/* * * Copyright 2017 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/core/ext/filters/client_channel/backup_poller.h" #include "src/core/ext/filters/client_channel/parse_address.h" #include "src/core/ext/filters/client_channel/resolver/fake/fake_resolver.h" #include "src/core/ext/filters/client_channel/server_address.h" #include "src/core/lib/gpr/env.h" #include "src/core/lib/gpr/tmpfile.h" #include "src/core/lib/gprpp/map.h" #include "src/core/lib/gprpp/ref_counted_ptr.h" #include "src/core/lib/gprpp/sync.h" #include "src/core/lib/iomgr/sockaddr.h" #include "src/core/lib/security/credentials/fake/fake_credentials.h" #include "src/cpp/client/secure_credentials.h" #include "src/cpp/server/secure_server_credentials.h" #include "test/core/util/port.h" #include "test/core/util/test_config.h" #include "test/cpp/end2end/test_service_impl.h" #include "src/proto/grpc/testing/echo.grpc.pb.h" #include "src/proto/grpc/testing/xds/ads_for_test.grpc.pb.h" #include "src/proto/grpc/testing/xds/eds_for_test.grpc.pb.h" #include "src/proto/grpc/testing/xds/lrs_for_test.grpc.pb.h" #include #include // TODO(dgq): Other scenarios in need of testing: // - Send a serverlist with faulty ip:port addresses (port > 2^16, etc). // - Test reception of invalid serverlist // - Test against a non-LB server. // - Random LB server closing the stream unexpectedly. // // Findings from end to end testing to be covered here: // - Handling of LB servers restart, including reconnection after backing-off // retries. // - Destruction of load balanced channel (and therefore of xds instance) // while: // 1) the internal LB call is still active. This should work by virtue // of the weak reference the LB call holds. The call should be terminated as // part of the xds shutdown process. // 2) the retry timer is active. Again, the weak reference it holds should // prevent a premature call to \a glb_destroy. namespace grpc { namespace testing { namespace { using std::chrono::system_clock; using ::envoy::api::v2::ClusterLoadAssignment; using ::envoy::api::v2::DiscoveryRequest; using ::envoy::api::v2::DiscoveryResponse; using ::envoy::api::v2::FractionalPercent; using ::envoy::service::discovery::v2::AggregatedDiscoveryService; using ::envoy::service::load_stats::v2::ClusterStats; using ::envoy::service::load_stats::v2::LoadReportingService; using ::envoy::service::load_stats::v2::LoadStatsRequest; using ::envoy::service::load_stats::v2::LoadStatsResponse; using ::envoy::service::load_stats::v2::UpstreamLocalityStats; constexpr char kEdsTypeUrl[] = "type.googleapis.com/envoy.api.v2.ClusterLoadAssignment"; constexpr char kDefaultLocalityRegion[] = "xds_default_locality_region"; constexpr char kDefaultLocalityZone[] = "xds_default_locality_zone"; constexpr char kLbDropType[] = "lb"; constexpr char kThrottleDropType[] = "throttle"; constexpr int kDefaultLocalityWeight = 3; constexpr int kDefaultLocalityPriority = 0; constexpr char kBootstrapFile[] = "{\n" " \"xds_servers\": [\n" " {\n" " \"server_uri\": \"fake:///lb\",\n" " \"channel_creds\": [\n" " {\n" " \"type\": \"fake\"\n" " }\n" " ]\n" " }\n" " ],\n" " \"node\": {\n" " \"id\": \"xds_end2end_test\",\n" " \"cluster\": \"test\",\n" " \"metadata\": {\n" " \"foo\": \"bar\"\n" " },\n" " \"locality\": {\n" " \"region\": \"corp\",\n" " \"zone\": \"svl\",\n" " \"subzone\": \"mp3\"\n" " }\n" " }\n" "}\n"; constexpr char kBootstrapFileBad[] = "{\n" " \"xds_servers\": [\n" " {\n" " \"server_uri\": \"fake:///wrong_lb\",\n" " \"channel_creds\": [\n" " {\n" " \"type\": \"fake\"\n" " }\n" " ]\n" " }\n" " ],\n" " \"node\": {\n" " }\n" "}\n"; char* g_bootstrap_file; char* g_bootstrap_file_bad; void WriteBootstrapFiles() { char* bootstrap_file; FILE* out = gpr_tmpfile("xds_bootstrap", &bootstrap_file); fputs(kBootstrapFile, out); fclose(out); g_bootstrap_file = bootstrap_file; out = gpr_tmpfile("xds_bootstrap_bad", &bootstrap_file); fputs(kBootstrapFileBad, out); fclose(out); g_bootstrap_file_bad = bootstrap_file; } // Helper class to minimize the number of unique ports we use for this test. class PortSaver { public: int GetPort() { if (idx_ >= ports_.size()) { ports_.push_back(grpc_pick_unused_port_or_die()); } return ports_[idx_++]; } void Reset() { idx_ = 0; } private: std::vector ports_; size_t idx_ = 0; }; PortSaver* g_port_saver = nullptr; template class CountedService : public ServiceType { public: size_t request_count() { grpc_core::MutexLock lock(&mu_); return request_count_; } size_t response_count() { grpc_core::MutexLock lock(&mu_); return response_count_; } void IncreaseResponseCount() { grpc_core::MutexLock lock(&mu_); ++response_count_; } void IncreaseRequestCount() { grpc_core::MutexLock lock(&mu_); ++request_count_; } void ResetCounters() { grpc_core::MutexLock lock(&mu_); request_count_ = 0; response_count_ = 0; } protected: grpc_core::Mutex mu_; private: size_t request_count_ = 0; size_t response_count_ = 0; }; using BackendService = CountedService; using AdsService = CountedService; using LrsService = CountedService; const char g_kCallCredsMdKey[] = "Balancer should not ..."; const char g_kCallCredsMdValue[] = "... receive me"; class BackendServiceImpl : public BackendService { public: BackendServiceImpl() {} Status Echo(ServerContext* context, const EchoRequest* request, EchoResponse* response) override { // Backend should receive the call credentials metadata. auto call_credentials_entry = context->client_metadata().find(g_kCallCredsMdKey); EXPECT_NE(call_credentials_entry, context->client_metadata().end()); if (call_credentials_entry != context->client_metadata().end()) { EXPECT_EQ(call_credentials_entry->second, g_kCallCredsMdValue); } IncreaseRequestCount(); const auto status = TestServiceImpl::Echo(context, request, response); IncreaseResponseCount(); AddClient(context->peer()); return status; } void Start() {} void Shutdown() {} std::set clients() { grpc_core::MutexLock lock(&clients_mu_); return clients_; } private: void AddClient(const grpc::string& client) { grpc_core::MutexLock lock(&clients_mu_); clients_.insert(client); } grpc_core::Mutex mu_; grpc_core::Mutex clients_mu_; std::set clients_; }; class ClientStats { public: struct LocalityStats { // Converts from proto message class. LocalityStats(const UpstreamLocalityStats& upstream_locality_stats) : total_successful_requests( upstream_locality_stats.total_successful_requests()), total_requests_in_progress( upstream_locality_stats.total_requests_in_progress()), total_error_requests(upstream_locality_stats.total_error_requests()), total_issued_requests( upstream_locality_stats.total_issued_requests()) {} uint64_t total_successful_requests; uint64_t total_requests_in_progress; uint64_t total_error_requests; uint64_t total_issued_requests; }; // Converts from proto message class. ClientStats(const ClusterStats& cluster_stats) : total_dropped_requests_(cluster_stats.total_dropped_requests()) { for (const auto& input_locality_stats : cluster_stats.upstream_locality_stats()) { locality_stats_.emplace(input_locality_stats.locality().sub_zone(), LocalityStats(input_locality_stats)); } for (const auto& input_dropped_requests : cluster_stats.dropped_requests()) { dropped_requests_.emplace(input_dropped_requests.category(), input_dropped_requests.dropped_count()); } } uint64_t total_successful_requests() const { uint64_t sum = 0; for (auto& p : locality_stats_) { sum += p.second.total_successful_requests; } return sum; } uint64_t total_requests_in_progress() const { uint64_t sum = 0; for (auto& p : locality_stats_) { sum += p.second.total_requests_in_progress; } return sum; } uint64_t total_error_requests() const { uint64_t sum = 0; for (auto& p : locality_stats_) { sum += p.second.total_error_requests; } return sum; } uint64_t total_issued_requests() const { uint64_t sum = 0; for (auto& p : locality_stats_) { sum += p.second.total_issued_requests; } return sum; } uint64_t total_dropped_requests() const { return total_dropped_requests_; } uint64_t dropped_requests(const grpc::string& category) const { auto iter = dropped_requests_.find(category); GPR_ASSERT(iter != dropped_requests_.end()); return iter->second; } private: std::map locality_stats_; uint64_t total_dropped_requests_; std::map dropped_requests_; }; // Only the EDS functionality is implemented. class AdsServiceImpl : public AdsService { public: struct ResponseArgs { struct Locality { Locality(const grpc::string& sub_zone, std::vector ports, int lb_weight = kDefaultLocalityWeight, int priority = kDefaultLocalityPriority, std::vector health_statuses = {}) : sub_zone(std::move(sub_zone)), ports(std::move(ports)), lb_weight(lb_weight), priority(priority), health_statuses(std::move(health_statuses)) {} const grpc::string sub_zone; std::vector ports; int lb_weight; int priority; std::vector health_statuses; }; ResponseArgs() = default; explicit ResponseArgs(std::vector locality_list) : locality_list(std::move(locality_list)) {} std::vector locality_list; std::map drop_categories; FractionalPercent::DenominatorType drop_denominator = FractionalPercent::MILLION; }; using Stream = ServerReaderWriter; using ResponseDelayPair = std::pair; Status StreamAggregatedResources(ServerContext* context, Stream* stream) override { gpr_log(GPR_INFO, "ADS[%p]: StreamAggregatedResources starts", this); [&]() { { grpc_core::MutexLock lock(&ads_mu_); if (ads_done_) return; } // Balancer shouldn't receive the call credentials metadata. EXPECT_EQ(context->client_metadata().find(g_kCallCredsMdKey), context->client_metadata().end()); // Read request. DiscoveryRequest request; if (!stream->Read(&request)) return; IncreaseRequestCount(); gpr_log(GPR_INFO, "ADS[%p]: received initial message '%s'", this, request.DebugString().c_str()); // Send response. std::vector responses_and_delays; { grpc_core::MutexLock lock(&ads_mu_); responses_and_delays = responses_and_delays_; } for (const auto& response_and_delay : responses_and_delays) { SendResponse(stream, response_and_delay.first, response_and_delay.second); } // Wait until notified done. grpc_core::MutexLock lock(&ads_mu_); ads_cond_.WaitUntil(&ads_mu_, [this] { return ads_done_; }); }(); gpr_log(GPR_INFO, "ADS[%p]: StreamAggregatedResources done", this); return Status::OK; } void add_response(const DiscoveryResponse& response, int send_after_ms) { grpc_core::MutexLock lock(&ads_mu_); responses_and_delays_.push_back(std::make_pair(response, send_after_ms)); } void Start() { grpc_core::MutexLock lock(&ads_mu_); ads_done_ = false; responses_and_delays_.clear(); } void Shutdown() { { grpc_core::MutexLock lock(&ads_mu_); NotifyDoneWithAdsCallLocked(); responses_and_delays_.clear(); } gpr_log(GPR_INFO, "ADS[%p]: shut down", this); } static DiscoveryResponse BuildResponse(const ResponseArgs& args) { ClusterLoadAssignment assignment; assignment.set_cluster_name("service name"); for (const auto& locality : args.locality_list) { auto* endpoints = assignment.add_endpoints(); endpoints->mutable_load_balancing_weight()->set_value(locality.lb_weight); endpoints->set_priority(locality.priority); endpoints->mutable_locality()->set_region(kDefaultLocalityRegion); endpoints->mutable_locality()->set_zone(kDefaultLocalityZone); endpoints->mutable_locality()->set_sub_zone(locality.sub_zone); for (size_t i = 0; i < locality.ports.size(); ++i) { const int& port = locality.ports[i]; auto* lb_endpoints = endpoints->add_lb_endpoints(); if (locality.health_statuses.size() > i && locality.health_statuses[i] != envoy::api::v2::HealthStatus::UNKNOWN) { lb_endpoints->set_health_status(locality.health_statuses[i]); } auto* endpoint = lb_endpoints->mutable_endpoint(); auto* address = endpoint->mutable_address(); auto* socket_address = address->mutable_socket_address(); socket_address->set_address("127.0.0.1"); socket_address->set_port_value(port); } } if (!args.drop_categories.empty()) { auto* policy = assignment.mutable_policy(); for (const auto& p : args.drop_categories) { const grpc::string& name = p.first; const uint32_t parts_per_million = p.second; auto* drop_overload = policy->add_drop_overloads(); drop_overload->set_category(name); auto* drop_percentage = drop_overload->mutable_drop_percentage(); drop_percentage->set_numerator(parts_per_million); drop_percentage->set_denominator(args.drop_denominator); } } DiscoveryResponse response; response.set_type_url(kEdsTypeUrl); response.add_resources()->PackFrom(assignment); return response; } void NotifyDoneWithAdsCall() { grpc_core::MutexLock lock(&ads_mu_); NotifyDoneWithAdsCallLocked(); } void NotifyDoneWithAdsCallLocked() { if (!ads_done_) { ads_done_ = true; ads_cond_.Broadcast(); } } private: void SendResponse(Stream* stream, const DiscoveryResponse& response, int delay_ms) { gpr_log(GPR_INFO, "ADS[%p]: sleeping for %d ms...", this, delay_ms); if (delay_ms > 0) { gpr_sleep_until(grpc_timeout_milliseconds_to_deadline(delay_ms)); } gpr_log(GPR_INFO, "ADS[%p]: Woke up! Sending response '%s'", this, response.DebugString().c_str()); IncreaseResponseCount(); stream->Write(response); } grpc_core::CondVar ads_cond_; // Protect the members below. grpc_core::Mutex ads_mu_; bool ads_done_ = false; std::vector responses_and_delays_; }; class LrsServiceImpl : public LrsService { public: using Stream = ServerReaderWriter; explicit LrsServiceImpl(int client_load_reporting_interval_seconds) : client_load_reporting_interval_seconds_( client_load_reporting_interval_seconds) {} Status StreamLoadStats(ServerContext* /*context*/, Stream* stream) override { gpr_log(GPR_INFO, "LRS[%p]: StreamLoadStats starts", this); // Read request. LoadStatsRequest request; if (stream->Read(&request)) { if (client_load_reporting_interval_seconds_ > 0) { IncreaseRequestCount(); // Send response. LoadStatsResponse response; auto server_name = request.cluster_stats()[0].cluster_name(); GPR_ASSERT(server_name != ""); response.add_clusters(server_name); response.mutable_load_reporting_interval()->set_seconds( client_load_reporting_interval_seconds_); stream->Write(response); IncreaseResponseCount(); // Wait for report. request.Clear(); if (stream->Read(&request)) { gpr_log(GPR_INFO, "LRS[%p]: received client load report message '%s'", this, request.DebugString().c_str()); GPR_ASSERT(request.cluster_stats().size() == 1); const ClusterStats& cluster_stats = request.cluster_stats()[0]; // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. grpc_core::MutexLock lock(&load_report_mu_); GPR_ASSERT(client_stats_ == nullptr); client_stats_.reset(new ClientStats(cluster_stats)); load_report_ready_ = true; load_report_cond_.Signal(); } } // Wait until notified done. grpc_core::MutexLock lock(&lrs_mu_); lrs_cv_.WaitUntil(&lrs_mu_, [this] { return lrs_done; }); } gpr_log(GPR_INFO, "LRS[%p]: StreamLoadStats done", this); return Status::OK; } void Start() { lrs_done = false; load_report_ready_ = false; client_stats_.reset(); } void Shutdown() { { grpc_core::MutexLock lock(&lrs_mu_); NotifyDoneWithLrsCallLocked(); } gpr_log(GPR_INFO, "LRS[%p]: shut down", this); } ClientStats* WaitForLoadReport() { grpc_core::MutexLock lock(&load_report_mu_); load_report_cond_.WaitUntil(&load_report_mu_, [this] { return load_report_ready_; }); load_report_ready_ = false; return client_stats_.get(); } void NotifyDoneWithLrsCall() { grpc_core::MutexLock lock(&lrs_mu_); NotifyDoneWithLrsCallLocked(); } void NotifyDoneWithLrsCallLocked() { if (!lrs_done) { lrs_done = true; lrs_cv_.Broadcast(); } } private: const int client_load_reporting_interval_seconds_; grpc_core::CondVar lrs_cv_; // Protect lrs_done. grpc_core::Mutex lrs_mu_; bool lrs_done = false; grpc_core::CondVar load_report_cond_; // Protect the members below. grpc_core::Mutex load_report_mu_; std::unique_ptr client_stats_; bool load_report_ready_ = false; }; class TestType { public: TestType(bool use_xds_resolver, bool enable_load_reporting) : use_xds_resolver_(use_xds_resolver), enable_load_reporting_(enable_load_reporting) {} bool use_xds_resolver() const { return use_xds_resolver_; } bool enable_load_reporting() const { return enable_load_reporting_; } grpc::string AsString() const { grpc::string retval = (use_xds_resolver_ ? "XdsResolver" : "FakeResolver"); if (enable_load_reporting_) retval += "WithLoadReporting"; return retval; } private: const bool use_xds_resolver_; const bool enable_load_reporting_; }; class XdsEnd2endTest : public ::testing::TestWithParam { protected: XdsEnd2endTest(size_t num_backends, size_t num_balancers, int client_load_reporting_interval_seconds) : server_host_("localhost"), num_backends_(num_backends), num_balancers_(num_balancers), client_load_reporting_interval_seconds_( client_load_reporting_interval_seconds) {} static void SetUpTestCase() { // Make the backup poller poll very frequently in order to pick up // updates from all the subchannels's FDs. GPR_GLOBAL_CONFIG_SET(grpc_client_channel_backup_poll_interval_ms, 1); #if TARGET_OS_IPHONE // Workaround Apple CFStream bug gpr_setenv("grpc_cfstream", "0"); #endif grpc_init(); } static void TearDownTestCase() { grpc_shutdown(); } void SetUp() override { gpr_setenv("GRPC_XDS_BOOTSTRAP", g_bootstrap_file); g_port_saver->Reset(); response_generator_ = grpc_core::MakeRefCounted(); lb_channel_response_generator_ = grpc_core::MakeRefCounted(); // Start the backends. for (size_t i = 0; i < num_backends_; ++i) { backends_.emplace_back(new BackendServerThread); backends_.back()->Start(server_host_); } // Start the load balancers. for (size_t i = 0; i < num_balancers_; ++i) { balancers_.emplace_back( new BalancerServerThread(client_load_reporting_interval_seconds_)); balancers_.back()->Start(server_host_); } ResetStub(); } void TearDown() override { ShutdownAllBackends(); for (auto& balancer : balancers_) balancer->Shutdown(); } void StartAllBackends() { for (auto& backend : backends_) backend->Start(server_host_); } void StartBackend(size_t index) { backends_[index]->Start(server_host_); } void ShutdownAllBackends() { for (auto& backend : backends_) backend->Shutdown(); } void ShutdownBackend(size_t index) { backends_[index]->Shutdown(); } void ResetStub(int fallback_timeout = 0, int failover_timeout = 0, const grpc::string& expected_targets = "") { ChannelArguments args; // TODO(juanlishen): Add setter to ChannelArguments. if (fallback_timeout > 0) { args.SetInt(GRPC_ARG_XDS_FALLBACK_TIMEOUT_MS, fallback_timeout); } if (failover_timeout > 0) { args.SetInt(GRPC_ARG_XDS_FAILOVER_TIMEOUT_MS, failover_timeout); } // If the parent channel is using the fake resolver, we inject the // response generator for the parent here, and then SetNextResolution() // will inject the xds channel's response generator via the parent's // reponse generator. // // In contrast, if we are using the xds resolver, then the parent // channel never uses a response generator, and we inject the xds // channel's response generator here. args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR, GetParam().use_xds_resolver() ? lb_channel_response_generator_.get() : response_generator_.get()); if (!expected_targets.empty()) { args.SetString(GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets); } grpc::string scheme = GetParam().use_xds_resolver() ? "xds-experimental" : "fake"; std::ostringstream uri; uri << scheme << ":///" << kApplicationTargetName_; // TODO(dgq): templatize tests to run everything using both secure and // insecure channel credentials. grpc_channel_credentials* channel_creds = grpc_fake_transport_security_credentials_create(); grpc_call_credentials* call_creds = grpc_md_only_test_credentials_create( g_kCallCredsMdKey, g_kCallCredsMdValue, false); std::shared_ptr creds( new SecureChannelCredentials(grpc_composite_channel_credentials_create( channel_creds, call_creds, nullptr))); call_creds->Unref(); channel_creds->Unref(); channel_ = ::grpc::CreateCustomChannel(uri.str(), creds, args); stub_ = grpc::testing::EchoTestService::NewStub(channel_); } void ResetBackendCounters() { for (auto& backend : backends_) backend->backend_service()->ResetCounters(); } bool SeenAllBackends(size_t start_index = 0, size_t stop_index = 0) { if (stop_index == 0) stop_index = backends_.size(); for (size_t i = start_index; i < stop_index; ++i) { if (backends_[i]->backend_service()->request_count() == 0) return false; } return true; } void SendRpcAndCount(int* num_total, int* num_ok, int* num_failure, int* num_drops) { const Status status = SendRpc(); if (status.ok()) { ++*num_ok; } else { if (status.error_message() == "Call dropped by load balancing policy") { ++*num_drops; } else { ++*num_failure; } } ++*num_total; } std::tuple WaitForAllBackends(size_t start_index = 0, size_t stop_index = 0) { int num_ok = 0; int num_failure = 0; int num_drops = 0; int num_total = 0; while (!SeenAllBackends(start_index, stop_index)) { SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops); } ResetBackendCounters(); gpr_log(GPR_INFO, "Performed %d warm up requests against the backends. " "%d succeeded, %d failed, %d dropped.", num_total, num_ok, num_failure, num_drops); return std::make_tuple(num_ok, num_failure, num_drops); } void WaitForBackend(size_t backend_idx, bool reset_counters = true) { gpr_log(GPR_INFO, "========= WAITING FOR BACKEND %lu ==========", static_cast(backend_idx)); do { (void)SendRpc(); } while (backends_[backend_idx]->backend_service()->request_count() == 0); if (reset_counters) ResetBackendCounters(); gpr_log(GPR_INFO, "========= BACKEND %lu READY ==========", static_cast(backend_idx)); } grpc_core::ServerAddressList CreateAddressListFromPortList( const std::vector& ports) { grpc_core::ServerAddressList addresses; for (int port : ports) { char* lb_uri_str; gpr_asprintf(&lb_uri_str, "ipv4:127.0.0.1:%d", port); grpc_uri* lb_uri = grpc_uri_parse(lb_uri_str, true); GPR_ASSERT(lb_uri != nullptr); grpc_resolved_address address; GPR_ASSERT(grpc_parse_uri(lb_uri, &address)); addresses.emplace_back(address.addr, address.len, nullptr); grpc_uri_destroy(lb_uri); gpr_free(lb_uri_str); } return addresses; } void SetNextResolution(const std::vector& ports, grpc_core::FakeResolverResponseGenerator* lb_channel_response_generator = nullptr) { if (GetParam().use_xds_resolver()) return; // Not used with xds resolver. grpc_core::ExecCtx exec_ctx; grpc_core::Resolver::Result result; result.addresses = CreateAddressListFromPortList(ports); grpc_error* error = GRPC_ERROR_NONE; const char* service_config_json = GetParam().enable_load_reporting() ? kDefaultServiceConfig_ : kDefaultServiceConfigWithoutLoadReporting_; result.service_config = grpc_core::ServiceConfig::Create(service_config_json, &error); GRPC_ERROR_UNREF(error); grpc_arg arg = grpc_core::FakeResolverResponseGenerator::MakeChannelArg( lb_channel_response_generator == nullptr ? lb_channel_response_generator_.get() : lb_channel_response_generator); result.args = grpc_channel_args_copy_and_add(nullptr, &arg, 1); response_generator_->SetResponse(std::move(result)); } void SetNextResolutionForLbChannelAllBalancers( const char* service_config_json = nullptr, grpc_core::FakeResolverResponseGenerator* lb_channel_response_generator = nullptr) { std::vector ports; for (size_t i = 0; i < balancers_.size(); ++i) { ports.emplace_back(balancers_[i]->port()); } SetNextResolutionForLbChannel(ports, service_config_json, lb_channel_response_generator); } void SetNextResolutionForLbChannel( const std::vector& ports, const char* service_config_json = nullptr, grpc_core::FakeResolverResponseGenerator* lb_channel_response_generator = nullptr) { grpc_core::ExecCtx exec_ctx; grpc_core::Resolver::Result result; result.addresses = CreateAddressListFromPortList(ports); if (service_config_json != nullptr) { grpc_error* error = GRPC_ERROR_NONE; result.service_config = grpc_core::ServiceConfig::Create(service_config_json, &error); GRPC_ERROR_UNREF(error); } if (lb_channel_response_generator == nullptr) { lb_channel_response_generator = lb_channel_response_generator_.get(); } lb_channel_response_generator->SetResponse(std::move(result)); } void SetNextReresolutionResponse(const std::vector& ports) { grpc_core::ExecCtx exec_ctx; grpc_core::Resolver::Result result; result.addresses = CreateAddressListFromPortList(ports); response_generator_->SetReresolutionResponse(std::move(result)); } const std::vector GetBackendPorts(size_t start_index = 0, size_t stop_index = 0) const { if (stop_index == 0) stop_index = backends_.size(); std::vector backend_ports; for (size_t i = start_index; i < stop_index; ++i) { backend_ports.push_back(backends_[i]->port()); } return backend_ports; } void ScheduleResponseForBalancer(size_t i, const DiscoveryResponse& response, int delay_ms) { balancers_[i]->ads_service()->add_response(response, delay_ms); } Status SendRpc(EchoResponse* response = nullptr, int timeout_ms = 1000, bool wait_for_ready = false) { const bool local_response = (response == nullptr); if (local_response) response = new EchoResponse; EchoRequest request; request.set_message(kRequestMessage_); ClientContext context; context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms)); if (wait_for_ready) context.set_wait_for_ready(true); Status status = stub_->Echo(&context, request, response); if (local_response) delete response; return status; } void CheckRpcSendOk(const size_t times = 1, const int timeout_ms = 1000, bool wait_for_ready = false) { for (size_t i = 0; i < times; ++i) { EchoResponse response; const Status status = SendRpc(&response, timeout_ms, wait_for_ready); EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } void CheckRpcSendFailure() { const Status status = SendRpc(); EXPECT_FALSE(status.ok()); } class ServerThread { public: ServerThread() : port_(g_port_saver->GetPort()) {} virtual ~ServerThread(){}; void Start(const grpc::string& server_host) { gpr_log(GPR_INFO, "starting %s server on port %d", Type(), port_); GPR_ASSERT(!running_); running_ = true; StartAllServices(); grpc_core::Mutex mu; // We need to acquire the lock here in order to prevent the notify_one // by ServerThread::Serve from firing before the wait below is hit. grpc_core::MutexLock lock(&mu); grpc_core::CondVar cond; thread_.reset(new std::thread( std::bind(&ServerThread::Serve, this, server_host, &mu, &cond))); cond.Wait(&mu); gpr_log(GPR_INFO, "%s server startup complete", Type()); } void Serve(const grpc::string& server_host, grpc_core::Mutex* mu, grpc_core::CondVar* cond) { // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. grpc_core::MutexLock lock(mu); std::ostringstream server_address; server_address << server_host << ":" << port_; ServerBuilder builder; std::shared_ptr creds(new SecureServerCredentials( grpc_fake_transport_security_server_credentials_create())); builder.AddListeningPort(server_address.str(), creds); RegisterAllServices(&builder); server_ = builder.BuildAndStart(); cond->Signal(); } void Shutdown() { if (!running_) return; gpr_log(GPR_INFO, "%s about to shutdown", Type()); ShutdownAllServices(); server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0)); thread_->join(); gpr_log(GPR_INFO, "%s shutdown completed", Type()); running_ = false; } int port() const { return port_; } private: virtual void RegisterAllServices(ServerBuilder* builder) = 0; virtual void StartAllServices() = 0; virtual void ShutdownAllServices() = 0; virtual const char* Type() = 0; const int port_; std::unique_ptr server_; std::unique_ptr thread_; bool running_ = false; }; class BackendServerThread : public ServerThread { public: BackendServiceImpl* backend_service() { return &backend_service_; } private: void RegisterAllServices(ServerBuilder* builder) override { builder->RegisterService(&backend_service_); } void StartAllServices() override { backend_service_.Start(); } void ShutdownAllServices() override { backend_service_.Shutdown(); } const char* Type() override { return "Backend"; } BackendServiceImpl backend_service_; }; class BalancerServerThread : public ServerThread { public: explicit BalancerServerThread(int client_load_reporting_interval = 0) : lrs_service_(client_load_reporting_interval) {} AdsServiceImpl* ads_service() { return &ads_service_; } LrsServiceImpl* lrs_service() { return &lrs_service_; } private: void RegisterAllServices(ServerBuilder* builder) override { builder->RegisterService(&ads_service_); builder->RegisterService(&lrs_service_); } void StartAllServices() override { ads_service_.Start(); lrs_service_.Start(); } void ShutdownAllServices() override { ads_service_.Shutdown(); lrs_service_.Shutdown(); } const char* Type() override { return "Balancer"; } AdsServiceImpl ads_service_; LrsServiceImpl lrs_service_; }; const grpc::string server_host_; const size_t num_backends_; const size_t num_balancers_; const int client_load_reporting_interval_seconds_; std::shared_ptr channel_; std::unique_ptr stub_; std::vector> backends_; std::vector> balancers_; grpc_core::RefCountedPtr response_generator_; grpc_core::RefCountedPtr lb_channel_response_generator_; const grpc::string kRequestMessage_ = "Live long and prosper."; const grpc::string kApplicationTargetName_ = "application_target_name"; const char* kDefaultServiceConfig_ = "{\n" " \"loadBalancingConfig\":[\n" " { \"does_not_exist\":{} },\n" " { \"xds_experimental\":{\n" " \"lrsLoadReportingServerName\": \"\"\n" " } }\n" " ]\n" "}"; const char* kDefaultServiceConfigWithoutLoadReporting_ = "{\n" " \"loadBalancingConfig\":[\n" " { \"does_not_exist\":{} },\n" " { \"xds_experimental\":{\n" " } }\n" " ]\n" "}"; }; class BasicTest : public XdsEnd2endTest { public: BasicTest() : XdsEnd2endTest(4, 1, 0) {} }; // Tests that the balancer sends the correct response to the client, and the // client sends RPCs to the backends using the default child policy. TEST_P(BasicTest, Vanilla) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcsPerAddress = 100; AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // We need to wait for all backends to come online. WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * num_backends_); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); // Check LB policy name for the channel. EXPECT_EQ( (GetParam().use_xds_resolver() ? "cds_experimental" : "xds_experimental"), channel_->GetLoadBalancingPolicyName()); } TEST_P(BasicTest, IgnoresUnhealthyEndpoints) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcsPerAddress = 100; AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(), kDefaultLocalityWeight, kDefaultLocalityPriority, {envoy::api::v2::HealthStatus::DRAINING}}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // We need to wait for all backends to come online. WaitForAllBackends(/*start_index=*/1); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * (num_backends_ - 1)); // Each backend should have gotten 100 requests. for (size_t i = 1; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that subchannel sharing works when the same backend is listed multiple // times. TEST_P(BasicTest, SameBackendListedMultipleTimes) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); // Same backend listed twice. std::vector ports(2, backends_[0]->port()); AdsServiceImpl::ResponseArgs args({ {"locality0", ports}, }); const size_t kNumRpcsPerAddress = 10; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // We need to wait for the backend to come online. WaitForBackend(0); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * ports.size()); // Backend should have gotten 20 requests. EXPECT_EQ(kNumRpcsPerAddress * ports.size(), backends_[0]->backend_service()->request_count()); // And they should have come from a single client port, because of // subchannel sharing. EXPECT_EQ(1UL, backends_[0]->backend_service()->clients().size()); } // Tests that RPCs will be blocked until a non-empty serverlist is received. TEST_P(BasicTest, InitiallyEmptyServerlist) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor(); const int kCallDeadlineMs = kServerlistDelayMs * 2; // First response is an empty serverlist, sent right away. AdsServiceImpl::ResponseArgs::Locality empty_locality("locality0", {}); AdsServiceImpl::ResponseArgs args({ empty_locality, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Send non-empty serverlist only after kServerlistDelayMs. args = AdsServiceImpl::ResponseArgs({ {"locality0", GetBackendPorts()}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), kServerlistDelayMs); const auto t0 = system_clock::now(); // Client will block: LB will initially send empty serverlist. CheckRpcSendOk(1, kCallDeadlineMs, true /* wait_for_ready */); const auto ellapsed_ms = std::chrono::duration_cast( system_clock::now() - t0); // but eventually, the LB sends a serverlist update that allows the call to // proceed. The call delay must be larger than the delay in sending the // populated serverlist but under the call's deadline (which is enforced by // the call's deadline). EXPECT_GT(ellapsed_ms.count(), kServerlistDelayMs); // The ADS service got a single request. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); // and sent two responses. EXPECT_EQ(2U, balancers_[0]->ads_service()->response_count()); } // Tests that RPCs will fail with UNAVAILABLE instead of DEADLINE_EXCEEDED if // all the servers are unreachable. TEST_P(BasicTest, AllServersUnreachableFailFast) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumUnreachableServers = 5; std::vector ports; for (size_t i = 0; i < kNumUnreachableServers; ++i) { ports.push_back(g_port_saver->GetPort()); } AdsServiceImpl::ResponseArgs args({ {"locality0", ports}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); const Status status = SendRpc(); // The error shouldn't be DEADLINE_EXCEEDED. EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code()); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that RPCs fail when the backends are down, and will succeed again after // the backends are restarted. TEST_P(BasicTest, BackendsRestart) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); WaitForAllBackends(); // Stop backends. RPCs should fail. ShutdownAllBackends(); CheckRpcSendFailure(); // Restart all backends. RPCs should start succeeding again. StartAllBackends(); CheckRpcSendOk(1 /* times */, 2000 /* timeout_ms */, true /* wait_for_ready */); } using SecureNamingTest = BasicTest; // Tests that secure naming check passes if target name is expected. TEST_P(SecureNamingTest, TargetNameIsExpected) { // TODO(juanlishen): Use separate fake creds for the balancer channel. ResetStub(0, 0, kApplicationTargetName_ + ";lb"); SetNextResolution({}); SetNextResolutionForLbChannel({balancers_[0]->port()}); const size_t kNumRpcsPerAddress = 100; AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // We need to wait for all backends to come online. WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * num_backends_); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that secure naming check fails if target name is unexpected. TEST_P(SecureNamingTest, TargetNameIsUnexpected) { gpr_setenv("GRPC_XDS_BOOTSTRAP", g_bootstrap_file_bad); ::testing::FLAGS_gtest_death_test_style = "threadsafe"; // Make sure that we blow up (via abort() from the security connector) when // the name from the balancer doesn't match expectations. ASSERT_DEATH_IF_SUPPORTED( { ResetStub(0, 0, kApplicationTargetName_ + ";lb"); SetNextResolution({}); SetNextResolutionForLbChannel({balancers_[0]->port()}); channel_->WaitForConnected(grpc_timeout_seconds_to_deadline(1)); }, ""); } using LocalityMapTest = BasicTest; // Tests that the localities in a locality map are picked according to their // weights. TEST_P(LocalityMapTest, WeightedRoundRobin) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 5000; const int kLocalityWeight0 = 2; const int kLocalityWeight1 = 8; const int kTotalLocalityWeight = kLocalityWeight0 + kLocalityWeight1; const double kLocalityWeightRate0 = static_cast(kLocalityWeight0) / kTotalLocalityWeight; const double kLocalityWeightRate1 = static_cast(kLocalityWeight1) / kTotalLocalityWeight; // ADS response contains 2 localities, each of which contains 1 backend. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, 1), kLocalityWeight0}, {"locality1", GetBackendPorts(1, 2), kLocalityWeight1}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Wait for both backends to be ready. WaitForAllBackends(0, 2); // Send kNumRpcs RPCs. CheckRpcSendOk(kNumRpcs); // The locality picking rates should be roughly equal to the expectation. const double locality_picked_rate_0 = static_cast(backends_[0]->backend_service()->request_count()) / kNumRpcs; const double locality_picked_rate_1 = static_cast(backends_[1]->backend_service()->request_count()) / kNumRpcs; const double kErrorTolerance = 0.2; EXPECT_THAT(locality_picked_rate_0, ::testing::AllOf( ::testing::Ge(kLocalityWeightRate0 * (1 - kErrorTolerance)), ::testing::Le(kLocalityWeightRate0 * (1 + kErrorTolerance)))); EXPECT_THAT(locality_picked_rate_1, ::testing::AllOf( ::testing::Ge(kLocalityWeightRate1 * (1 - kErrorTolerance)), ::testing::Le(kLocalityWeightRate1 * (1 + kErrorTolerance)))); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that the locality map can work properly even when it contains a large // number of localities. TEST_P(LocalityMapTest, StressTest) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumLocalities = 100; // The first ADS response contains kNumLocalities localities, each of which // contains backend 0. AdsServiceImpl::ResponseArgs args; for (size_t i = 0; i < kNumLocalities; ++i) { grpc::string name = "locality" + std::to_string(i); AdsServiceImpl::ResponseArgs::Locality locality(name, {backends_[0]->port()}); args.locality_list.emplace_back(std::move(locality)); } ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // The second ADS response contains 1 locality, which contains backend 1. args = AdsServiceImpl::ResponseArgs({ {"locality0", GetBackendPorts(1, 2)}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 60 * 1000); // Wait until backend 0 is ready, before which kNumLocalities localities are // received and handled by the xds policy. WaitForBackend(0, /*reset_counters=*/false); EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); // Wait until backend 1 is ready, before which kNumLocalities localities are // removed by the xds policy. WaitForBackend(1); // The ADS service got a single request. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); // and sent two responses. EXPECT_EQ(2U, balancers_[0]->ads_service()->response_count()); } // Tests that the localities in a locality map are picked correctly after update // (addition, modification, deletion). TEST_P(LocalityMapTest, UpdateMap) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 1000; // The locality weight for the first 3 localities. const std::vector kLocalityWeights0 = {2, 3, 4}; const double kTotalLocalityWeight0 = std::accumulate(kLocalityWeights0.begin(), kLocalityWeights0.end(), 0); std::vector locality_weight_rate_0; for (int weight : kLocalityWeights0) { locality_weight_rate_0.push_back(weight / kTotalLocalityWeight0); } // Delete the first locality, keep the second locality, change the third // locality's weight from 4 to 2, and add a new locality with weight 6. const std::vector kLocalityWeights1 = {3, 2, 6}; const double kTotalLocalityWeight1 = std::accumulate(kLocalityWeights1.begin(), kLocalityWeights1.end(), 0); std::vector locality_weight_rate_1 = { 0 /* placeholder for locality 0 */}; for (int weight : kLocalityWeights1) { locality_weight_rate_1.push_back(weight / kTotalLocalityWeight1); } AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, 1), 2}, {"locality1", GetBackendPorts(1, 2), 3}, {"locality2", GetBackendPorts(2, 3), 4}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); args = AdsServiceImpl::ResponseArgs({ {"locality1", GetBackendPorts(1, 2), 3}, {"locality2", GetBackendPorts(2, 3), 2}, {"locality3", GetBackendPorts(3, 4), 6}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 5000); // Wait for the first 3 backends to be ready. WaitForAllBackends(0, 3); gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); // Send kNumRpcs RPCs. CheckRpcSendOk(kNumRpcs); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // The picking rates of the first 3 backends should be roughly equal to the // expectation. std::vector locality_picked_rates; for (size_t i = 0; i < 3; ++i) { locality_picked_rates.push_back( static_cast(backends_[i]->backend_service()->request_count()) / kNumRpcs); } const double kErrorTolerance = 0.2; for (size_t i = 0; i < 3; ++i) { EXPECT_THAT( locality_picked_rates[i], ::testing::AllOf( ::testing::Ge(locality_weight_rate_0[i] * (1 - kErrorTolerance)), ::testing::Le(locality_weight_rate_0[i] * (1 + kErrorTolerance)))); } // Backend 3 hasn't received any request. EXPECT_EQ(0U, backends_[3]->backend_service()->request_count()); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); // Wait until the locality update has been processed, as signaled by backend 3 // receiving a request. WaitForBackend(3); gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); // Send kNumRpcs RPCs. CheckRpcSendOk(kNumRpcs); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // Backend 0 no longer receives any request. EXPECT_EQ(0U, backends_[0]->backend_service()->request_count()); // The picking rates of the last 3 backends should be roughly equal to the // expectation. locality_picked_rates = {0 /* placeholder for backend 0 */}; for (size_t i = 1; i < 4; ++i) { locality_picked_rates.push_back( static_cast(backends_[i]->backend_service()->request_count()) / kNumRpcs); } for (size_t i = 1; i < 4; ++i) { EXPECT_THAT( locality_picked_rates[i], ::testing::AllOf( ::testing::Ge(locality_weight_rate_1[i] * (1 - kErrorTolerance)), ::testing::Le(locality_weight_rate_1[i] * (1 + kErrorTolerance)))); } // The ADS service got a single request. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); // and sent two responses. EXPECT_EQ(2U, balancers_[0]->ads_service()->response_count()); } class FailoverTest : public BasicTest { public: FailoverTest() { ResetStub(0, 100, ""); } }; // Localities with the highest priority are used when multiple priority exist. TEST_P(FailoverTest, ChooseHighestPriority) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, 1), kDefaultLocalityWeight, 1}, {"locality1", GetBackendPorts(1, 2), kDefaultLocalityWeight, 2}, {"locality2", GetBackendPorts(2, 3), kDefaultLocalityWeight, 3}, {"locality3", GetBackendPorts(3, 4), kDefaultLocalityWeight, 0}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); WaitForBackend(3, false); for (size_t i = 0; i < 3; ++i) { EXPECT_EQ(0, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // If the higher priority localities are not reachable, failover to the highest // priority among the rest. TEST_P(FailoverTest, Failover) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, 1), kDefaultLocalityWeight, 1}, {"locality1", GetBackendPorts(1, 2), kDefaultLocalityWeight, 2}, {"locality2", GetBackendPorts(2, 3), kDefaultLocalityWeight, 3}, {"locality3", GetBackendPorts(3, 4), kDefaultLocalityWeight, 0}, }); ShutdownBackend(3); ShutdownBackend(0); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); WaitForBackend(1, false); for (size_t i = 0; i < 4; ++i) { if (i == 1) continue; EXPECT_EQ(0, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // If a locality with higher priority than the current one becomes ready, // switch to it. TEST_P(FailoverTest, SwitchBackToHigherPriority) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 100; AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, 1), kDefaultLocalityWeight, 1}, {"locality1", GetBackendPorts(1, 2), kDefaultLocalityWeight, 2}, {"locality2", GetBackendPorts(2, 3), kDefaultLocalityWeight, 3}, {"locality3", GetBackendPorts(3, 4), kDefaultLocalityWeight, 0}, }); ShutdownBackend(3); ShutdownBackend(0); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); WaitForBackend(1, false); for (size_t i = 0; i < 4; ++i) { if (i == 1) continue; EXPECT_EQ(0, backends_[i]->backend_service()->request_count()); } StartBackend(0); WaitForBackend(0); CheckRpcSendOk(kNumRpcs); EXPECT_EQ(kNumRpcs, backends_[0]->backend_service()->request_count()); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // The first update only contains unavailable priorities. The second update // contains available priorities. TEST_P(FailoverTest, UpdateInitialUnavailable) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, 1), kDefaultLocalityWeight, 0}, {"locality1", GetBackendPorts(1, 2), kDefaultLocalityWeight, 1}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); args = AdsServiceImpl::ResponseArgs({ {"locality0", GetBackendPorts(0, 1), kDefaultLocalityWeight, 0}, {"locality1", GetBackendPorts(1, 2), kDefaultLocalityWeight, 1}, {"locality2", GetBackendPorts(2, 3), kDefaultLocalityWeight, 2}, {"locality3", GetBackendPorts(3, 4), kDefaultLocalityWeight, 3}, }); ShutdownBackend(0); ShutdownBackend(1); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 1000); gpr_timespec deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(500, GPR_TIMESPAN)); // Send 0.5 second worth of RPCs. do { CheckRpcSendFailure(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); WaitForBackend(2, false); for (size_t i = 0; i < 4; ++i) { if (i == 2) continue; EXPECT_EQ(0, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(2U, balancers_[0]->ads_service()->response_count()); } // Tests that after the localities' priorities are updated, we still choose the // highest READY priority with the updated localities. TEST_P(FailoverTest, UpdatePriority) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 100; AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, 1), kDefaultLocalityWeight, 1}, {"locality1", GetBackendPorts(1, 2), kDefaultLocalityWeight, 2}, {"locality2", GetBackendPorts(2, 3), kDefaultLocalityWeight, 3}, {"locality3", GetBackendPorts(3, 4), kDefaultLocalityWeight, 0}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); args = AdsServiceImpl::ResponseArgs({ {"locality0", GetBackendPorts(0, 1), kDefaultLocalityWeight, 2}, {"locality1", GetBackendPorts(1, 2), kDefaultLocalityWeight, 0}, {"locality2", GetBackendPorts(2, 3), kDefaultLocalityWeight, 1}, {"locality3", GetBackendPorts(3, 4), kDefaultLocalityWeight, 3}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 1000); WaitForBackend(3, false); for (size_t i = 0; i < 3; ++i) { EXPECT_EQ(0, backends_[i]->backend_service()->request_count()); } WaitForBackend(1); CheckRpcSendOk(kNumRpcs); EXPECT_EQ(kNumRpcs, backends_[1]->backend_service()->request_count()); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(2U, balancers_[0]->ads_service()->response_count()); } using DropTest = BasicTest; // Tests that RPCs are dropped according to the drop config. TEST_P(DropTest, Vanilla) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 5000; const uint32_t kDropPerMillionForLb = 100000; const uint32_t kDropPerMillionForThrottle = 200000; const double kDropRateForLb = kDropPerMillionForLb / 1000000.0; const double kDropRateForThrottle = kDropPerMillionForThrottle / 1000000.0; const double KDropRateForLbAndThrottle = kDropRateForLb + (1 - kDropRateForLb) * kDropRateForThrottle; // The ADS response contains two drop categories. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); args.drop_categories = {{kLbDropType, kDropPerMillionForLb}, {kThrottleDropType, kDropPerMillionForThrottle}}; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); WaitForAllBackends(); // Send kNumRpcs RPCs and count the drops. size_t num_drops = 0; for (size_t i = 0; i < kNumRpcs; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } // The drop rate should be roughly equal to the expectation. const double seen_drop_rate = static_cast(num_drops) / kNumRpcs; const double kErrorTolerance = 0.2; EXPECT_THAT( seen_drop_rate, ::testing::AllOf( ::testing::Ge(KDropRateForLbAndThrottle * (1 - kErrorTolerance)), ::testing::Le(KDropRateForLbAndThrottle * (1 + kErrorTolerance)))); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that drop config is converted correctly from per hundred. TEST_P(DropTest, DropPerHundred) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 5000; const uint32_t kDropPerHundredForLb = 10; const double kDropRateForLb = kDropPerHundredForLb / 100.0; // The ADS response contains one drop category. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); args.drop_categories = {{kLbDropType, kDropPerHundredForLb}}; args.drop_denominator = FractionalPercent::HUNDRED; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); WaitForAllBackends(); // Send kNumRpcs RPCs and count the drops. size_t num_drops = 0; for (size_t i = 0; i < kNumRpcs; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } // The drop rate should be roughly equal to the expectation. const double seen_drop_rate = static_cast(num_drops) / kNumRpcs; const double kErrorTolerance = 0.2; EXPECT_THAT( seen_drop_rate, ::testing::AllOf(::testing::Ge(kDropRateForLb * (1 - kErrorTolerance)), ::testing::Le(kDropRateForLb * (1 + kErrorTolerance)))); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that drop config is converted correctly from per ten thousand. TEST_P(DropTest, DropPerTenThousand) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 5000; const uint32_t kDropPerTenThousandForLb = 1000; const double kDropRateForLb = kDropPerTenThousandForLb / 10000.0; // The ADS response contains one drop category. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); args.drop_categories = {{kLbDropType, kDropPerTenThousandForLb}}; args.drop_denominator = FractionalPercent::TEN_THOUSAND; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); WaitForAllBackends(); // Send kNumRpcs RPCs and count the drops. size_t num_drops = 0; for (size_t i = 0; i < kNumRpcs; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } // The drop rate should be roughly equal to the expectation. const double seen_drop_rate = static_cast(num_drops) / kNumRpcs; const double kErrorTolerance = 0.2; EXPECT_THAT( seen_drop_rate, ::testing::AllOf(::testing::Ge(kDropRateForLb * (1 - kErrorTolerance)), ::testing::Le(kDropRateForLb * (1 + kErrorTolerance)))); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that drop is working correctly after update. TEST_P(DropTest, Update) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 1000; const uint32_t kDropPerMillionForLb = 100000; const uint32_t kDropPerMillionForThrottle = 200000; const double kDropRateForLb = kDropPerMillionForLb / 1000000.0; const double kDropRateForThrottle = kDropPerMillionForThrottle / 1000000.0; const double KDropRateForLbAndThrottle = kDropRateForLb + (1 - kDropRateForLb) * kDropRateForThrottle; // The first ADS response contains one drop category. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); args.drop_categories = {{kLbDropType, kDropPerMillionForLb}}; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // The second ADS response contains two drop categories. // TODO(juanlishen): Change the ADS response sending to deterministic style // (e.g., by using condition variable) so that we can shorten the test // duration. args.drop_categories = {{kLbDropType, kDropPerMillionForLb}, {kThrottleDropType, kDropPerMillionForThrottle}}; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 10000); WaitForAllBackends(); // Send kNumRpcs RPCs and count the drops. size_t num_drops = 0; gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); for (size_t i = 0; i < kNumRpcs; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // The drop rate should be roughly equal to the expectation. double seen_drop_rate = static_cast(num_drops) / kNumRpcs; const double kErrorTolerance = 0.3; EXPECT_THAT( seen_drop_rate, ::testing::AllOf(::testing::Ge(kDropRateForLb * (1 - kErrorTolerance)), ::testing::Le(kDropRateForLb * (1 + kErrorTolerance)))); // Wait until the drop rate increases to the middle of the two configs, which // implies that the update has been in effect. const double kDropRateThreshold = (kDropRateForLb + KDropRateForLbAndThrottle) / 2; size_t num_rpcs = kNumRpcs; while (seen_drop_rate < kDropRateThreshold) { EchoResponse response; const Status status = SendRpc(&response); ++num_rpcs; if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } seen_drop_rate = static_cast(num_drops) / num_rpcs; } // Send kNumRpcs RPCs and count the drops. num_drops = 0; gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); for (size_t i = 0; i < kNumRpcs; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // The new drop rate should be roughly equal to the expectation. seen_drop_rate = static_cast(num_drops) / kNumRpcs; EXPECT_THAT( seen_drop_rate, ::testing::AllOf( ::testing::Ge(KDropRateForLbAndThrottle * (1 - kErrorTolerance)), ::testing::Le(KDropRateForLbAndThrottle * (1 + kErrorTolerance)))); // The ADS service got a single request, EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); // and sent two responses EXPECT_EQ(2U, balancers_[0]->ads_service()->response_count()); } // Tests that all the RPCs are dropped if any drop category drops 100%. TEST_P(DropTest, DropAll) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 1000; const uint32_t kDropPerMillionForLb = 100000; const uint32_t kDropPerMillionForThrottle = 1000000; // The ADS response contains two drop categories. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); args.drop_categories = {{kLbDropType, kDropPerMillionForLb}, {kThrottleDropType, kDropPerMillionForThrottle}}; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Send kNumRpcs RPCs and all of them are dropped. for (size_t i = 0; i < kNumRpcs; ++i) { EchoResponse response; const Status status = SendRpc(&response); EXPECT_TRUE(!status.ok() && status.error_message() == "Call dropped by load balancing policy"); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } using FallbackTest = BasicTest; // Tests that RPCs are handled by the fallback backends before the serverlist is // received, but will be handled by the serverlist after it's received. TEST_P(FallbackTest, Vanilla) { const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor(); const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor(); const size_t kNumBackendsInResolution = backends_.size() / 2; ResetStub(kFallbackTimeoutMs); SetNextResolution(GetBackendPorts(0, kNumBackendsInResolution)); SetNextResolutionForLbChannelAllBalancers(); // Send non-empty serverlist only after kServerlistDelayMs. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(kNumBackendsInResolution)}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), kServerlistDelayMs); // Wait until all the fallback backends are reachable. WaitForAllBackends(0 /* start_index */, kNumBackendsInResolution /* stop_index */); gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(kNumBackendsInResolution); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // Fallback is used: each backend returned by the resolver should have // gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(1U, backends_[i]->backend_service()->request_count()); } for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) { EXPECT_EQ(0U, backends_[i]->backend_service()->request_count()); } // Wait until the serverlist reception has been processed and all backends // in the serverlist are reachable. WaitForAllBackends(kNumBackendsInResolution /* start_index */); gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(backends_.size() - kNumBackendsInResolution); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // Serverlist is used: each backend returned by the balancer should // have gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(0U, backends_[i]->backend_service()->request_count()); } for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) { EXPECT_EQ(1U, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that RPCs are handled by the updated fallback backends before // serverlist is received, TEST_P(FallbackTest, Update) { const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor(); const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor(); const size_t kNumBackendsInResolution = backends_.size() / 3; const size_t kNumBackendsInResolutionUpdate = backends_.size() / 3; ResetStub(kFallbackTimeoutMs); SetNextResolution(GetBackendPorts(0, kNumBackendsInResolution)); SetNextResolutionForLbChannelAllBalancers(); // Send non-empty serverlist only after kServerlistDelayMs. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(kNumBackendsInResolution + kNumBackendsInResolutionUpdate)}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), kServerlistDelayMs); // Wait until all the fallback backends are reachable. WaitForAllBackends(0 /* start_index */, kNumBackendsInResolution /* stop_index */); gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(kNumBackendsInResolution); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // Fallback is used: each backend returned by the resolver should have // gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(1U, backends_[i]->backend_service()->request_count()); } for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) { EXPECT_EQ(0U, backends_[i]->backend_service()->request_count()); } SetNextResolution(GetBackendPorts( kNumBackendsInResolution, kNumBackendsInResolution + kNumBackendsInResolutionUpdate)); // Wait until the resolution update has been processed and all the new // fallback backends are reachable. WaitForAllBackends(kNumBackendsInResolution /* start_index */, kNumBackendsInResolution + kNumBackendsInResolutionUpdate /* stop_index */); gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(kNumBackendsInResolutionUpdate); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // The resolution update is used: each backend in the resolution update should // have gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(0U, backends_[i]->backend_service()->request_count()); } for (size_t i = kNumBackendsInResolution; i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) { EXPECT_EQ(1U, backends_[i]->backend_service()->request_count()); } for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate; i < backends_.size(); ++i) { EXPECT_EQ(0U, backends_[i]->backend_service()->request_count()); } // Wait until the serverlist reception has been processed and all backends // in the serverlist are reachable. WaitForAllBackends(kNumBackendsInResolution + kNumBackendsInResolutionUpdate /* start_index */); gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH =========="); CheckRpcSendOk(backends_.size() - kNumBackendsInResolution - kNumBackendsInResolutionUpdate); gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH =========="); // Serverlist is used: each backend returned by the balancer should // have gotten one request. for (size_t i = 0; i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) { EXPECT_EQ(0U, backends_[i]->backend_service()->request_count()); } for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate; i < backends_.size(); ++i) { EXPECT_EQ(1U, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } // Tests that fallback will kick in immediately if the balancer channel fails. TEST_P(FallbackTest, FallbackEarlyWhenBalancerChannelFails) { const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor(); ResetStub(kFallbackTimeoutMs); // Return an unreachable balancer and one fallback backend. SetNextResolution({backends_[0]->port()}); SetNextResolutionForLbChannel({g_port_saver->GetPort()}); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000, /* wait_for_ready */ false); } // Tests that fallback will kick in immediately if the balancer call fails. TEST_P(FallbackTest, FallbackEarlyWhenBalancerCallFails) { const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor(); ResetStub(kFallbackTimeoutMs); // Return one balancer and one fallback backend. SetNextResolution({backends_[0]->port()}); SetNextResolutionForLbChannelAllBalancers(); // Balancer drops call without sending a serverlist. balancers_[0]->ads_service()->NotifyDoneWithAdsCall(); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000, /* wait_for_ready */ false); } // Tests that fallback mode is entered if balancer response is received but the // backends can't be reached. TEST_P(FallbackTest, FallbackIfResponseReceivedButChildNotReady) { const int kFallbackTimeoutMs = 500 * grpc_test_slowdown_factor(); ResetStub(kFallbackTimeoutMs); SetNextResolution({backends_[0]->port()}); SetNextResolutionForLbChannelAllBalancers(); // Send a serverlist that only contains an unreachable backend before fallback // timeout. AdsServiceImpl::ResponseArgs args({ {"locality0", {g_port_saver->GetPort()}}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Because no child policy is ready before fallback timeout, we enter fallback // mode. WaitForBackend(0); } // Tests that fallback mode is exited if the balancer tells the client to drop // all the calls. TEST_P(FallbackTest, FallbackModeIsExitedWhenBalancerSaysToDropAllCalls) { // Return an unreachable balancer and one fallback backend. SetNextResolution({backends_[0]->port()}); SetNextResolutionForLbChannel({g_port_saver->GetPort()}); // Enter fallback mode because the LB channel fails to connect. WaitForBackend(0); // Return a new balancer that sends a response to drop all calls. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); args.drop_categories = {{kLbDropType, 1000000}}; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); SetNextResolutionForLbChannelAllBalancers(); // Send RPCs until failure. gpr_timespec deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(5000, GPR_TIMESPAN)); do { auto status = SendRpc(); if (!status.ok()) break; } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); CheckRpcSendFailure(); } // Tests that fallback mode is exited if the child policy becomes ready. TEST_P(FallbackTest, FallbackModeIsExitedAfterChildRready) { // Return an unreachable balancer and one fallback backend. SetNextResolution({backends_[0]->port()}); SetNextResolutionForLbChannel({g_port_saver->GetPort()}); // Enter fallback mode because the LB channel fails to connect. WaitForBackend(0); // Return a new balancer that sends a dead backend. ShutdownBackend(1); AdsServiceImpl::ResponseArgs args({ {"locality0", {backends_[1]->port()}}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); SetNextResolutionForLbChannelAllBalancers(); // The state (TRANSIENT_FAILURE) update from the child policy will be ignored // because we are still in fallback mode. gpr_timespec deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(500, GPR_TIMESPAN)); // Send 0.5 second worth of RPCs. do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // After the backend is restarted, the child policy will eventually be READY, // and we will exit fallback mode. StartBackend(1); WaitForBackend(1); // We have exited fallback mode, so calls will go to the child policy // exclusively. CheckRpcSendOk(100); EXPECT_EQ(0U, backends_[0]->backend_service()->request_count()); EXPECT_EQ(100U, backends_[1]->backend_service()->request_count()); } class BalancerUpdateTest : public XdsEnd2endTest { public: BalancerUpdateTest() : XdsEnd2endTest(4, 3, 0) {} }; // Tests that the old LB call is still used after the balancer address update as // long as that call is still alive. TEST_P(BalancerUpdateTest, UpdateBalancersButKeepUsingOriginalBalancer) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); AdsServiceImpl::ResponseArgs args({ {"locality0", {backends_[0]->port()}}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); args = AdsServiceImpl::ResponseArgs({ {"locality0", {backends_[1]->port()}}, }); ScheduleResponseForBalancer(1, AdsServiceImpl::BuildResponse(args), 0); // Wait until the first backend is ready. WaitForBackend(0); // Send 10 requests. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->backend_service()->request_count()); // The ADS service of balancer 0 got a single request, and sent a single // response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->response_count()); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolutionForLbChannel({balancers_[1]->port()}); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); gpr_timespec deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // The current LB call is still working, so xds continued using it to the // first balancer, which doesn't assign the second backend. EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->response_count()); } // Tests that the old LB call is still used after multiple balancer address // updates as long as that call is still alive. Send an update with the same set // of LBs as the one in SetUp() in order to verify that the LB channel inside // xds keeps the initial connection (which by definition is also present in the // update). TEST_P(BalancerUpdateTest, Repeated) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); AdsServiceImpl::ResponseArgs args({ {"locality0", {backends_[0]->port()}}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); args = AdsServiceImpl::ResponseArgs({ {"locality0", {backends_[1]->port()}}, }); ScheduleResponseForBalancer(1, AdsServiceImpl::BuildResponse(args), 0); // Wait until the first backend is ready. WaitForBackend(0); // Send 10 requests. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->backend_service()->request_count()); // The ADS service of balancer 0 got a single request, and sent a single // response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->response_count()); std::vector ports; ports.emplace_back(balancers_[0]->port()); ports.emplace_back(balancers_[1]->port()); ports.emplace_back(balancers_[2]->port()); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolutionForLbChannel(ports); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); gpr_timespec deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // xds continued using the original LB call to the first balancer, which // doesn't assign the second backend. EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); ports.clear(); ports.emplace_back(balancers_[0]->port()); ports.emplace_back(balancers_[1]->port()); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 2 =========="); SetNextResolutionForLbChannel(ports); gpr_log(GPR_INFO, "========= UPDATE 2 DONE =========="); EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // xds continued using the original LB call to the first balancer, which // doesn't assign the second backend. EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); } // Tests that if the balancer is down, the RPCs will still be sent to the // backends according to the last balancer response, until a new balancer is // reachable. TEST_P(BalancerUpdateTest, DeadUpdate) { SetNextResolution({}); SetNextResolutionForLbChannel({balancers_[0]->port()}); AdsServiceImpl::ResponseArgs args({ {"locality0", {backends_[0]->port()}}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); args = AdsServiceImpl::ResponseArgs({ {"locality0", {backends_[1]->port()}}, }); ScheduleResponseForBalancer(1, AdsServiceImpl::BuildResponse(args), 0); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->backend_service()->request_count()); // Kill balancer 0 gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER 0 *************"); balancers_[0]->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BALANCER 0 *************"); // This is serviced by the existing child policy. gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // All 10 requests should again have gone to the first backend. EXPECT_EQ(20U, backends_[0]->backend_service()->request_count()); EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); // The ADS service of balancer 0 got a single request, and sent a single // response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[1]->ads_service()->response_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->response_count()); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolutionForLbChannel({balancers_[1]->port()}); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); // Wait until update has been processed, as signaled by the second backend // receiving a request. In the meantime, the client continues to be serviced // (by the first backend) without interruption. EXPECT_EQ(0U, backends_[1]->backend_service()->request_count()); WaitForBackend(1); // This is serviced by the updated RR policy backends_[1]->backend_service()->ResetCounters(); gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH =========="); // All 10 requests should have gone to the second backend. EXPECT_EQ(10U, backends_[1]->backend_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); // The second balancer, published as part of the first update, may end up // getting two requests (that is, 1 <= #req <= 2) if the LB call retry timer // firing races with the arrival of the update containing the second // balancer. EXPECT_GE(balancers_[1]->ads_service()->request_count(), 1U); EXPECT_GE(balancers_[1]->ads_service()->response_count(), 1U); EXPECT_LE(balancers_[1]->ads_service()->request_count(), 2U); EXPECT_LE(balancers_[1]->ads_service()->response_count(), 2U); EXPECT_EQ(0U, balancers_[2]->ads_service()->request_count()); EXPECT_EQ(0U, balancers_[2]->ads_service()->response_count()); } // The re-resolution tests are deferred because they rely on the fallback mode, // which hasn't been supported. // TODO(juanlishen): Add TEST_P(BalancerUpdateTest, ReresolveDeadBackend). // TODO(juanlishen): Add TEST_P(UpdatesWithClientLoadReportingTest, // ReresolveDeadBalancer) class ClientLoadReportingTest : public XdsEnd2endTest { public: ClientLoadReportingTest() : XdsEnd2endTest(4, 1, 3) {} }; // Tests that the load report received at the balancer is correct. TEST_P(ClientLoadReportingTest, Vanilla) { SetNextResolution({}); SetNextResolutionForLbChannel({balancers_[0]->port()}); const size_t kNumRpcsPerAddress = 100; // TODO(juanlishen): Partition the backends after multiple localities is // tested. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Wait until all backends are ready. int num_ok = 0; int num_failure = 0; int num_drops = 0; std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * num_backends_); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->backend_service()->request_count()); } // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); // The LRS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->lrs_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->lrs_service()->response_count()); // The load report received at the balancer should be correct. ClientStats* client_stats = balancers_[0]->lrs_service()->WaitForLoadReport(); EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_ok, client_stats->total_successful_requests()); EXPECT_EQ(0U, client_stats->total_requests_in_progress()); EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_ok, client_stats->total_issued_requests()); EXPECT_EQ(0U, client_stats->total_error_requests()); EXPECT_EQ(0U, client_stats->total_dropped_requests()); } // Tests that if the balancer restarts, the client load report contains the // stats before and after the restart correctly. TEST_P(ClientLoadReportingTest, BalancerRestart) { SetNextResolution({}); SetNextResolutionForLbChannel({balancers_[0]->port()}); const size_t kNumBackendsFirstPass = backends_.size() / 2; const size_t kNumBackendsSecondPass = backends_.size() - kNumBackendsFirstPass; AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts(0, kNumBackendsFirstPass)}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Wait until all backends returned by the balancer are ready. int num_ok = 0; int num_failure = 0; int num_drops = 0; std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(/* start_index */ 0, /* stop_index */ kNumBackendsFirstPass); ClientStats* client_stats = balancers_[0]->lrs_service()->WaitForLoadReport(); EXPECT_EQ(static_cast(num_ok), client_stats->total_successful_requests()); EXPECT_EQ(0U, client_stats->total_requests_in_progress()); EXPECT_EQ(0U, client_stats->total_error_requests()); EXPECT_EQ(0U, client_stats->total_dropped_requests()); // Shut down the balancer. balancers_[0]->Shutdown(); // We should continue using the last EDS response we received from the // balancer before it was shut down. // Note: We need to use WaitForAllBackends() here instead of just // CheckRpcSendOk(kNumBackendsFirstPass), because when the balancer // shuts down, the XdsClient will generate an error to the // ServiceConfigWatcher, which will cause the xds resolver to send a // no-op update to the LB policy. When this update gets down to the // round_robin child policy for the locality, it will generate a new // subchannel list, which resets the start index randomly. So we need // to be a little more permissive here to avoid spurious failures. ResetBackendCounters(); int num_started = std::get<0>(WaitForAllBackends( /* start_index */ 0, /* stop_index */ kNumBackendsFirstPass)); // Now restart the balancer, this time pointing to the new backends. balancers_[0]->Start(server_host_); args = AdsServiceImpl::ResponseArgs({ {"locality0", GetBackendPorts(kNumBackendsFirstPass)}, }); ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); // Wait for queries to start going to one of the new backends. // This tells us that we're now using the new serverlist. std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(/* start_index */ kNumBackendsFirstPass); num_started += num_ok + num_failure + num_drops; // Send one RPC per backend. CheckRpcSendOk(kNumBackendsSecondPass); num_started += kNumBackendsSecondPass; // Check client stats. client_stats = balancers_[0]->lrs_service()->WaitForLoadReport(); EXPECT_EQ(num_started, client_stats->total_successful_requests()); EXPECT_EQ(0U, client_stats->total_requests_in_progress()); EXPECT_EQ(0U, client_stats->total_error_requests()); EXPECT_EQ(0U, client_stats->total_dropped_requests()); } class ClientLoadReportingWithDropTest : public XdsEnd2endTest { public: ClientLoadReportingWithDropTest() : XdsEnd2endTest(4, 1, 20) {} }; // Tests that the drop stats are correctly reported by client load reporting. TEST_P(ClientLoadReportingWithDropTest, Vanilla) { SetNextResolution({}); SetNextResolutionForLbChannelAllBalancers(); const size_t kNumRpcs = 3000; const uint32_t kDropPerMillionForLb = 100000; const uint32_t kDropPerMillionForThrottle = 200000; const double kDropRateForLb = kDropPerMillionForLb / 1000000.0; const double kDropRateForThrottle = kDropPerMillionForThrottle / 1000000.0; const double KDropRateForLbAndThrottle = kDropRateForLb + (1 - kDropRateForLb) * kDropRateForThrottle; // The ADS response contains two drop categories. AdsServiceImpl::ResponseArgs args({ {"locality0", GetBackendPorts()}, }); args.drop_categories = {{kLbDropType, kDropPerMillionForLb}, {kThrottleDropType, kDropPerMillionForThrottle}}; ScheduleResponseForBalancer(0, AdsServiceImpl::BuildResponse(args), 0); int num_ok = 0; int num_failure = 0; int num_drops = 0; std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(); const size_t num_warmup = num_ok + num_failure + num_drops; // Send kNumRpcs RPCs and count the drops. for (size_t i = 0; i < kNumRpcs; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } // The drop rate should be roughly equal to the expectation. const double seen_drop_rate = static_cast(num_drops) / kNumRpcs; const double kErrorTolerance = 0.2; EXPECT_THAT( seen_drop_rate, ::testing::AllOf( ::testing::Ge(KDropRateForLbAndThrottle * (1 - kErrorTolerance)), ::testing::Le(KDropRateForLbAndThrottle * (1 + kErrorTolerance)))); // Check client stats. ClientStats* client_stats = balancers_[0]->lrs_service()->WaitForLoadReport(); EXPECT_EQ(num_drops, client_stats->total_dropped_requests()); const size_t total_rpc = num_warmup + kNumRpcs; EXPECT_THAT( client_stats->dropped_requests(kLbDropType), ::testing::AllOf( ::testing::Ge(total_rpc * kDropRateForLb * (1 - kErrorTolerance)), ::testing::Le(total_rpc * kDropRateForLb * (1 + kErrorTolerance)))); EXPECT_THAT(client_stats->dropped_requests(kThrottleDropType), ::testing::AllOf( ::testing::Ge(total_rpc * (1 - kDropRateForLb) * kDropRateForThrottle * (1 - kErrorTolerance)), ::testing::Le(total_rpc * (1 - kDropRateForLb) * kDropRateForThrottle * (1 + kErrorTolerance)))); // The ADS service got a single request, and sent a single response. EXPECT_EQ(1U, balancers_[0]->ads_service()->request_count()); EXPECT_EQ(1U, balancers_[0]->ads_service()->response_count()); } grpc::string TestTypeName(const ::testing::TestParamInfo& info) { return info.param.AsString(); } // TODO(juanlishen): Load reporting disabled is currently tested only with DNS // resolver. Once we implement CDS, test it via the xds resolver too. INSTANTIATE_TEST_SUITE_P(XdsTest, BasicTest, ::testing::Values(TestType(false, true), TestType(false, false), TestType(true, true)), &TestTypeName); INSTANTIATE_TEST_SUITE_P(XdsTest, SecureNamingTest, ::testing::Values(TestType(false, true), TestType(false, false), TestType(true, true)), &TestTypeName); INSTANTIATE_TEST_SUITE_P(XdsTest, LocalityMapTest, ::testing::Values(TestType(false, true), TestType(false, false), TestType(true, true)), &TestTypeName); INSTANTIATE_TEST_SUITE_P(XdsTest, FailoverTest, ::testing::Values(TestType(false, true), TestType(false, false), TestType(true, true)), &TestTypeName); INSTANTIATE_TEST_SUITE_P(XdsTest, DropTest, ::testing::Values(TestType(false, true), TestType(false, false), TestType(true, true)), &TestTypeName); // Fallback does not work with xds resolver. INSTANTIATE_TEST_SUITE_P(XdsTest, FallbackTest, ::testing::Values(TestType(false, true), TestType(false, false)), &TestTypeName); INSTANTIATE_TEST_SUITE_P(XdsTest, BalancerUpdateTest, ::testing::Values(TestType(false, true), TestType(false, false), TestType(true, true)), &TestTypeName); // Load reporting tests are not run with load reporting disabled. INSTANTIATE_TEST_SUITE_P(XdsTest, ClientLoadReportingTest, ::testing::Values(TestType(false, true), TestType(true, true)), &TestTypeName); // Load reporting tests are not run with load reporting disabled. INSTANTIATE_TEST_SUITE_P(XdsTest, ClientLoadReportingWithDropTest, ::testing::Values(TestType(false, true), TestType(true, true)), &TestTypeName); } // namespace } // namespace testing } // namespace grpc int main(int argc, char** argv) { grpc::testing::TestEnvironment env(argc, argv); ::testing::InitGoogleTest(&argc, argv); grpc::testing::WriteBootstrapFiles(); grpc::testing::g_port_saver = new grpc::testing::PortSaver(); const auto result = RUN_ALL_TESTS(); return result; }