#!/usr/bin/env python2.7 # Copyright 2017, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Computes the diff between two bm runs and outputs significant results """ import bm_constants import bm_speedup import sys import os sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), '..')) import bm_json import json import tabulate import argparse import collections import subprocess verbose = False def _median(ary): ary = sorted(ary) n = len(ary) if n % 2 == 0: return (ary[n / 2] + ary[n / 2 + 1]) / 2.0 else: return ary[n / 2] def _args(): argp = argparse.ArgumentParser( description='Perform diff on microbenchmarks') argp.add_argument( '-t', '--track', choices=sorted(bm_constants._INTERESTING), nargs='+', default=sorted(bm_constants._INTERESTING), help='Which metrics to track') argp.add_argument( '-b', '--benchmarks', nargs='+', choices=bm_constants._AVAILABLE_BENCHMARK_TESTS, default=bm_constants._AVAILABLE_BENCHMARK_TESTS, help='Which benchmarks to run') argp.add_argument( '-l', '--loops', type=int, default=20, help='Number of times to loops the benchmarks. Must match what was passed to bm_run.py' ) argp.add_argument('-n', '--new', type=str, help='New benchmark name') argp.add_argument('-o', '--old', type=str, help='Old benchmark name') argp.add_argument( '-v', '--verbose', type=bool, help='print details of before/after') args = argp.parse_args() global verbose if args.verbose: verbose = True assert args.new assert args.old return args def _maybe_print(str): if verbose: print str class Benchmark: def __init__(self): self.samples = { True: collections.defaultdict(list), False: collections.defaultdict(list) } self.final = {} def add_sample(self, track, data, new): for f in track: if f in data: self.samples[new][f].append(float(data[f])) def process(self, track, new_name, old_name): for f in sorted(track): new = self.samples[True][f] old = self.samples[False][f] if not new or not old: continue mdn_diff = abs(_median(new) - _median(old)) _maybe_print('%s: %s=%r %s=%r mdn_diff=%r' % (f, new_name, new, old_name, old, mdn_diff)) s = bm_speedup.speedup(new, old) if abs(s) > 3 and mdn_diff > 0.5: self.final[f] = '%+d%%' % s return self.final.keys() def skip(self): return not self.final def row(self, flds): return [self.final[f] if f in self.final else '' for f in flds] def _read_json(filename, badfiles): stripped = ".".join(filename.split(".")[:-2]) try: with open(filename) as f: return json.loads(f.read()) except ValueError, e: if stripped in badfiles: badfiles[stripped] += 1 else: badfiles[stripped] = 1 return None def diff(bms, loops, track, old, new): benchmarks = collections.defaultdict(Benchmark) badfiles = {} for bm in bms: for loop in range(0, loops): for line in subprocess.check_output( ['bm_diff_%s/opt/%s' % (old, bm), '--benchmark_list_tests']).splitlines(): stripped_line = line.strip().replace("/", "_").replace( "<", "_").replace(">", "_").replace(", ", "_") js_new_ctr = _read_json('%s.%s.counters.%s.%d.json' % (bm, stripped_line, new, loop), badfiles) js_new_opt = _read_json('%s.%s.opt.%s.%d.json' % (bm, stripped_line, new, loop), badfiles) js_old_ctr = _read_json('%s.%s.counters.%s.%d.json' % (bm, stripped_line, old, loop), badfiles) js_old_opt = _read_json('%s.%s.opt.%s.%d.json' % (bm, stripped_line, old, loop), badfiles) if js_new_ctr: for row in bm_json.expand_json(js_new_ctr, js_new_opt): name = row['cpp_name'] if name.endswith('_mean') or name.endswith('_stddev'): continue benchmarks[name].add_sample(track, row, True) if js_old_ctr: for row in bm_json.expand_json(js_old_ctr, js_old_opt): name = row['cpp_name'] if name.endswith('_mean') or name.endswith('_stddev'): continue benchmarks[name].add_sample(track, row, False) really_interesting = set() for name, bm in benchmarks.items(): _maybe_print(name) really_interesting.update(bm.process(track, new, old)) fields = [f for f in track if f in really_interesting] headers = ['Benchmark'] + fields rows = [] for name in sorted(benchmarks.keys()): if benchmarks[name].skip(): continue rows.append([name] + benchmarks[name].row(fields)) note = 'flakiness data = %s' % str(badfiles) if rows: return tabulate.tabulate(rows, headers=headers, floatfmt='+.2f'), note else: return None, note if __name__ == '__main__': args = _args() diff, note = diff(args.benchmarks, args.loops, args.track, args.old, args.new) print note print "" print diff