXH_SECRET_MERGEACCS_START, |
|
(xxh_u64)state->totalLen * XXH_PRIME64_1); |
|
} |
|
/* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ |
|
if (state->useSeed) |
|
return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
|
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), |
|
secret, state->secretLimit + XXH_STRIPE_LEN); |
|
} |
|
|
|
|
|
|
|
/* ========================================== |
|
* XXH3 128 bits (a.k.a XXH128) |
|
* ========================================== |
|
* XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, |
|
* even without counting the significantly larger output size. |
|
* |
|
* For example, extra steps are taken to avoid the seed-dependent collisions |
|
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
|
* |
|
* This strength naturally comes at the cost of some speed, especially on short |
|
* lengths. Note that longer hashes are about as fast as the 64-bit version |
|
* due to it using only a slight modification of the 64-bit loop. |
|
* |
|
* XXH128 is also more oriented towards 64-bit machines. It is still extremely |
|
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
|
*/ |
|
|
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
/* A doubled version of 1to3_64b with different constants. */ |
|
XXH_ASSERT(input != NULL); |
|
XXH_ASSERT(1 <= len && len <= 3); |
|
XXH_ASSERT(secret != NULL); |
|
/* |
|
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
|
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
|
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
|
*/ |
|
{ xxh_u8 const c1 = input[0]; |
|
xxh_u8 const c2 = input[len >> 1]; |
|
xxh_u8 const c3 = input[len - 1]; |
|
xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) |
|
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
|
xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); |
|
xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
|
xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; |
|
xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; |
|
xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; |
|
XXH128_hash_t h128; |
|
h128.low64 = XXH64_avalanche(keyed_lo); |
|
h128.high64 = XXH64_avalanche(keyed_hi); |
|
return h128; |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(input != NULL); |
|
XXH_ASSERT(secret != NULL); |
|
XXH_ASSERT(4 <= len && len <= 8); |
|
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
|
{ xxh_u32 const input_lo = XXH_readLE32(input); |
|
xxh_u32 const input_hi = XXH_readLE32(input + len - 4); |
|
xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); |
|
xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; |
|
xxh_u64 const keyed = input_64 ^ bitflip; |
|
|
|
/* Shift len to the left to ensure it is even, this avoids even multiplies. */ |
|
XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); |
|
|
|
m128.high64 += (m128.low64 << 1); |
|
m128.low64 ^= (m128.high64 >> 3); |
|
|
|
m128.low64 = XXH_xorshift64(m128.low64, 35); |
|
m128.low64 *= 0x9FB21C651E98DF25ULL; |
|
m128.low64 = XXH_xorshift64(m128.low64, 28); |
|
m128.high64 = XXH3_avalanche(m128.high64); |
|
return m128; |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(input != NULL); |
|
XXH_ASSERT(secret != NULL); |
|
XXH_ASSERT(9 <= len && len <= 16); |
|
{ xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; |
|
xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; |
|
xxh_u64 const input_lo = XXH_readLE64(input); |
|
xxh_u64 input_hi = XXH_readLE64(input + len - 8); |
|
XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); |
|
/* |
|
* Put len in the middle of m128 to ensure that the length gets mixed to |
|
* both the low and high bits in the 128x64 multiply below. |
|
*/ |
|
m128.low64 += (xxh_u64)(len - 1) << 54; |
|
input_hi ^= bitfliph; |
|
/* |
|
* Add the high 32 bits of input_hi to the high 32 bits of m128, then |
|
* add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to |
|
* the high 64 bits of m128. |
|
* |
|
* The best approach to this operation is different on 32-bit and 64-bit. |
|
*/ |
|
if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ |
|
/* |
|
* 32-bit optimized version, which is more readable. |
|
* |
|
* On 32-bit, it removes an ADC and delays a dependency between the two |
|
* halves of m128.high64, but it generates an extra mask on 64-bit. |
|
*/ |
|
m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); |
|
} else { |
|
/* |
|
* 64-bit optimized (albeit more confusing) version. |
|
* |
|
* Uses some properties of addition and multiplication to remove the mask: |
|
* |
|
* Let: |
|
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
|
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
|
* c = XXH_PRIME32_2 |
|
* |
|
* a + (b * c) |
|
* Inverse Property: x + y - x == y |
|
* a + (b * (1 + c - 1)) |
|
* Distributive Property: x * (y + z) == (x * y) + (x * z) |
|
* a + (b * 1) + (b * (c - 1)) |
|
* Identity Property: x * 1 == x |
|
* a + b + (b * (c - 1)) |
|
* |
|
* Substitute a, b, and c: |
|
* input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
|
* |
|
* Since input_hi.hi + input_hi.lo == input_hi, we get this: |
|
* input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
|
*/ |
|
m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); |
|
} |
|
/* m128 ^= XXH_swap64(m128 >> 64); */ |
|
m128.low64 ^= XXH_swap64(m128.high64); |
|
|
|
{ /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ |
|
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); |
|
h128.high64 += m128.high64 * XXH_PRIME64_2; |
|
|
|
h128.low64 = XXH3_avalanche(h128.low64); |
|
h128.high64 = XXH3_avalanche(h128.high64); |
|
return h128; |
|
} } |
|
} |
|
|
|
/* |
|
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
|
*/ |
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(len <= 16); |
|
{ if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); |
|
if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); |
|
if (len) return XXH3_len_1to3_128b(input, len, secret, seed); |
|
{ XXH128_hash_t h128; |
|
xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); |
|
xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); |
|
h128.low64 = XXH64_avalanche(seed ^ bitflipl); |
|
h128.high64 = XXH64_avalanche( seed ^ bitfliph); |
|
return h128; |
|
} } |
|
} |
|
|
|
/* |
|
* A bit slower than XXH3_mix16B, but handles multiply by zero better. |
|
*/ |
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, |
|
const xxh_u8* secret, XXH64_hash_t seed) |
|
{ |
|
acc.low64 += XXH3_mix16B (input_1, secret+0, seed); |
|
acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); |
|
acc.high64 += XXH3_mix16B (input_2, secret+16, seed); |
|
acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); |
|
return acc; |
|
} |
|
|
|
|
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
|
const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
|
XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
|
XXH_ASSERT(16 < len && len <= 128); |
|
|
|
{ XXH128_hash_t acc; |
|
acc.low64 = len * XXH_PRIME64_1; |
|
acc.high64 = 0; |
|
if (len > 32) { |
|
if (len > 64) { |
|
if (len > 96) { |
|
acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); |
|
} |
|
acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); |
|
} |
|
acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); |
|
} |
|
acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); |
|
{ XXH128_hash_t h128; |
|
h128.low64 = acc.low64 + acc.high64; |
|
h128.high64 = (acc.low64 * XXH_PRIME64_1) |
|
+ (acc.high64 * XXH_PRIME64_4) |
|
+ ((len - seed) * XXH_PRIME64_2); |
|
h128.low64 = XXH3_avalanche(h128.low64); |
|
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
|
return h128; |
|
} |
|
} |
|
} |
|
|
|
XXH_NO_INLINE XXH128_hash_t |
|
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
|
const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
|
XXH64_hash_t seed) |
|
{ |
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
|
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
|
|
|
{ XXH128_hash_t acc; |
|
int const nbRounds = (int)len / 32; |
|
int i; |
|
acc.low64 = len * XXH_PRIME64_1; |
|
acc.high64 = 0; |
|
for (i=0; i<4; i++) { |
|
acc = XXH128_mix32B(acc, |
|
input + (32 * i), |
|
input + (32 * i) + 16, |
|
secret + (32 * i), |
|
seed); |
|
} |
|
acc.low64 = XXH3_avalanche(acc.low64); |
|
acc.high64 = XXH3_avalanche(acc.high64); |
|
XXH_ASSERT(nbRounds >= 4); |
|
for (i=4 ; i < nbRounds; i++) { |
|
acc = XXH128_mix32B(acc, |
|
input + (32 * i), |
|
input + (32 * i) + 16, |
|
secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), |
|
seed); |
|
} |
|
/* last bytes */ |
|
acc = XXH128_mix32B(acc, |
|
input + len - 16, |
|
input + len - 32, |
|
secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
|
0ULL - seed); |
|
|
|
{ XXH128_hash_t h128; |
|
h128.low64 = acc.low64 + acc.high64; |
|
h128.high64 = (acc.low64 * XXH_PRIME64_1) |
|
+ (acc.high64 * XXH_PRIME64_4) |
|
+ ((len - seed) * XXH_PRIME64_2); |
|
h128.low64 = XXH3_avalanche(h128.low64); |
|
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
|
return h128; |
|
} |
|
} |
|
} |
|
|
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, |
|
const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
|
XXH3_f_accumulate_512 f_acc512, |
|
XXH3_f_scrambleAcc f_scramble) |
|
{ |
|
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
|
|
|
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble); |
|
|
|
/* converge into final hash */ |
|
XXH_STATIC_ASSERT(sizeof(acc) == 64); |
|
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
|
{ XXH128_hash_t h128; |
|
h128.low64 = XXH3_mergeAccs(acc, |
|
secret + XXH_SECRET_MERGEACCS_START, |
|
(xxh_u64)len * XXH_PRIME64_1); |
|
h128.high64 = XXH3_mergeAccs(acc, |
|
secret + secretSize |
|
- sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
|
~((xxh_u64)len * XXH_PRIME64_2)); |
|
return h128; |
|
} |
|
} |
|
|
|
/* |
|
* It's important for performance that XXH3_hashLong is not inlined. |
|
*/ |
|
XXH_NO_INLINE XXH128_hash_t |
|
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, |
|
XXH64_hash_t seed64, |
|
const void* XXH_RESTRICT secret, size_t secretLen) |
|
{ |
|
(void)seed64; (void)secret; (void)secretLen; |
|
return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), |
|
XXH3_accumulate_512, XXH3_scrambleAcc); |
|
} |
|
|
|
/* |
|
* It's important for performance to pass @secretLen (when it's static) |
|
* to the compiler, so that it can properly optimize the vectorized loop. |
|
*/ |
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, |
|
XXH64_hash_t seed64, |
|
const void* XXH_RESTRICT secret, size_t secretLen) |
|
{ |
|
(void)seed64; |
|
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, |
|
XXH3_accumulate_512, XXH3_scrambleAcc); |
|
} |
|
|
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, |
|
XXH64_hash_t seed64, |
|
XXH3_f_accumulate_512 f_acc512, |
|
XXH3_f_scrambleAcc f_scramble, |
|
XXH3_f_initCustomSecret f_initSec) |
|
{ |
|
if (seed64 == 0) |
|
return XXH3_hashLong_128b_internal(input, len, |
|
XXH3_kSecret, sizeof(XXH3_kSecret), |
|
f_acc512, f_scramble); |
|
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
|
f_initSec(secret, seed64); |
|
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), |
|
f_acc512, f_scramble); |
|
} |
|
} |
|
|
|
/* |
|
* It's important for performance that XXH3_hashLong is not inlined. |
|
*/ |
|
XXH_NO_INLINE XXH128_hash_t |
|
XXH3_hashLong_128b_withSeed(const void* input, size_t len, |
|
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) |
|
{ |
|
(void)secret; (void)secretLen; |
|
return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, |
|
XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
|
} |
|
|
|
typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, |
|
XXH64_hash_t, const void* XXH_RESTRICT, size_t); |
|
|
|
XXH_FORCE_INLINE XXH128_hash_t |
|
XXH3_128bits_internal(const void* input, size_t len, |
|
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
|
XXH3_hashLong128_f f_hl128) |
|
{ |
|
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
|
/* |
|
* If an action is to be taken if `secret` conditions are not respected, |
|
* it should be done here. |
|
* For now, it's a contract pre-condition. |
|
* Adding a check and a branch here would cost performance at every hash. |
|
*/ |
|
if (len <= 16) |
|
return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
|
if (len <= 128) |
|
return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
|
if (len <= XXH3_MIDSIZE_MAX) |
|
return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
|
return f_hl128(input, len, seed64, secret, secretLen); |
|
} |
|
|
|
|
|
/* === Public XXH128 API === */ |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) |
|
{ |
|
return XXH3_128bits_internal(input, len, 0, |
|
XXH3_kSecret, sizeof(XXH3_kSecret), |
|
XXH3_hashLong_128b_default); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH128_hash_t |
|
XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
|
{ |
|
return XXH3_128bits_internal(input, len, 0, |
|
(const xxh_u8*)secret, secretSize, |
|
XXH3_hashLong_128b_withSecret); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH128_hash_t |
|
XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
|
{ |
|
return XXH3_128bits_internal(input, len, seed, |
|
XXH3_kSecret, sizeof(XXH3_kSecret), |
|
XXH3_hashLong_128b_withSeed); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH128_hash_t |
|
XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed) |
|
{ |
|
if (len <= XXH3_MIDSIZE_MAX) |
|
return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
|
return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH128_hash_t |
|
XXH128(const void* input, size_t len, XXH64_hash_t seed) |
|
{ |
|
return XXH3_128bits_withSeed(input, len, seed); |
|
} |
|
|
|
|
|
/* === XXH3 128-bit streaming === */ |
|
|
|
/* |
|
* All initialization and update functions are identical to 64-bit streaming variant. |
|
* The only difference is the finalization routine. |
|
*/ |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_128bits_reset(XXH3_state_t* statePtr) |
|
{ |
|
return XXH3_64bits_reset(statePtr); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
|
{ |
|
return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
|
{ |
|
return XXH3_64bits_reset_withSeed(statePtr, seed); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed) |
|
{ |
|
return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) |
|
{ |
|
return XXH3_update(state, (const xxh_u8*)input, len, |
|
XXH3_accumulate_512, XXH3_scrambleAcc); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) |
|
{ |
|
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
|
if (state->totalLen > XXH3_MIDSIZE_MAX) { |
|
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
|
XXH3_digest_long(acc, state, secret); |
|
XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
|
{ XXH128_hash_t h128; |
|
h128.low64 = XXH3_mergeAccs(acc, |
|
secret + XXH_SECRET_MERGEACCS_START, |
|
(xxh_u64)state->totalLen * XXH_PRIME64_1); |
|
h128.high64 = XXH3_mergeAccs(acc, |
|
secret + state->secretLimit + XXH_STRIPE_LEN |
|
- sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
|
~((xxh_u64)state->totalLen * XXH_PRIME64_2)); |
|
return h128; |
|
} |
|
} |
|
/* len <= XXH3_MIDSIZE_MAX : short code */ |
|
if (state->seed) |
|
return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
|
return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), |
|
secret, state->secretLimit + XXH_STRIPE_LEN); |
|
} |
|
|
|
/* 128-bit utility functions */ |
|
|
|
#include <string.h> /* memcmp, memcpy */ |
|
|
|
/* return : 1 is equal, 0 if different */ |
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) |
|
{ |
|
/* note : XXH128_hash_t is compact, it has no padding byte */ |
|
return !(memcmp(&h1, &h2, sizeof(h1))); |
|
} |
|
|
|
/* This prototype is compatible with stdlib's qsort(). |
|
* return : >0 if *h128_1 > *h128_2 |
|
* <0 if *h128_1 < *h128_2 |
|
* =0 if *h128_1 == *h128_2 */ |
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) |
|
{ |
|
XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; |
|
XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; |
|
int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); |
|
/* note : bets that, in most cases, hash values are different */ |
|
if (hcmp) return hcmp; |
|
return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); |
|
} |
|
|
|
|
|
/*====== Canonical representation ======*/ |
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API void |
|
XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) |
|
{ |
|
XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); |
|
if (XXH_CPU_LITTLE_ENDIAN) { |
|
hash.high64 = XXH_swap64(hash.high64); |
|
hash.low64 = XXH_swap64(hash.low64); |
|
} |
|
XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); |
|
XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH128_hash_t |
|
XXH128_hashFromCanonical(const XXH128_canonical_t* src) |
|
{ |
|
XXH128_hash_t h; |
|
h.high64 = XXH_readBE64(src); |
|
h.low64 = XXH_readBE64(src->digest + 8); |
|
return h; |
|
} |
|
|
|
|
|
|
|
/* ========================================== |
|
* Secret generators |
|
* ========================================== |
|
*/ |
|
#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) |
|
|
|
static void XXH3_combine16(void* dst, XXH128_hash_t h128) |
|
{ |
|
XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); |
|
XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize) |
|
{ |
|
XXH_ASSERT(secretBuffer != NULL); |
|
if (secretBuffer == NULL) return XXH_ERROR; |
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
|
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
|
if (customSeedSize == 0) { |
|
customSeed = XXH3_kSecret; |
|
customSeedSize = XXH_SECRET_DEFAULT_SIZE; |
|
} |
|
XXH_ASSERT(customSeed != NULL); |
|
if (customSeed == NULL) return XXH_ERROR; |
|
|
|
/* Fill secretBuffer with a copy of customSeed - repeat as needed */ |
|
{ size_t pos = 0; |
|
while (pos < secretSize) { |
|
size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); |
|
memcpy((char*)secretBuffer + pos, customSeed, toCopy); |
|
pos += toCopy; |
|
} } |
|
|
|
{ size_t const nbSeg16 = secretSize / 16; |
|
size_t n; |
|
XXH128_canonical_t scrambler; |
|
XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); |
|
for (n=0; n<nbSeg16; n++) { |
|
XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n); |
|
XXH3_combine16((char*)secretBuffer + n*16, h128); |
|
} |
|
/* last segment */ |
|
XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler)); |
|
} |
|
return XXH_OK; |
|
} |
|
|
|
/*! @ingroup xxh3_family */ |
|
XXH_PUBLIC_API void |
|
XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed) |
|
{ |
|
XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
|
XXH3_initCustomSecret(secret, seed); |
|
XXH_ASSERT(secretBuffer != NULL); |
|
memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE); |
|
} |
|
|
|
|
|
|
|
/* Pop our optimization override from above */ |
|
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
|
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
|
&& defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
|
# pragma GCC pop_options |
|
#endif |
|
|
|
#endif /* XXH_NO_LONG_LONG */ |
|
|
|
#endif /* XXH_NO_XXH3 */ |
|
|
|
/*! |
|
* @} |
|
*/ |
|
#endif /* XXH_IMPLEMENTATION */ |
|
|
|
|
|
#if defined (__cplusplus) |
|
} |
|
#endif
|
|
|