// // Copyright 2017 gRPC authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include #include #include #include #include #include #include #include #include #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include #include #include #include #include #include #include #include #include #include #include "src/core/ext/filters/client_channel/backup_poller.h" #include "src/core/ext/filters/client_channel/lb_policy/grpclb/grpclb.h" #include "src/core/ext/filters/client_channel/lb_policy/grpclb/grpclb_balancer_addresses.h" #include "src/core/ext/filters/client_channel/resolver/fake/fake_resolver.h" #include "src/core/lib/address_utils/parse_address.h" #include "src/core/lib/gpr/env.h" #include "src/core/lib/gprpp/ref_counted_ptr.h" #include "src/core/lib/iomgr/sockaddr.h" #include "src/core/lib/resolver/server_address.h" #include "src/core/lib/security/credentials/fake/fake_credentials.h" #include "src/core/lib/service_config/service_config_impl.h" #include "src/cpp/client/secure_credentials.h" #include "src/cpp/server/secure_server_credentials.h" #include "src/proto/grpc/lb/v1/load_balancer.grpc.pb.h" #include "src/proto/grpc/testing/echo.grpc.pb.h" #include "test/core/util/port.h" #include "test/core/util/resolve_localhost_ip46.h" #include "test/core/util/test_config.h" #include "test/cpp/end2end/counted_service.h" #include "test/cpp/end2end/test_service_impl.h" #include "test/cpp/util/test_config.h" // TODO(dgq): Other scenarios in need of testing: // - Send a serverlist with faulty ip:port addresses (port > 2^16, etc). // - Test reception of invalid serverlist // - Test against a non-LB server. // - Random LB server closing the stream unexpectedly. // // Findings from end to end testing to be covered here: // - Handling of LB servers restart, including reconnection after backing-off // retries. // - Destruction of load balanced channel (and therefore of grpclb instance) // while: // 1) the internal LB call is still active. This should work by virtue // of the weak reference the LB call holds. The call should be terminated as // part of the grpclb shutdown process. // 2) the retry timer is active. Again, the weak reference it holds should // prevent a premature call to \a glb_destroy. using std::chrono::system_clock; using grpc::lb::v1::LoadBalancer; using grpc::lb::v1::LoadBalanceRequest; using grpc::lb::v1::LoadBalanceResponse; namespace grpc { namespace testing { namespace { constexpr char kDefaultServiceConfig[] = "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{} }\n" " ]\n" "}"; using BackendService = CountedService; using BalancerService = CountedService; const char g_kCallCredsMdKey[] = "Balancer should not ..."; const char g_kCallCredsMdValue[] = "... receive me"; class BackendServiceImpl : public BackendService { public: BackendServiceImpl() {} Status Echo(ServerContext* context, const EchoRequest* request, EchoResponse* response) override { // Backend should receive the call credentials metadata. auto call_credentials_entry = context->client_metadata().find(g_kCallCredsMdKey); EXPECT_NE(call_credentials_entry, context->client_metadata().end()); if (call_credentials_entry != context->client_metadata().end()) { EXPECT_EQ(call_credentials_entry->second, g_kCallCredsMdValue); } IncreaseRequestCount(); const auto status = TestServiceImpl::Echo(context, request, response); IncreaseResponseCount(); AddClient(context->peer()); return status; } void Start() {} void Shutdown() {} std::set clients() { grpc::internal::MutexLock lock(&clients_mu_); return clients_; } private: void AddClient(const std::string& client) { grpc::internal::MutexLock lock(&clients_mu_); clients_.insert(client); } grpc::internal::Mutex clients_mu_; std::set clients_ ABSL_GUARDED_BY(&clients_mu_); }; std::string Ip4ToPackedString(const char* ip_str) { struct in_addr ip4; GPR_ASSERT(inet_pton(AF_INET, ip_str, &ip4) == 1); return std::string(reinterpret_cast(&ip4), sizeof(ip4)); } std::string Ip6ToPackedString(const char* ip_str) { struct in6_addr ip6; GPR_ASSERT(inet_pton(AF_INET6, ip_str, &ip6) == 1); return std::string(reinterpret_cast(&ip6), sizeof(ip6)); } struct ClientStats { size_t num_calls_started = 0; size_t num_calls_finished = 0; size_t num_calls_finished_with_client_failed_to_send = 0; size_t num_calls_finished_known_received = 0; std::map drop_token_counts; ClientStats& operator+=(const ClientStats& other) { num_calls_started += other.num_calls_started; num_calls_finished += other.num_calls_finished; num_calls_finished_with_client_failed_to_send += other.num_calls_finished_with_client_failed_to_send; num_calls_finished_known_received += other.num_calls_finished_known_received; for (const auto& p : other.drop_token_counts) { drop_token_counts[p.first] += p.second; } return *this; } void Reset() { num_calls_started = 0; num_calls_finished = 0; num_calls_finished_with_client_failed_to_send = 0; num_calls_finished_known_received = 0; drop_token_counts.clear(); } }; class BalancerServiceImpl : public BalancerService { public: using Stream = ServerReaderWriter; using ResponseDelayPair = std::pair; explicit BalancerServiceImpl(int client_load_reporting_interval_seconds) : client_load_reporting_interval_seconds_( client_load_reporting_interval_seconds) {} Status BalanceLoad(ServerContext* context, Stream* stream) override { gpr_log(GPR_INFO, "LB[%p]: BalanceLoad", this); { grpc::internal::MutexLock lock(&mu_); if (serverlist_done_) goto done; } { // Balancer shouldn't receive the call credentials metadata. EXPECT_EQ(context->client_metadata().find(g_kCallCredsMdKey), context->client_metadata().end()); LoadBalanceRequest request; std::vector responses_and_delays; if (!stream->Read(&request)) { goto done; } else { if (request.has_initial_request()) { grpc::internal::MutexLock lock(&mu_); service_names_.push_back(request.initial_request().name()); } } IncreaseRequestCount(); gpr_log(GPR_INFO, "LB[%p]: received initial message '%s'", this, request.DebugString().c_str()); // TODO(juanlishen): Initial response should always be the first response. if (client_load_reporting_interval_seconds_ > 0) { LoadBalanceResponse initial_response; initial_response.mutable_initial_response() ->mutable_client_stats_report_interval() ->set_seconds(client_load_reporting_interval_seconds_); stream->Write(initial_response); } { grpc::internal::MutexLock lock(&mu_); responses_and_delays = responses_and_delays_; } for (const auto& response_and_delay : responses_and_delays) { SendResponse(stream, response_and_delay.first, response_and_delay.second); } { grpc::internal::MutexLock lock(&mu_); while (!serverlist_done_) { serverlist_cond_.Wait(&mu_); } } if (client_load_reporting_interval_seconds_ > 0) { request.Clear(); while (stream->Read(&request)) { gpr_log(GPR_INFO, "LB[%p]: received client load report message '%s'", this, request.DebugString().c_str()); GPR_ASSERT(request.has_client_stats()); ClientStats load_report; load_report.num_calls_started = request.client_stats().num_calls_started(); load_report.num_calls_finished = request.client_stats().num_calls_finished(); load_report.num_calls_finished_with_client_failed_to_send = request.client_stats() .num_calls_finished_with_client_failed_to_send(); load_report.num_calls_finished_known_received = request.client_stats().num_calls_finished_known_received(); for (const auto& drop_token_count : request.client_stats().calls_finished_with_drop()) { load_report .drop_token_counts[drop_token_count.load_balance_token()] = drop_token_count.num_calls(); } // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. grpc::internal::MutexLock lock(&mu_); load_report_queue_.emplace_back(std::move(load_report)); load_report_cond_.Signal(); } } } done: gpr_log(GPR_INFO, "LB[%p]: done", this); return Status::OK; } void add_response(const LoadBalanceResponse& response, int send_after_ms) { grpc::internal::MutexLock lock(&mu_); responses_and_delays_.push_back(std::make_pair(response, send_after_ms)); } void Start() { grpc::internal::MutexLock lock(&mu_); serverlist_done_ = false; responses_and_delays_.clear(); load_report_queue_.clear(); } void Shutdown() { NotifyDoneWithServerlists(); gpr_log(GPR_INFO, "LB[%p]: shut down", this); } ClientStats WaitForLoadReport() { grpc::internal::MutexLock lock(&mu_); if (load_report_queue_.empty()) { while (load_report_queue_.empty()) { load_report_cond_.Wait(&mu_); } } ClientStats load_report = std::move(load_report_queue_.front()); load_report_queue_.pop_front(); return load_report; } void NotifyDoneWithServerlists() { grpc::internal::MutexLock lock(&mu_); if (!serverlist_done_) { serverlist_done_ = true; serverlist_cond_.SignalAll(); } } std::vector service_names() { grpc::internal::MutexLock lock(&mu_); return service_names_; } private: void SendResponse(Stream* stream, const LoadBalanceResponse& response, int delay_ms) { gpr_log(GPR_INFO, "LB[%p]: sleeping for %d ms...", this, delay_ms); if (delay_ms > 0) { gpr_sleep_until(grpc_timeout_milliseconds_to_deadline(delay_ms)); } gpr_log(GPR_INFO, "LB[%p]: Woke up! Sending response '%s'", this, response.DebugString().c_str()); IncreaseResponseCount(); stream->Write(response); } const int client_load_reporting_interval_seconds_; std::vector responses_and_delays_; std::vector service_names_; grpc::internal::Mutex mu_; grpc::internal::CondVar serverlist_cond_; bool serverlist_done_ ABSL_GUARDED_BY(mu_) = false; grpc::internal::CondVar load_report_cond_; std::deque load_report_queue_ ABSL_GUARDED_BY(mu_); }; class GrpclbEnd2endTest : public ::testing::Test { protected: GrpclbEnd2endTest(size_t num_backends, size_t num_balancers, int client_load_reporting_interval_seconds) : server_host_("localhost"), num_backends_(num_backends), num_balancers_(num_balancers), client_load_reporting_interval_seconds_( client_load_reporting_interval_seconds) {} static void SetUpTestCase() { // Make the backup poller poll very frequently in order to pick up // updates from all the subchannels's FDs. GPR_GLOBAL_CONFIG_SET(grpc_client_channel_backup_poll_interval_ms, 1); #if TARGET_OS_IPHONE // Workaround Apple CFStream bug gpr_setenv("grpc_cfstream", "0"); #endif grpc_init(); } static void TearDownTestCase() { grpc_shutdown(); } void SetUp() override { bool localhost_resolves_to_ipv4 = false; bool localhost_resolves_to_ipv6 = false; grpc_core::LocalhostResolves(&localhost_resolves_to_ipv4, &localhost_resolves_to_ipv6); ipv6_only_ = !localhost_resolves_to_ipv4 && localhost_resolves_to_ipv6; response_generator_ = grpc_core::MakeRefCounted(); // Start the backends. for (size_t i = 0; i < num_backends_; ++i) { backends_.emplace_back(new ServerThread("backend")); backends_.back()->Start(server_host_); } // Start the load balancers. for (size_t i = 0; i < num_balancers_; ++i) { balancers_.emplace_back(new ServerThread( "balancer", client_load_reporting_interval_seconds_)); balancers_.back()->Start(server_host_); } ResetStub(); } void TearDown() override { ShutdownAllBackends(); for (auto& balancer : balancers_) balancer->Shutdown(); } void StartAllBackends() { for (auto& backend : backends_) backend->Start(server_host_); } void StartBackend(size_t index) { backends_[index]->Start(server_host_); } void ShutdownAllBackends() { for (auto& backend : backends_) backend->Shutdown(); } void ShutdownBackend(size_t index) { backends_[index]->Shutdown(); } void ResetStub(int fallback_timeout = 0, const std::string& expected_targets = "", int subchannel_cache_delay_ms = 0) { ChannelArguments args; if (fallback_timeout > 0) args.SetGrpclbFallbackTimeout(fallback_timeout); args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR, response_generator_.get()); if (!expected_targets.empty()) { args.SetString(GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets); } if (subchannel_cache_delay_ms > 0) { args.SetInt(GRPC_ARG_GRPCLB_SUBCHANNEL_CACHE_INTERVAL_MS, subchannel_cache_delay_ms * grpc_test_slowdown_factor()); } std::ostringstream uri; uri << "fake:///" << kApplicationTargetName_; // TODO(dgq): templatize tests to run everything using both secure and // insecure channel credentials. grpc_channel_credentials* channel_creds = grpc_fake_transport_security_credentials_create(); grpc_call_credentials* call_creds = grpc_md_only_test_credentials_create( g_kCallCredsMdKey, g_kCallCredsMdValue); std::shared_ptr creds( new SecureChannelCredentials(grpc_composite_channel_credentials_create( channel_creds, call_creds, nullptr))); call_creds->Unref(); channel_creds->Unref(); channel_ = grpc::CreateCustomChannel(uri.str(), creds, args); stub_ = grpc::testing::EchoTestService::NewStub(channel_); } void ResetBackendCounters() { for (auto& backend : backends_) backend->service_.ResetCounters(); } ClientStats WaitForLoadReports() { ClientStats client_stats; for (auto& balancer : balancers_) { client_stats += balancer->service_.WaitForLoadReport(); } return client_stats; } bool SeenAllBackends(size_t start_index = 0, size_t stop_index = 0) { if (stop_index == 0) stop_index = backends_.size(); for (size_t i = start_index; i < stop_index; ++i) { if (backends_[i]->service_.request_count() == 0) return false; } return true; } void SendRpcAndCount(int* num_total, int* num_ok, int* num_failure, int* num_drops) { const Status status = SendRpc(); if (status.ok()) { ++*num_ok; } else { if (status.error_message() == "drop directed by grpclb balancer") { ++*num_drops; } else { ++*num_failure; } } ++*num_total; } std::tuple WaitForAllBackends(int num_requests_multiple_of = 1, size_t start_index = 0, size_t stop_index = 0) { int num_ok = 0; int num_failure = 0; int num_drops = 0; int num_total = 0; while (!SeenAllBackends(start_index, stop_index)) { SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops); } while (num_total % num_requests_multiple_of != 0) { SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops); } ResetBackendCounters(); gpr_log(GPR_INFO, "Performed %d warm up requests (a multiple of %d) against the " "backends. %d succeeded, %d failed, %d dropped.", num_total, num_requests_multiple_of, num_ok, num_failure, num_drops); return std::make_tuple(num_ok, num_failure, num_drops); } void WaitForBackend(size_t backend_idx) { do { (void)SendRpc(); } while (backends_[backend_idx]->service_.request_count() == 0); ResetBackendCounters(); } struct AddressData { int port; std::string balancer_name; }; grpc_core::ServerAddressList CreateLbAddressesFromAddressDataList( const std::vector& address_data) { grpc_core::ServerAddressList addresses; for (const auto& addr : address_data) { absl::StatusOr lb_uri = grpc_core::URI::Parse(absl::StrCat( ipv6_only_ ? "ipv6:[::1]:" : "ipv4:127.0.0.1:", addr.port)); GPR_ASSERT(lb_uri.ok()); grpc_resolved_address address; GPR_ASSERT(grpc_parse_uri(*lb_uri, &address)); addresses.emplace_back( address.addr, address.len, grpc_core::ChannelArgs().Set(GRPC_ARG_DEFAULT_AUTHORITY, addr.balancer_name)); } return addresses; } grpc_core::Resolver::Result MakeResolverResult( const std::vector& balancer_address_data, const std::vector& backend_address_data = {}, const char* service_config_json = kDefaultServiceConfig) { grpc_core::Resolver::Result result; result.addresses = CreateLbAddressesFromAddressDataList(backend_address_data); result.service_config = grpc_core::ServiceConfigImpl::Create( grpc_core::ChannelArgs(), service_config_json); GPR_ASSERT(result.service_config.ok()); grpc_core::ServerAddressList balancer_addresses = CreateLbAddressesFromAddressDataList(balancer_address_data); result.args = grpc_core::SetGrpcLbBalancerAddresses( grpc_core::ChannelArgs(), std::move(balancer_addresses)); return result; } void SetNextResolutionAllBalancers( const char* service_config_json = kDefaultServiceConfig) { std::vector addresses; for (size_t i = 0; i < balancers_.size(); ++i) { addresses.emplace_back(AddressData{balancers_[i]->port_, ""}); } SetNextResolution(addresses, {}, service_config_json); } void SetNextResolution( const std::vector& balancer_address_data, const std::vector& backend_address_data = {}, const char* service_config_json = kDefaultServiceConfig) { grpc_core::ExecCtx exec_ctx; grpc_core::Resolver::Result result = MakeResolverResult( balancer_address_data, backend_address_data, service_config_json); response_generator_->SetResponse(std::move(result)); } void SetNextReresolutionResponse( const std::vector& balancer_address_data, const std::vector& backend_address_data = {}, const char* service_config_json = kDefaultServiceConfig) { grpc_core::ExecCtx exec_ctx; grpc_core::Resolver::Result result = MakeResolverResult( balancer_address_data, backend_address_data, service_config_json); response_generator_->SetReresolutionResponse(std::move(result)); } std::vector GetBackendPorts(size_t start_index = 0, size_t stop_index = 0) const { if (stop_index == 0) stop_index = backends_.size(); std::vector backend_ports; for (size_t i = start_index; i < stop_index; ++i) { backend_ports.push_back(backends_[i]->port_); } return backend_ports; } void ScheduleResponseForBalancer(size_t i, const LoadBalanceResponse& response, int delay_ms) { balancers_[i]->service_.add_response(response, delay_ms); } LoadBalanceResponse BuildResponseForBackends( const std::vector& backend_ports, const std::map& drop_token_counts) { LoadBalanceResponse response; for (const auto& drop_token_count : drop_token_counts) { for (size_t i = 0; i < drop_token_count.second; ++i) { auto* server = response.mutable_server_list()->add_servers(); server->set_drop(true); server->set_load_balance_token(drop_token_count.first); } } for (const int& backend_port : backend_ports) { auto* server = response.mutable_server_list()->add_servers(); server->set_ip_address(ipv6_only_ ? Ip6ToPackedString("::1") : Ip4ToPackedString("127.0.0.1")); server->set_port(backend_port); static int token_count = 0; server->set_load_balance_token( absl::StrFormat("token%03d", ++token_count)); } return response; } Status SendRpc(EchoResponse* response = nullptr, int timeout_ms = 1000, bool wait_for_ready = false, const Status& expected_status = Status::OK) { const bool local_response = (response == nullptr); if (local_response) response = new EchoResponse; EchoRequest request; request.set_message(kRequestMessage_); if (!expected_status.ok()) { auto* error = request.mutable_param()->mutable_expected_error(); error->set_code(expected_status.error_code()); error->set_error_message(expected_status.error_message()); } ClientContext context; context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms)); if (wait_for_ready) context.set_wait_for_ready(true); Status status = stub_->Echo(&context, request, response); if (local_response) delete response; return status; } void CheckRpcSendOk(const size_t times = 1, const int timeout_ms = 1000, bool wait_for_ready = false) { for (size_t i = 0; i < times; ++i) { EchoResponse response; const Status status = SendRpc(&response, timeout_ms, wait_for_ready); EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } void CheckRpcSendFailure() { const Status status = SendRpc(); EXPECT_FALSE(status.ok()); } template struct ServerThread { template explicit ServerThread(const std::string& type, Args&&... args) : port_(grpc_pick_unused_port_or_die()), type_(type), service_(std::forward(args)...) {} void Start(const std::string& server_host) { gpr_log(GPR_INFO, "starting %s server on port %d", type_.c_str(), port_); GPR_ASSERT(!running_); running_ = true; service_.Start(); grpc::internal::Mutex mu; // We need to acquire the lock here in order to prevent the notify_one // by ServerThread::Serve from firing before the wait below is hit. grpc::internal::MutexLock lock(&mu); grpc::internal::CondVar cond; thread_ = absl::make_unique( std::bind(&ServerThread::Serve, this, server_host, &mu, &cond)); cond.Wait(&mu); gpr_log(GPR_INFO, "%s server startup complete", type_.c_str()); } void Serve(const std::string& server_host, grpc::internal::Mutex* mu, grpc::internal::CondVar* cond) { // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. grpc::internal::MutexLock lock(mu); std::ostringstream server_address; server_address << server_host << ":" << port_; ServerBuilder builder; std::shared_ptr creds(new SecureServerCredentials( grpc_fake_transport_security_server_credentials_create())); builder.AddListeningPort(server_address.str(), creds); builder.RegisterService(&service_); server_ = builder.BuildAndStart(); cond->Signal(); } void Shutdown() { if (!running_) return; gpr_log(GPR_INFO, "%s about to shutdown", type_.c_str()); service_.Shutdown(); server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0)); thread_->join(); gpr_log(GPR_INFO, "%s shutdown completed", type_.c_str()); running_ = false; } const int port_; std::string type_; T service_; std::unique_ptr server_; std::unique_ptr thread_; bool running_ = false; }; const std::string server_host_; const size_t num_backends_; const size_t num_balancers_; const int client_load_reporting_interval_seconds_; bool ipv6_only_ = false; std::shared_ptr channel_; std::unique_ptr stub_; std::vector>> backends_; std::vector>> balancers_; grpc_core::RefCountedPtr response_generator_; const std::string kRequestMessage_ = "Live long and prosper."; const std::string kApplicationTargetName_ = "application_target_name"; }; class SingleBalancerTest : public GrpclbEnd2endTest { public: SingleBalancerTest() : GrpclbEnd2endTest(4, 1, 0) {} }; TEST_F(SingleBalancerTest, Vanilla) { SetNextResolutionAllBalancers(); const size_t kNumRpcsPerAddress = 100; ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // We need to wait for all backends to come online. WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * num_backends_); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count()); } balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, SubchannelCaching) { ResetStub(/*fallback_timeout=*/0, /*expected_targets=*/"", /*subchannel_cache_delay_ms=*/1500); SetNextResolutionAllBalancers(); // Initially send all backends. ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); // Then remove backends 0 and 1. ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(2), {}), 1000); // Now re-add backend 1. ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(1), {}), 1000); // Wait for all backends to come online. WaitForAllBackends(); // Send RPCs for long enough to get all responses. gpr_timespec deadline = grpc_timeout_milliseconds_to_deadline(3000); do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_MONOTONIC), deadline) < 0); // Backend 0 should have received less traffic than the others. // Backend 1 would have received less traffic than 2 and 3. gpr_log(GPR_INFO, "BACKEND 0: %" PRIuPTR " requests", backends_[0]->service_.request_count()); EXPECT_GT(backends_[0]->service_.request_count(), 0); for (size_t i = 1; i < backends_.size(); ++i) { gpr_log(GPR_INFO, "BACKEND %" PRIuPTR ": %" PRIuPTR " requests", i, backends_[i]->service_.request_count()); EXPECT_GT(backends_[i]->service_.request_count(), backends_[0]->service_.request_count()) << "backend " << i; if (i >= 2) { EXPECT_GT(backends_[i]->service_.request_count(), backends_[1]->service_.request_count()) << "backend " << i; } } // Backend 1 should never have lost its connection from the client. EXPECT_EQ(1UL, backends_[1]->service_.clients().size()); balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // And sent 3 responses. EXPECT_EQ(3U, balancers_[0]->service_.response_count()); } TEST_F(SingleBalancerTest, ReturnServerStatus) { SetNextResolutionAllBalancers(); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); // We need to wait for all backends to come online. WaitForAllBackends(); // Send a request that the backend will fail, and make sure we get // back the right status. Status expected(StatusCode::INVALID_ARGUMENT, "He's dead, Jim!"); Status actual = SendRpc(/*response=*/nullptr, /*timeout_ms=*/1000, /*wait_for_ready=*/false, expected); EXPECT_EQ(actual.error_code(), expected.error_code()); EXPECT_EQ(actual.error_message(), expected.error_message()); } TEST_F(SingleBalancerTest, SelectGrpclbWithMigrationServiceConfig) { SetNextResolutionAllBalancers( "{\n" " \"loadBalancingConfig\":[\n" " { \"does_not_exist\":{} },\n" " { \"grpclb\":{} }\n" " ]\n" "}"); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); CheckRpcSendOk(1, 1000 /* timeout_ms */, true /* wait_for_ready */); balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, SelectGrpclbWithMigrationServiceConfigAndNoAddresses) { const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor(); ResetStub(kFallbackTimeoutMs); SetNextResolution({}, {}, "{\n" " \"loadBalancingConfig\":[\n" " { \"does_not_exist\":{} },\n" " { \"grpclb\":{} }\n" " ]\n" "}"); // Try to connect. EXPECT_EQ(GRPC_CHANNEL_IDLE, channel_->GetState(true)); // Should go into state TRANSIENT_FAILURE when we enter fallback mode. const gpr_timespec deadline = grpc_timeout_seconds_to_deadline(1); grpc_connectivity_state state; while ((state = channel_->GetState(false)) != GRPC_CHANNEL_TRANSIENT_FAILURE) { ASSERT_TRUE(channel_->WaitForStateChange(state, deadline)); } // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, UsePickFirstChildPolicy) { SetNextResolutionAllBalancers( "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{\n" " \"childPolicy\":[\n" " { \"pick_first\":{} }\n" " ]\n" " } }\n" " ]\n" "}"); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); const size_t kNumRpcs = num_backends_ * 2; CheckRpcSendOk(kNumRpcs, 1000 /* timeout_ms */, true /* wait_for_ready */); balancers_[0]->service_.NotifyDoneWithServerlists(); // Check that all requests went to the first backend. This verifies // that we used pick_first instead of round_robin as the child policy. EXPECT_EQ(backends_[0]->service_.request_count(), kNumRpcs); for (size_t i = 1; i < backends_.size(); ++i) { EXPECT_EQ(backends_[i]->service_.request_count(), 0UL); } // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, SwapChildPolicy) { SetNextResolutionAllBalancers( "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{\n" " \"childPolicy\":[\n" " { \"pick_first\":{} }\n" " ]\n" " } }\n" " ]\n" "}"); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); const size_t kNumRpcs = num_backends_ * 2; CheckRpcSendOk(kNumRpcs, 1000 /* timeout_ms */, true /* wait_for_ready */); // Check that all requests went to the first backend. This verifies // that we used pick_first instead of round_robin as the child policy. EXPECT_EQ(backends_[0]->service_.request_count(), kNumRpcs); for (size_t i = 1; i < backends_.size(); ++i) { EXPECT_EQ(backends_[i]->service_.request_count(), 0UL); } // Send new resolution that removes child policy from service config. SetNextResolutionAllBalancers(); WaitForAllBackends(); CheckRpcSendOk(kNumRpcs, 1000 /* timeout_ms */, true /* wait_for_ready */); // Check that every backend saw the same number of requests. This verifies // that we used round_robin. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(backends_[i]->service_.request_count(), 2UL); } // Done. balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, SameBackendListedMultipleTimes) { SetNextResolutionAllBalancers(); // Same backend listed twice. std::vector ports; ports.push_back(backends_[0]->port_); ports.push_back(backends_[0]->port_); const size_t kNumRpcsPerAddress = 10; ScheduleResponseForBalancer(0, BuildResponseForBackends(ports, {}), 0); // We need to wait for the backend to come online. WaitForBackend(0); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * ports.size()); // Backend should have gotten 20 requests. EXPECT_EQ(kNumRpcsPerAddress * 2, backends_[0]->service_.request_count()); // And they should have come from a single client port, because of // subchannel sharing. EXPECT_EQ(1UL, backends_[0]->service_.clients().size()); balancers_[0]->service_.NotifyDoneWithServerlists(); } TEST_F(SingleBalancerTest, SecureNaming) { ResetStub(0, kApplicationTargetName_ + ";lb"); SetNextResolution({AddressData{balancers_[0]->port_, "lb"}}); const size_t kNumRpcsPerAddress = 100; ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // We need to wait for all backends to come online. WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * num_backends_); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count()); } balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, SecureNamingDeathTest) { GTEST_FLAG_SET(death_test_style, "threadsafe"); // Make sure that we blow up (via abort() from the security connector) when // the name from the balancer doesn't match expectations. ASSERT_DEATH_IF_SUPPORTED( { ResetStub(0, kApplicationTargetName_ + ";lb"); SetNextResolution({AddressData{balancers_[0]->port_, "woops"}}); channel_->WaitForConnected(grpc_timeout_seconds_to_deadline(1)); }, ""); } TEST_F(SingleBalancerTest, InitiallyEmptyServerlist) { SetNextResolutionAllBalancers(); const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor(); const int kCallDeadlineMs = kServerlistDelayMs * 10; // First response is an empty serverlist, sent right away. ScheduleResponseForBalancer(0, LoadBalanceResponse(), 0); // Send non-empty serverlist only after kServerlistDelayMs ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), kServerlistDelayMs); const auto t0 = system_clock::now(); // Client will block: LB will initially send empty serverlist. CheckRpcSendOk(1, kCallDeadlineMs, true /* wait_for_ready */); const auto ellapsed_ms = std::chrono::duration_cast( system_clock::now() - t0); // but eventually, the LB sends a serverlist update that allows the call to // proceed. The call delay must be larger than the delay in sending the // populated serverlist but under the call's deadline (which is enforced by // the call's deadline). EXPECT_GT(ellapsed_ms.count(), kServerlistDelayMs); balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent two responses. EXPECT_EQ(2U, balancers_[0]->service_.response_count()); } TEST_F(SingleBalancerTest, AllServersUnreachableFailFast) { SetNextResolutionAllBalancers(); const size_t kNumUnreachableServers = 5; std::vector ports; for (size_t i = 0; i < kNumUnreachableServers; ++i) { ports.push_back(grpc_pick_unused_port_or_die()); } ScheduleResponseForBalancer(0, BuildResponseForBackends(ports, {}), 0); const Status status = SendRpc(); // The error shouldn't be DEADLINE_EXCEEDED. EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code()); balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); } TEST_F(SingleBalancerTest, Fallback) { SetNextResolutionAllBalancers(); const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor(); const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor(); const size_t kNumBackendsInResolution = backends_.size() / 2; ResetStub(kFallbackTimeoutMs); std::vector balancer_addresses; balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); std::vector backend_addresses; for (size_t i = 0; i < kNumBackendsInResolution; ++i) { backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""}); } SetNextResolution(balancer_addresses, backend_addresses); // Send non-empty serverlist only after kServerlistDelayMs. ScheduleResponseForBalancer( 0, BuildResponseForBackends( GetBackendPorts(kNumBackendsInResolution /* start_index */), {}), kServerlistDelayMs); // Wait until all the fallback backends are reachable. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { WaitForBackend(i); } // The first request. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(kNumBackendsInResolution); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // Fallback is used: each backend returned by the resolver should have // gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(1U, backends_[i]->service_.request_count()); } for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) { EXPECT_EQ(0U, backends_[i]->service_.request_count()); } // Wait until the serverlist reception has been processed and all backends // in the serverlist are reachable. for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) { WaitForBackend(i); } // Send out the second request. gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(backends_.size() - kNumBackendsInResolution); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // Serverlist is used: each backend returned by the balancer should // have gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(0U, backends_[i]->service_.request_count()); } for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) { EXPECT_EQ(1U, backends_[i]->service_.request_count()); } balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); } TEST_F(SingleBalancerTest, FallbackUpdate) { SetNextResolutionAllBalancers(); const int kFallbackTimeoutMs = 200 * grpc_test_slowdown_factor(); const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor(); const size_t kNumBackendsInResolution = backends_.size() / 3; const size_t kNumBackendsInResolutionUpdate = backends_.size() / 3; ResetStub(kFallbackTimeoutMs); std::vector balancer_addresses; balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); std::vector backend_addresses; for (size_t i = 0; i < kNumBackendsInResolution; ++i) { backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""}); } SetNextResolution(balancer_addresses, backend_addresses); // Send non-empty serverlist only after kServerlistDelayMs. ScheduleResponseForBalancer( 0, BuildResponseForBackends( GetBackendPorts(kNumBackendsInResolution + kNumBackendsInResolutionUpdate /* start_index */), {}), kServerlistDelayMs); // Wait until all the fallback backends are reachable. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { WaitForBackend(i); } // The first request. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(kNumBackendsInResolution); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // Fallback is used: each backend returned by the resolver should have // gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(1U, backends_[i]->service_.request_count()); } for (size_t i = kNumBackendsInResolution; i < backends_.size(); ++i) { EXPECT_EQ(0U, backends_[i]->service_.request_count()); } balancer_addresses.clear(); balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); backend_addresses.clear(); for (size_t i = kNumBackendsInResolution; i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) { backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""}); } SetNextResolution(balancer_addresses, backend_addresses); // Wait until the resolution update has been processed and all the new // fallback backends are reachable. for (size_t i = kNumBackendsInResolution; i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) { WaitForBackend(i); } // Send out the second request. gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(kNumBackendsInResolutionUpdate); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // The resolution update is used: each backend in the resolution update should // have gotten one request. for (size_t i = 0; i < kNumBackendsInResolution; ++i) { EXPECT_EQ(0U, backends_[i]->service_.request_count()); } for (size_t i = kNumBackendsInResolution; i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) { EXPECT_EQ(1U, backends_[i]->service_.request_count()); } for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate; i < backends_.size(); ++i) { EXPECT_EQ(0U, backends_[i]->service_.request_count()); } // Wait until the serverlist reception has been processed and all backends // in the serverlist are reachable. for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate; i < backends_.size(); ++i) { WaitForBackend(i); } // Send out the third request. gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH =========="); CheckRpcSendOk(backends_.size() - kNumBackendsInResolution - kNumBackendsInResolutionUpdate); gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH =========="); // Serverlist is used: each backend returned by the balancer should // have gotten one request. for (size_t i = 0; i < kNumBackendsInResolution + kNumBackendsInResolutionUpdate; ++i) { EXPECT_EQ(0U, backends_[i]->service_.request_count()); } for (size_t i = kNumBackendsInResolution + kNumBackendsInResolutionUpdate; i < backends_.size(); ++i) { EXPECT_EQ(1U, backends_[i]->service_.request_count()); } balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); } TEST_F(SingleBalancerTest, FallbackAfterStartup_LoseContactWithBalancerThenBackends) { // First two backends are fallback, last two are pointed to by balancer. const size_t kNumFallbackBackends = 2; const size_t kNumBalancerBackends = backends_.size() - kNumFallbackBackends; std::vector backend_addresses; for (size_t i = 0; i < kNumFallbackBackends; ++i) { backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""}); } std::vector balancer_addresses; for (size_t i = 0; i < balancers_.size(); ++i) { balancer_addresses.emplace_back(AddressData{balancers_[i]->port_, ""}); } SetNextResolution(balancer_addresses, backend_addresses); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}), 0); // Try to connect. channel_->GetState(true /* try_to_connect */); WaitForAllBackends(1 /* num_requests_multiple_of */, kNumFallbackBackends /* start_index */); // Stop balancer. RPCs should continue going to backends from balancer. balancers_[0]->Shutdown(); CheckRpcSendOk(100 * kNumBalancerBackends); for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { EXPECT_EQ(100UL, backends_[i]->service_.request_count()); } // Stop backends from balancer. This should put us in fallback mode. for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { ShutdownBackend(i); } WaitForAllBackends(1 /* num_requests_multiple_of */, 0 /* start_index */, kNumFallbackBackends /* stop_index */); // Restart the backends from the balancer. We should *not* start // sending traffic back to them at this point (although the behavior // in xds may be different). for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { StartBackend(i); } CheckRpcSendOk(100 * kNumBalancerBackends); for (size_t i = 0; i < kNumFallbackBackends; ++i) { EXPECT_EQ(100UL, backends_[i]->service_.request_count()); } // Now start the balancer again. This should cause us to exit // fallback mode. balancers_[0]->Start(server_host_); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}), 0); WaitForAllBackends(1 /* num_requests_multiple_of */, kNumFallbackBackends /* start_index */); } TEST_F(SingleBalancerTest, FallbackAfterStartup_LoseContactWithBackendsThenBalancer) { // First two backends are fallback, last two are pointed to by balancer. const size_t kNumFallbackBackends = 2; const size_t kNumBalancerBackends = backends_.size() - kNumFallbackBackends; std::vector backend_addresses; for (size_t i = 0; i < kNumFallbackBackends; ++i) { backend_addresses.emplace_back(AddressData{backends_[i]->port_, ""}); } std::vector balancer_addresses; for (size_t i = 0; i < balancers_.size(); ++i) { balancer_addresses.emplace_back(AddressData{balancers_[i]->port_, ""}); } SetNextResolution(balancer_addresses, backend_addresses); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}), 0); // Try to connect. channel_->GetState(true /* try_to_connect */); WaitForAllBackends(1 /* num_requests_multiple_of */, kNumFallbackBackends /* start_index */); // Stop backends from balancer. Since we are still in contact with // the balancer at this point, RPCs should be failing. for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { ShutdownBackend(i); } CheckRpcSendFailure(); // Stop balancer. This should put us in fallback mode. balancers_[0]->Shutdown(); WaitForAllBackends(1 /* num_requests_multiple_of */, 0 /* start_index */, kNumFallbackBackends /* stop_index */); // Restart the backends from the balancer. We should *not* start // sending traffic back to them at this point (although the behavior // in xds may be different). for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { StartBackend(i); } CheckRpcSendOk(100 * kNumBalancerBackends); for (size_t i = 0; i < kNumFallbackBackends; ++i) { EXPECT_EQ(100UL, backends_[i]->service_.request_count()); } // Now start the balancer again. This should cause us to exit // fallback mode. balancers_[0]->Start(server_host_); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {}), 0); WaitForAllBackends(1 /* num_requests_multiple_of */, kNumFallbackBackends /* start_index */); } TEST_F(SingleBalancerTest, FallbackEarlyWhenBalancerChannelFails) { const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor(); ResetStub(kFallbackTimeoutMs); // Return an unreachable balancer and one fallback backend. std::vector balancer_addresses; balancer_addresses.emplace_back( AddressData{grpc_pick_unused_port_or_die(), ""}); std::vector backend_addresses; backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""}); SetNextResolution(balancer_addresses, backend_addresses); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000, /* wait_for_ready */ false); } TEST_F(SingleBalancerTest, FallbackEarlyWhenBalancerCallFails) { const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor(); ResetStub(kFallbackTimeoutMs); // Return one balancer and one fallback backend. std::vector balancer_addresses; balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); std::vector backend_addresses; backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""}); SetNextResolution(balancer_addresses, backend_addresses); // Balancer drops call without sending a serverlist. balancers_[0]->service_.NotifyDoneWithServerlists(); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000, /* wait_for_ready */ false); } TEST_F(SingleBalancerTest, FallbackControlledByBalancer_BeforeFirstServerlist) { const int kFallbackTimeoutMs = 10000 * grpc_test_slowdown_factor(); ResetStub(kFallbackTimeoutMs); // Return one balancer and one fallback backend. std::vector balancer_addresses; balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); std::vector backend_addresses; backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""}); SetNextResolution(balancer_addresses, backend_addresses); // Balancer explicitly tells client to fallback. LoadBalanceResponse resp; resp.mutable_fallback_response(); ScheduleResponseForBalancer(0, resp, 0); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 1000, /* wait_for_ready */ false); } TEST_F(SingleBalancerTest, FallbackControlledByBalancer_AfterFirstServerlist) { // Return one balancer and one fallback backend (backend 0). std::vector balancer_addresses; balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); std::vector backend_addresses; backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""}); SetNextResolution(balancer_addresses, backend_addresses); // Balancer initially sends serverlist, then tells client to fall back, // then sends the serverlist again. // The serverlist points to backend 1. LoadBalanceResponse serverlist_resp = BuildResponseForBackends({backends_[1]->port_}, {}); LoadBalanceResponse fallback_resp; fallback_resp.mutable_fallback_response(); ScheduleResponseForBalancer(0, serverlist_resp, 0); ScheduleResponseForBalancer(0, fallback_resp, 100); ScheduleResponseForBalancer(0, serverlist_resp, 100); // Requests initially go to backend 1, then go to backend 0 in // fallback mode, then go back to backend 1 when we exit fallback. WaitForBackend(1); WaitForBackend(0); WaitForBackend(1); } TEST_F(SingleBalancerTest, BackendsRestart) { SetNextResolutionAllBalancers(); const size_t kNumRpcsPerAddress = 100; ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * num_backends_); // Stop backends. RPCs should fail. ShutdownAllBackends(); CheckRpcSendFailure(); // Restart backends. RPCs should start succeeding again. StartAllBackends(); CheckRpcSendOk(1 /* times */, 2000 /* timeout_ms */, true /* wait_for_ready */); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); } TEST_F(SingleBalancerTest, ServiceNameFromLbPolicyConfig) { constexpr char kServiceConfigWithTarget[] = "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{\n" " \"serviceName\":\"test_service\"\n" " }}\n" " ]\n" "}"; SetNextResolutionAllBalancers(kServiceConfigWithTarget); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // We need to wait for all backends to come online. WaitForAllBackends(); EXPECT_EQ(balancers_[0]->service_.service_names().back(), "test_service"); } class UpdatesTest : public GrpclbEnd2endTest { public: UpdatesTest() : GrpclbEnd2endTest(4, 3, 0) {} }; TEST_F(UpdatesTest, UpdateBalancersButKeepUsingOriginalBalancer) { SetNextResolutionAllBalancers(); const std::vector first_backend{GetBackendPorts()[0]}; const std::vector second_backend{GetBackendPorts()[1]}; ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}), 0); ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}), 0); // Wait until the first backend is ready. WaitForBackend(0); // Send 10 requests. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service_.request_count()); // Balancer 0 got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); EXPECT_EQ(0U, balancers_[1]->service_.request_count()); EXPECT_EQ(0U, balancers_[1]->service_.response_count()); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); std::vector addresses; addresses.emplace_back(AddressData{balancers_[1]->port_, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); EXPECT_EQ(0U, backends_[1]->service_.request_count()); gpr_timespec deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // The current LB call is still working, so grpclb continued using it to the // first balancer, which doesn't assign the second backend. EXPECT_EQ(0U, backends_[1]->service_.request_count()); EXPECT_EQ(1U, balancers_[0]->service_.request_count()); EXPECT_EQ(1U, balancers_[0]->service_.response_count()); EXPECT_EQ(0U, balancers_[1]->service_.request_count()); EXPECT_EQ(0U, balancers_[1]->service_.response_count()); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); } // Send an update with the same set of LBs as the one in SetUp() in order to // verify that the LB channel inside grpclb keeps the initial connection (which // by definition is also present in the update). TEST_F(UpdatesTest, UpdateBalancersRepeated) { SetNextResolutionAllBalancers(); const std::vector first_backend{GetBackendPorts()[0]}; const std::vector second_backend{GetBackendPorts()[0]}; ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}), 0); ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}), 0); // Wait until the first backend is ready. WaitForBackend(0); // Send 10 requests. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service_.request_count()); balancers_[0]->service_.NotifyDoneWithServerlists(); // Balancer 0 got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); EXPECT_EQ(0U, balancers_[1]->service_.request_count()); EXPECT_EQ(0U, balancers_[1]->service_.response_count()); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); std::vector addresses; addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); addresses.emplace_back(AddressData{balancers_[1]->port_, ""}); addresses.emplace_back(AddressData{balancers_[2]->port_, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); EXPECT_EQ(0U, backends_[1]->service_.request_count()); gpr_timespec deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // grpclb continued using the original LB call to the first balancer, which // doesn't assign the second backend. EXPECT_EQ(0U, backends_[1]->service_.request_count()); balancers_[0]->service_.NotifyDoneWithServerlists(); addresses.clear(); addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); addresses.emplace_back(AddressData{balancers_[1]->port_, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 2 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 2 DONE =========="); EXPECT_EQ(0U, backends_[1]->service_.request_count()); deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { CheckRpcSendOk(); } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // grpclb continued using the original LB call to the first balancer, which // doesn't assign the second backend. EXPECT_EQ(0U, backends_[1]->service_.request_count()); balancers_[0]->service_.NotifyDoneWithServerlists(); } TEST_F(UpdatesTest, UpdateBalancersDeadUpdate) { std::vector addresses; addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); SetNextResolution(addresses); const std::vector first_backend{GetBackendPorts()[0]}; const std::vector second_backend{GetBackendPorts()[1]}; ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}), 0); ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}), 0); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service_.request_count()); // Kill balancer 0 gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER 0 *************"); balancers_[0]->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BALANCER 0 *************"); // This is serviced by the existing RR policy gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // All 10 requests should again have gone to the first backend. EXPECT_EQ(20U, backends_[0]->service_.request_count()); EXPECT_EQ(0U, backends_[1]->service_.request_count()); // Balancer 0 got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); EXPECT_EQ(0U, balancers_[1]->service_.request_count()); EXPECT_EQ(0U, balancers_[1]->service_.response_count()); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); addresses.clear(); addresses.emplace_back(AddressData{balancers_[1]->port_, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); // Wait until update has been processed, as signaled by the second backend // receiving a request. In the meantime, the client continues to be serviced // (by the first backend) without interruption. EXPECT_EQ(0U, backends_[1]->service_.request_count()); WaitForBackend(1); // This is serviced by the updated RR policy backends_[1]->service_.ResetCounters(); gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH =========="); // All 10 requests should have gone to the second backend. EXPECT_EQ(10U, backends_[1]->service_.request_count()); EXPECT_EQ(1U, balancers_[0]->service_.request_count()); EXPECT_EQ(1U, balancers_[0]->service_.response_count()); // The second balancer, published as part of the first update, may end up // getting two requests (that is, 1 <= #req <= 2) if the LB call retry timer // firing races with the arrival of the update containing the second // balancer. EXPECT_GE(balancers_[1]->service_.request_count(), 1U); EXPECT_GE(balancers_[1]->service_.response_count(), 1U); EXPECT_LE(balancers_[1]->service_.request_count(), 2U); EXPECT_LE(balancers_[1]->service_.response_count(), 2U); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); } TEST_F(UpdatesTest, ReresolveDeadBackend) { ResetStub(500); // The first resolution contains the addresses of a balancer that never // responds, and a fallback backend. std::vector balancer_addresses; balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); std::vector backend_addresses; backend_addresses.emplace_back(AddressData{backends_[0]->port_, ""}); SetNextResolution(balancer_addresses, backend_addresses); // Ask channel to connect to trigger resolver creation. channel_->GetState(true); // The re-resolution result will contain the addresses of the same balancer // and a new fallback backend. balancer_addresses.clear(); balancer_addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); backend_addresses.clear(); backend_addresses.emplace_back(AddressData{backends_[1]->port_, ""}); SetNextReresolutionResponse(balancer_addresses, backend_addresses); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the fallback backend. EXPECT_EQ(10U, backends_[0]->service_.request_count()); // Kill backend 0. gpr_log(GPR_INFO, "********** ABOUT TO KILL BACKEND 0 *************"); backends_[0]->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BACKEND 0 *************"); // Wait until re-resolution has finished, as signaled by the second backend // receiving a request. WaitForBackend(1); gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // All 10 requests should have gone to the second backend. EXPECT_EQ(10U, backends_[1]->service_.request_count()); balancers_[0]->service_.NotifyDoneWithServerlists(); balancers_[1]->service_.NotifyDoneWithServerlists(); balancers_[2]->service_.NotifyDoneWithServerlists(); EXPECT_EQ(1U, balancers_[0]->service_.request_count()); EXPECT_EQ(0U, balancers_[0]->service_.response_count()); EXPECT_EQ(0U, balancers_[1]->service_.request_count()); EXPECT_EQ(0U, balancers_[1]->service_.response_count()); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); } // TODO(juanlishen): Should be removed when the first response is always the // initial response. Currently, if client load reporting is not enabled, the // balancer doesn't send initial response. When the backend shuts down, an // unexpected re-resolution will happen. This test configuration is a workaround // for test ReresolveDeadBalancer. class UpdatesWithClientLoadReportingTest : public GrpclbEnd2endTest { public: UpdatesWithClientLoadReportingTest() : GrpclbEnd2endTest(4, 3, 2) {} }; TEST_F(UpdatesWithClientLoadReportingTest, ReresolveDeadBalancer) { const std::vector first_backend{GetBackendPorts()[0]}; const std::vector second_backend{GetBackendPorts()[1]}; ScheduleResponseForBalancer(0, BuildResponseForBackends(first_backend, {}), 0); ScheduleResponseForBalancer(1, BuildResponseForBackends(second_backend, {}), 0); // Ask channel to connect to trigger resolver creation. channel_->GetState(true); std::vector addresses; addresses.emplace_back(AddressData{balancers_[0]->port_, ""}); SetNextResolution(addresses); addresses.clear(); addresses.emplace_back(AddressData{balancers_[1]->port_, ""}); SetNextReresolutionResponse(addresses); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service_.request_count()); // Kill backend 0. gpr_log(GPR_INFO, "********** ABOUT TO KILL BACKEND 0 *************"); backends_[0]->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BACKEND 0 *************"); CheckRpcSendFailure(); // Balancer 0 got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); EXPECT_EQ(0U, balancers_[1]->service_.request_count()); EXPECT_EQ(0U, balancers_[1]->service_.response_count()); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); // Kill balancer 0. gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER 0 *************"); balancers_[0]->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BALANCER 0 *************"); // Wait until re-resolution has finished, as signaled by the second backend // receiving a request. WaitForBackend(1); // This is serviced by the new serverlist. gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // All 10 requests should have gone to the second backend. EXPECT_EQ(10U, backends_[1]->service_.request_count()); EXPECT_EQ(1U, balancers_[0]->service_.request_count()); EXPECT_EQ(1U, balancers_[0]->service_.response_count()); // After balancer 0 is killed, we restart an LB call immediately (because we // disconnect to a previously connected balancer). Although we will cancel // this call when the re-resolution update is done and another LB call restart // is needed, this old call may still succeed reaching the LB server if // re-resolution is slow. So balancer 1 may have received 2 requests and sent // 2 responses. EXPECT_GE(balancers_[1]->service_.request_count(), 1U); EXPECT_GE(balancers_[1]->service_.response_count(), 1U); EXPECT_LE(balancers_[1]->service_.request_count(), 2U); EXPECT_LE(balancers_[1]->service_.response_count(), 2U); EXPECT_EQ(0U, balancers_[2]->service_.request_count()); EXPECT_EQ(0U, balancers_[2]->service_.response_count()); } TEST_F(SingleBalancerTest, Drop) { SetNextResolutionAllBalancers(); const size_t kNumRpcsPerAddress = 100; const int num_of_drop_by_rate_limiting_addresses = 1; const int num_of_drop_by_load_balancing_addresses = 2; const int num_of_drop_addresses = num_of_drop_by_rate_limiting_addresses + num_of_drop_by_load_balancing_addresses; const int num_total_addresses = num_backends_ + num_of_drop_addresses; ScheduleResponseForBalancer( 0, BuildResponseForBackends( GetBackendPorts(), {{"rate_limiting", num_of_drop_by_rate_limiting_addresses}, {"load_balancing", num_of_drop_by_load_balancing_addresses}}), 0); // Wait until all backends are ready. WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs for each server and drop address. size_t num_drops = 0; for (size_t i = 0; i < kNumRpcsPerAddress * num_total_addresses; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "drop directed by grpclb balancer") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } EXPECT_EQ(kNumRpcsPerAddress * num_of_drop_addresses, num_drops); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count()); } // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); } TEST_F(SingleBalancerTest, DropAllFirst) { SetNextResolutionAllBalancers(); // All registered addresses are marked as "drop". const int num_of_drop_by_rate_limiting_addresses = 1; const int num_of_drop_by_load_balancing_addresses = 1; ScheduleResponseForBalancer( 0, BuildResponseForBackends( {}, {{"rate_limiting", num_of_drop_by_rate_limiting_addresses}, {"load_balancing", num_of_drop_by_load_balancing_addresses}}), 0); const Status status = SendRpc(nullptr, 1000, true); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer"); } TEST_F(SingleBalancerTest, DropAll) { SetNextResolutionAllBalancers(); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); const int num_of_drop_by_rate_limiting_addresses = 1; const int num_of_drop_by_load_balancing_addresses = 1; ScheduleResponseForBalancer( 0, BuildResponseForBackends( {}, {{"rate_limiting", num_of_drop_by_rate_limiting_addresses}, {"load_balancing", num_of_drop_by_load_balancing_addresses}}), 1000); // First call succeeds. CheckRpcSendOk(); // But eventually, the update with only dropped servers is processed and calls // fail. Status status; do { status = SendRpc(nullptr, 1000, true); } while (status.ok()); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer"); } class SingleBalancerWithClientLoadReportingTest : public GrpclbEnd2endTest { public: SingleBalancerWithClientLoadReportingTest() : GrpclbEnd2endTest(4, 1, 3) {} }; TEST_F(SingleBalancerWithClientLoadReportingTest, Vanilla) { SetNextResolutionAllBalancers(); const size_t kNumRpcsPerAddress = 100; ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(), {}), 0); // Wait until all backends are ready. int num_ok = 0; int num_failure = 0; int num_drops = 0; std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * num_backends_); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count()); } balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); ClientStats client_stats; do { client_stats += WaitForLoadReports(); } while (client_stats.num_calls_finished != kNumRpcsPerAddress * num_backends_ + num_ok); EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_ok, client_stats.num_calls_started); EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_ok, client_stats.num_calls_finished); EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + (num_ok + num_drops), client_stats.num_calls_finished_known_received); EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre()); } TEST_F(SingleBalancerWithClientLoadReportingTest, BalancerRestart) { SetNextResolutionAllBalancers(); const size_t kNumBackendsFirstPass = 2; const size_t kNumBackendsSecondPass = backends_.size() - kNumBackendsFirstPass; // Balancer returns backends starting at index 1. ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(0, kNumBackendsFirstPass), {}), 0); // Wait until all backends returned by the balancer are ready. int num_ok = 0; int num_failure = 0; int num_drops = 0; std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(/* num_requests_multiple_of */ 1, /* start_index */ 0, /* stop_index */ kNumBackendsFirstPass); balancers_[0]->service_.NotifyDoneWithServerlists(); ClientStats client_stats = WaitForLoadReports(); EXPECT_EQ(static_cast(num_ok), client_stats.num_calls_started); EXPECT_EQ(static_cast(num_ok), client_stats.num_calls_finished); EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send); EXPECT_EQ(static_cast(num_ok), client_stats.num_calls_finished_known_received); EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre()); // Shut down the balancer. balancers_[0]->Shutdown(); // Send 10 more requests per backend. This will continue using the // last serverlist we received from the balancer before it was shut down. ResetBackendCounters(); CheckRpcSendOk(kNumBackendsFirstPass); // Each backend should have gotten 1 request. for (size_t i = 0; i < kNumBackendsFirstPass; ++i) { EXPECT_EQ(1UL, backends_[i]->service_.request_count()); } // Now restart the balancer, this time pointing to all backends. balancers_[0]->Start(server_host_); ScheduleResponseForBalancer( 0, BuildResponseForBackends(GetBackendPorts(kNumBackendsFirstPass), {}), 0); // Wait for queries to start going to one of the new backends. // This tells us that we're now using the new serverlist. do { CheckRpcSendOk(); } while (backends_[2]->service_.request_count() == 0 && backends_[3]->service_.request_count() == 0); // Send one RPC per backend. CheckRpcSendOk(kNumBackendsSecondPass); balancers_[0]->service_.NotifyDoneWithServerlists(); // Check client stats. client_stats = WaitForLoadReports(); EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats.num_calls_started); EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats.num_calls_finished); EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats.num_calls_finished_known_received); EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre()); } TEST_F(SingleBalancerWithClientLoadReportingTest, Drop) { SetNextResolutionAllBalancers(); const size_t kNumRpcsPerAddress = 3; const int num_of_drop_by_rate_limiting_addresses = 2; const int num_of_drop_by_load_balancing_addresses = 1; const int num_of_drop_addresses = num_of_drop_by_rate_limiting_addresses + num_of_drop_by_load_balancing_addresses; const int num_total_addresses = num_backends_ + num_of_drop_addresses; ScheduleResponseForBalancer( 0, BuildResponseForBackends( GetBackendPorts(), {{"rate_limiting", num_of_drop_by_rate_limiting_addresses}, {"load_balancing", num_of_drop_by_load_balancing_addresses}}), 0); // Wait until all backends are ready. int num_warmup_ok = 0; int num_warmup_failure = 0; int num_warmup_drops = 0; std::tie(num_warmup_ok, num_warmup_failure, num_warmup_drops) = WaitForAllBackends(num_total_addresses /* num_requests_multiple_of */); const int num_total_warmup_requests = num_warmup_ok + num_warmup_failure + num_warmup_drops; size_t num_drops = 0; for (size_t i = 0; i < kNumRpcsPerAddress * num_total_addresses; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "drop directed by grpclb balancer") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage_); } } EXPECT_EQ(kNumRpcsPerAddress * num_of_drop_addresses, num_drops); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service_.request_count()); } balancers_[0]->service_.NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancers_[0]->service_.request_count()); // and sent a single response. EXPECT_EQ(1U, balancers_[0]->service_.response_count()); const ClientStats client_stats = WaitForLoadReports(); EXPECT_EQ( kNumRpcsPerAddress * num_total_addresses + num_total_warmup_requests, client_stats.num_calls_started); EXPECT_EQ( kNumRpcsPerAddress * num_total_addresses + num_total_warmup_requests, client_stats.num_calls_finished); EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumRpcsPerAddress * num_backends_ + num_warmup_ok, client_stats.num_calls_finished_known_received); // The number of warmup request is a multiple of the number of addresses. // Therefore, all addresses in the scheduled balancer response are hit the // same number of times. const int num_times_drop_addresses_hit = num_warmup_drops / num_of_drop_addresses; EXPECT_THAT( client_stats.drop_token_counts, ::testing::ElementsAre( ::testing::Pair("load_balancing", (kNumRpcsPerAddress + num_times_drop_addresses_hit)), ::testing::Pair( "rate_limiting", (kNumRpcsPerAddress + num_times_drop_addresses_hit) * 2))); } } // namespace } // namespace testing } // namespace grpc int main(int argc, char** argv) { grpc::testing::TestEnvironment env(&argc, argv); ::testing::InitGoogleTest(&argc, argv); const auto result = RUN_ALL_TESTS(); return result; }