mirror of https://github.com/grpc/grpc.git
The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
https://grpc.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
300 lines
11 KiB
300 lines
11 KiB
#!/usr/bin/env python3 |
|
|
|
# Copyright 2022 The gRPC Authors |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# A script to fetch total cpu seconds and memory data from prometheus. |
|
# example usage: python3 prometheus.py |
|
# --url=http://prometheus.prometheus.svc.cluster.local:9090 |
|
# --pod_type=driver --pod_type=clients --container_name=main |
|
# --container_name=sidecar |
|
"""Perform Prometheus range queries to obtain cpu and memory data. |
|
|
|
This module performs range queries through Prometheus API to obtain |
|
total cpu seconds and memory during a test run for given container |
|
in given pods. The cpu data obtained is total cpu second used within |
|
given period of time. The memory data was instant memory usage at |
|
the query time. |
|
""" |
|
import argparse |
|
import json |
|
import logging |
|
import statistics |
|
from typing import Any, Dict, List |
|
|
|
from dateutil import parser |
|
import requests |
|
|
|
|
|
class Prometheus: |
|
"""Objects which holds the start time, end time and query URL.""" |
|
|
|
def __init__( |
|
self, |
|
url: str, |
|
start: str, |
|
end: str, |
|
): |
|
self.url = url |
|
self.start = start |
|
self.end = end |
|
|
|
def _fetch_by_query(self, query: str) -> Dict[str, Any]: |
|
"""Fetches the given query with time range. |
|
|
|
Fetch the given query within a time range. The pulling |
|
interval is every 5s, the actual data from the query is |
|
a time series. |
|
""" |
|
resp = requests.get( |
|
self.url + '/api/v1/query_range', |
|
{ |
|
'query': query, |
|
'start': self.start, |
|
'end': self.end, |
|
'step': 5 |
|
}, |
|
) |
|
resp.raise_for_status() |
|
return resp.json() |
|
|
|
def _fetch_cpu_for_pod(self, container_matcher: str, |
|
pod_name: str) -> Dict[str, List[float]]: |
|
"""Fetches the cpu data for each pod. |
|
|
|
Fetch total cpu seconds during the time range specified in the Prometheus instance |
|
for a pod. After obtain the cpu seconds, the data are trimmed from time series to |
|
a data list and saved in the Dict that keyed by the container names. |
|
|
|
Args: |
|
container_matcher: A string consist one or more container name separated by |. |
|
""" |
|
query = ( |
|
'container_cpu_usage_seconds_total{job="kubernetes-cadvisor",pod="' |
|
+ pod_name + '",container=' + container_matcher + '}') |
|
logging.debug('running prometheus query for cpu: %s', query) |
|
cpu_data = self._fetch_by_query(query) |
|
logging.debug('raw cpu data: %s', str(cpu_data)) |
|
cpu_container_name_to_data_list = get_data_list_from_timeseries( |
|
cpu_data) |
|
return cpu_container_name_to_data_list |
|
|
|
def _fetch_memory_for_pod(self, container_matcher: str, |
|
pod_name: str) -> Dict[str, List[float]]: |
|
"""Fetches memory data for each pod. |
|
|
|
Fetch total memory data during the time range specified in the Prometheus instance |
|
for a pod. After obtain the memory data, the data are trimmed from time series to |
|
a data list and saved in the Dict that keyed by the container names. |
|
|
|
Args: |
|
container_matcher: A string consist one or more container name separated by |. |
|
""" |
|
query = ( |
|
'container_memory_usage_bytes{job="kubernetes-cadvisor",pod="' + |
|
pod_name + '",container=' + container_matcher + "}") |
|
|
|
logging.debug('running prometheus query for memory: %s', query) |
|
memory_data = self._fetch_by_query(query) |
|
|
|
logging.debug('raw memory data: %s', str(memory_data)) |
|
memory_container_name_to_data_list = get_data_list_from_timeseries( |
|
memory_data) |
|
|
|
return memory_container_name_to_data_list |
|
|
|
def fetch_cpu_and_memory_data( |
|
self, container_list: List[str], |
|
pod_dict: Dict[str, List[str]]) -> Dict[str, Any]: |
|
"""Fetch total cpu seconds and memory data for multiple pods. |
|
|
|
Args: |
|
container_list: A list of container names to fetch the data for. |
|
pod_dict: the pods to fetch data for, the pod_dict is keyed by |
|
role of the pod: clients, driver and servers. The values |
|
for the pod_dict are the list of pod names that consist |
|
the same role specified in the key. |
|
""" |
|
container_matcher = construct_container_matcher(container_list) |
|
processed_data = {} |
|
for role, pod_names in pod_dict.items(): |
|
pod_data = {} |
|
for pod in pod_names: |
|
container_data = {} |
|
for container, data in self._fetch_cpu_for_pod( |
|
container_matcher, pod).items(): |
|
container_data[container] = {} |
|
container_data[container][ |
|
'cpuSeconds'] = compute_total_cpu_seconds(data) |
|
|
|
for container, data in self._fetch_memory_for_pod( |
|
container_matcher, pod).items(): |
|
container_data[container][ |
|
'memoryMean'] = compute_average_memory_usage(data) |
|
|
|
pod_data[pod] = container_data |
|
processed_data[role] = pod_data |
|
return processed_data |
|
|
|
|
|
def construct_container_matcher(container_list: List[str]) -> str: |
|
"""Constructs the container matching string used in the |
|
prometheus query.""" |
|
if len(container_list) == 0: |
|
raise Exception('no container name provided') |
|
|
|
containers_to_fetch = '"' |
|
if len(container_list) == 1: |
|
containers_to_fetch = container_list[0] |
|
else: |
|
containers_to_fetch = '~"' + container_list[0] |
|
for container in container_list[1:]: |
|
containers_to_fetch = containers_to_fetch + '|' + container |
|
containers_to_fetch = containers_to_fetch + '"' |
|
return containers_to_fetch |
|
|
|
|
|
def get_data_list_from_timeseries(data: Any) -> Dict[str, List[float]]: |
|
"""Constructs a Dict as keys are the container names and |
|
values are a list of data taken from given timeseries data.""" |
|
if data['status'] != 'success': |
|
raise Exception('command failed: ' + data['status'] + str(data)) |
|
if data['data']['resultType'] != 'matrix': |
|
raise Exception('resultType is not matrix: ' + |
|
data['data']['resultType']) |
|
|
|
container_name_to_data_list = {} |
|
for res in data["data"]["result"]: |
|
container_name = res["metric"]["container"] |
|
container_data_timeseries = res["values"] |
|
|
|
container_data = [] |
|
for d in container_data_timeseries: |
|
container_data.append(float(d[1])) |
|
container_name_to_data_list[container_name] = container_data |
|
return container_name_to_data_list |
|
|
|
|
|
def compute_total_cpu_seconds(cpu_data_list: List[float]) -> float: |
|
"""Computes the total cpu seconds by CPUs[end]-CPUs[start].""" |
|
return cpu_data_list[len(cpu_data_list) - 1] - cpu_data_list[0] |
|
|
|
|
|
def compute_average_memory_usage(memory_data_list: List[float]) -> float: |
|
"""Computes the mean and for a given list of data.""" |
|
return statistics.mean(memory_data_list) |
|
|
|
|
|
def construct_pod_dict(node_info_file: str, |
|
pod_types: List[str]) -> Dict[str, List[str]]: |
|
"""Constructs a dict of pod names to be queried. |
|
|
|
Args: |
|
node_info_file: The file path contains the pod names to query. |
|
The pods' names are put into a Dict of list that keyed by the |
|
role name: clients, servers and driver. |
|
""" |
|
with open(node_info_file, 'r') as f: |
|
pod_names = json.load(f) |
|
pod_type_to_name = {'clients': [], 'driver': [], 'servers': []} |
|
|
|
for client in pod_names['Clients']: |
|
pod_type_to_name['clients'].append(client['Name']) |
|
for server in pod_names['Servers']: |
|
pod_type_to_name['servers'].append(server['Name']) |
|
|
|
pod_type_to_name["driver"].append(pod_names['Driver']['Name']) |
|
|
|
pod_names_to_query = {} |
|
for pod_type in pod_types: |
|
pod_names_to_query[pod_type] = pod_type_to_name[pod_type] |
|
return pod_names_to_query |
|
|
|
|
|
def convert_UTC_to_epoch(utc_timestamp: str) -> str: |
|
"""Converts a utc timestamp string to epoch time string.""" |
|
parsed_time = parser.parse(utc_timestamp) |
|
epoch = parsed_time.strftime('%s') |
|
return epoch |
|
|
|
|
|
def main() -> None: |
|
argp = argparse.ArgumentParser( |
|
description='Fetch cpu and memory stats from prometheus') |
|
argp.add_argument('--url', help='Prometheus base url', required=True) |
|
argp.add_argument( |
|
'--scenario_result_file', |
|
default='scenario_result.json', |
|
type=str, |
|
help='File contains epoch seconds for start and end time', |
|
) |
|
argp.add_argument( |
|
'--node_info_file', |
|
default='/var/data/qps_workers/node_info.json', |
|
help='File contains pod name to query the metrics for', |
|
) |
|
argp.add_argument( |
|
'--pod_type', |
|
action='append', |
|
help= |
|
'Pod type to query the metrics for, the options are driver, client and server', |
|
choices=['driver', 'clients', 'servers'], |
|
required=True, |
|
) |
|
argp.add_argument( |
|
'--container_name', |
|
action='append', |
|
help='The container names to query the metrics for', |
|
required=True, |
|
) |
|
argp.add_argument( |
|
'--export_file_name', |
|
default='prometheus_query_result.json', |
|
type=str, |
|
help='Name of exported JSON file.', |
|
) |
|
argp.add_argument( |
|
'--quiet', |
|
default=False, |
|
help='Suppress informative output', |
|
) |
|
args = argp.parse_args() |
|
|
|
if not args.quiet: |
|
logging.getLogger().setLevel(logging.DEBUG) |
|
|
|
with open(args.scenario_result_file, 'r') as q: |
|
scenario_result = json.load(q) |
|
start_time = convert_UTC_to_epoch( |
|
scenario_result['summary']['startTime']) |
|
end_time = convert_UTC_to_epoch(scenario_result['summary']['endTime']) |
|
p = Prometheus( |
|
url=args.url, |
|
start=start_time, |
|
end=end_time, |
|
) |
|
|
|
pod_dict = construct_pod_dict(args.node_info_file, args.pod_type) |
|
processed_data = p.fetch_cpu_and_memory_data( |
|
container_list=args.container_name, pod_dict=pod_dict) |
|
processed_data['testDurationSeconds'] = float(end_time) - float(start_time) |
|
|
|
logging.debug(json.dumps(processed_data, sort_keys=True, indent=4)) |
|
|
|
with open(args.export_file_name, 'w', encoding='utf8') as export_file: |
|
json.dump(processed_data, export_file, sort_keys=True, indent=4) |
|
|
|
|
|
if __name__ == '__main__': |
|
main()
|
|
|