// Copyright 2022 The gRPC Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "absl/debugging/leak_check.h" #include "absl/functional/any_invocable.h" #include #include #include "src/core/lib/event_engine/common_closures.h" #include "src/core/lib/event_engine/default_event_engine.h" #include "src/core/lib/gprpp/notification.h" #include "test/core/util/test_config.h" #include "test/cpp/microbenchmarks/helpers.h" #include "test/cpp/util/test_config.h" namespace { using ::grpc_event_engine::experimental::AnyInvocableClosure; using ::grpc_event_engine::experimental::EventEngine; using ::grpc_event_engine::experimental::GetDefaultEventEngine; struct FanoutParameters { int depth; int fanout; int limit; }; void BM_EventEngine_RunSmallLambda(benchmark::State& state) { auto engine = GetDefaultEventEngine(); const int cb_count = state.range(0); std::atomic_int count{0}; for (auto _ : state) { state.PauseTiming(); grpc_core::Notification signal; auto cb = [&signal, &count, cb_count]() { if (++count == cb_count) signal.Notify(); }; state.ResumeTiming(); for (int i = 0; i < cb_count; i++) { engine->Run(cb); } signal.WaitForNotification(); count.store(0); } state.SetItemsProcessed(cb_count * state.iterations()); } BENCHMARK(BM_EventEngine_RunSmallLambda) ->Range(100, 4096) ->MeasureProcessCPUTime() ->UseRealTime(); void BM_EventEngine_RunLargeLambda(benchmark::State& state) { int cb_count = state.range(0); // large lambdas require an extra allocation std::string extra = "12345678"; auto engine = GetDefaultEventEngine(); std::atomic_int count{0}; for (auto _ : state) { state.PauseTiming(); grpc_core::Notification signal; auto cb = [&signal, &count, cb_count, extra]() { (void)extra; if (++count == cb_count) signal.Notify(); }; state.ResumeTiming(); for (int i = 0; i < cb_count; i++) { engine->Run(cb); } signal.WaitForNotification(); count.store(0); } state.SetItemsProcessed(cb_count * state.iterations()); } BENCHMARK(BM_EventEngine_RunLargeLambda) ->Range(100, 4096) ->MeasureProcessCPUTime() ->UseRealTime(); void BM_EventEngine_RunClosure(benchmark::State& state) { int cb_count = state.range(0); grpc_core::Notification* signal = new grpc_core::Notification(); std::atomic_int count{0}; // Ignore leaks from this closure. For simplicty, this closure is not deleted // because the closure may still be executing after the event engine is // destroyed. This is because the default posix event engine's thread pool may // get destroyed separately from the event engine. AnyInvocableClosure* closure = absl::IgnoreLeak( new AnyInvocableClosure([signal_holder = &signal, cb_count, &count]() { if (++count == cb_count) { (*signal_holder)->Notify(); } })); auto engine = GetDefaultEventEngine(); for (auto _ : state) { for (int i = 0; i < cb_count; i++) { engine->Run(closure); } signal->WaitForNotification(); state.PauseTiming(); delete signal; signal = new grpc_core::Notification(); count.store(0); state.ResumeTiming(); } delete signal; state.SetItemsProcessed(cb_count * state.iterations()); } BENCHMARK(BM_EventEngine_RunClosure) ->Range(100, 4096) ->MeasureProcessCPUTime() ->UseRealTime(); void FanoutTestArguments(benchmark::internal::Benchmark* b) { // TODO(hork): enable when the engines are fast enough to run these: // ->Args({10000, 1}) // chain of callbacks scheduling callbacks // ->Args({1, 10000}) // flat scheduling of callbacks // ->Args({5, 6}) // depth 5, fans out to 9,330 callbacks // ->Args({2, 100}) // depth 2, fans out 10,101 callbacks // ->Args({4, 10}) // depth 4, fans out to 11,110 callbacks b->Args({1000, 1}) // chain of callbacks scheduling callbacks ->Args({100, 1}) // chain of callbacks scheduling callbacks ->Args({1, 1000}) // flat scheduling of callbacks ->Args({1, 100}) // flat scheduling of callbacks ->Args({2, 70}) // depth 2, fans out 4971 ->Args({4, 8}) // depth 4, fans out 4681 ->UseRealTime() ->MeasureProcessCPUTime(); } FanoutParameters GetFanoutParameters(benchmark::State& state) { FanoutParameters params; params.depth = state.range(0); params.fanout = state.range(1); if (params.depth == 1 || params.fanout == 1) { params.limit = std::max(params.depth, params.fanout) + 1; } else { // sum of geometric series params.limit = (1 - std::pow(params.fanout, params.depth + 1)) / (1 - params.fanout); } // sanity checking GPR_ASSERT(params.limit >= params.fanout * params.depth); return params; } // EventEngine callback for Lambda FanOut tests // // Note that params are copied each time for 2 reasons: 1) callbacks will // inevitably continue to shut down after the end of the test, so a reference // parameter will become invalid and crash some callbacks, and 2) in my RBE // tests, copies are slightly faster than a shared_ptr // alternative. void FanOutCallback(std::shared_ptr engine, const FanoutParameters params, grpc_core::Notification& signal, std::atomic_int& count, int processing_layer) { int local_cnt = count.fetch_add(1, std::memory_order_acq_rel) + 1; if (local_cnt == params.limit) { signal.Notify(); return; } GPR_DEBUG_ASSERT(local_cnt < params.limit); if (params.depth == processing_layer) return; for (int i = 0; i < params.fanout; i++) { engine->Run([engine, params, processing_layer, &count, &signal]() { FanOutCallback(engine, params, signal, count, processing_layer + 1); }); } } void BM_EventEngine_Lambda_FanOut(benchmark::State& state) { auto params = GetFanoutParameters(state); auto engine = GetDefaultEventEngine(); for (auto _ : state) { std::atomic_int count{0}; grpc_core::Notification signal; FanOutCallback(engine, params, signal, count, /*processing_layer=*/0); do { signal.WaitForNotification(); } while (count.load() != params.limit); } state.SetItemsProcessed(params.limit * state.iterations()); } BENCHMARK(BM_EventEngine_Lambda_FanOut)->Apply(FanoutTestArguments); void ClosureFanOutCallback(EventEngine::Closure* child_closure, std::shared_ptr engine, grpc_core::Notification** signal_holder, std::atomic_int& count, const FanoutParameters params) { int local_cnt = count.fetch_add(1, std::memory_order_acq_rel) + 1; if (local_cnt == params.limit) { (*signal_holder)->Notify(); return; } if (local_cnt > params.limit) { gpr_log(GPR_ERROR, "Ran too many closures: %d/%d", local_cnt, params.limit); abort(); } if (child_closure == nullptr) return; for (int i = 0; i < params.fanout; i++) { engine->Run(child_closure); } } void BM_EventEngine_Closure_FanOut(benchmark::State& state) { auto params = GetFanoutParameters(state); auto engine = GetDefaultEventEngine(); std::vector closures; closures.reserve(params.depth + 2); closures.push_back(nullptr); grpc_core::Notification* signal = new grpc_core::Notification(); std::atomic_int count{0}; // prepare a unique closure for each depth for (int i = 0; i <= params.depth; i++) { // call the previous closure (e.g., closures[2] calls closures[1] during // fanout) closures.push_back(new AnyInvocableClosure( [i, engine, &closures, params, signal_holder = &signal, &count]() { ClosureFanOutCallback(closures[i], engine, signal_holder, count, params); })); } for (auto _ : state) { GPR_DEBUG_ASSERT(count.load(std::memory_order_relaxed) == 0); engine->Run(closures[params.depth + 1]); do { signal->WaitForNotification(); } while (count.load() != params.limit); // cleanup state.PauseTiming(); delete signal; signal = new grpc_core::Notification(); count.store(0); state.ResumeTiming(); } delete signal; state.SetItemsProcessed(params.limit * state.iterations()); for (auto i : closures) delete i; } BENCHMARK(BM_EventEngine_Closure_FanOut)->Apply(FanoutTestArguments); } // namespace // Some distros have RunSpecifiedBenchmarks under the benchmark namespace, // and others do not. This allows us to support both modes. namespace benchmark { void RunTheBenchmarksNamespaced() { RunSpecifiedBenchmarks(); } } // namespace benchmark int main(int argc, char** argv) { grpc::testing::TestEnvironment env(&argc, argv); LibraryInitializer libInit; benchmark::Initialize(&argc, argv); grpc::testing::InitTest(&argc, &argv, false); benchmark::RunTheBenchmarksNamespaced(); return 0; }