#!/usr/bin/env python3 # Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import html import multiprocessing import os import subprocess import sys import python_utils.jobset as jobset import python_utils.start_port_server as start_port_server sys.path.append( os.path.join(os.path.dirname(sys.argv[0]), '..', 'profiling', 'microbenchmarks', 'bm_diff')) import bm_constants flamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph') os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..')) if not os.path.exists('reports'): os.makedirs('reports') start_port_server.start_port_server() def fnize(s): out = '' for c in s: if c in '<>, /': if len(out) and out[-1] == '_': continue out += '_' else: out += c return out # index html index_html = """ Microbenchmark Results """ def heading(name): global index_html index_html += "

%s

\n" % name def link(txt, tgt): global index_html index_html += "

%s

\n" % (html.escape( tgt, quote=True), html.escape(txt)) def text(txt): global index_html index_html += "

%s

\n" % html.escape(txt) def _bazel_build_benchmark(bm_name, cfg): """Build given benchmark with bazel""" subprocess.check_call([ 'tools/bazel', 'build', '--config=%s' % cfg, '//test/cpp/microbenchmarks:%s' % bm_name ]) def collect_latency(bm_name, args): """generate latency profiles""" benchmarks = [] profile_analysis = [] cleanup = [] heading('Latency Profiles: %s' % bm_name) _bazel_build_benchmark(bm_name, 'basicprof') for line in subprocess.check_output([ 'bazel-bin/test/cpp/microbenchmarks/%s' % bm_name, '--benchmark_list_tests' ]).decode('UTF-8').splitlines(): link(line, '%s.txt' % fnize(line)) benchmarks.append( jobset.JobSpec([ 'bazel-bin/test/cpp/microbenchmarks/%s' % bm_name, '--benchmark_filter=^%s$' % line, '--benchmark_min_time=0.05' ], environ={ 'GRPC_LATENCY_TRACE': '%s.trace' % fnize(line) }, shortname='profile-%s' % fnize(line))) profile_analysis.append( jobset.JobSpec([ sys.executable, 'tools/profiling/latency_profile/profile_analyzer.py', '--source', '%s.trace' % fnize(line), '--fmt', 'simple', '--out', 'reports/%s.txt' % fnize(line) ], timeout_seconds=20 * 60, shortname='analyze-%s' % fnize(line))) cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)])) # periodically flush out the list of jobs: profile_analysis jobs at least # consume upwards of five gigabytes of ram in some cases, and so analysing # hundreds of them at once is impractical -- but we want at least some # concurrency or the work takes too long if len(benchmarks) >= min(16, multiprocessing.cpu_count()): # run up to half the cpu count: each benchmark can use up to two cores # (one for the microbenchmark, one for the data flush) jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count() / 2)) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) benchmarks = [] profile_analysis = [] cleanup = [] # run the remaining benchmarks that weren't flushed if len(benchmarks): jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count() / 2)) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) def collect_perf(bm_name, args): """generate flamegraphs""" heading('Flamegraphs: %s' % bm_name) _bazel_build_benchmark(bm_name, 'mutrace') benchmarks = [] profile_analysis = [] cleanup = [] for line in subprocess.check_output([ 'bazel-bin/test/cpp/microbenchmarks/%s' % bm_name, '--benchmark_list_tests' ]).decode('UTF-8').splitlines(): link(line, '%s.svg' % fnize(line)) benchmarks.append( jobset.JobSpec([ 'perf', 'record', '-o', '%s-perf.data' % fnize(line), '-g', '-F', '997', 'bazel-bin/test/cpp/microbenchmarks/%s' % bm_name, '--benchmark_filter=^%s$' % line, '--benchmark_min_time=10' ], shortname='perf-%s' % fnize(line))) profile_analysis.append( jobset.JobSpec( [ 'tools/run_tests/performance/process_local_perf_flamegraphs.sh' ], environ={ 'PERF_BASE_NAME': fnize(line), 'OUTPUT_DIR': 'reports', 'OUTPUT_FILENAME': fnize(line), }, shortname='flame-%s' % fnize(line))) cleanup.append(jobset.JobSpec(['rm', '%s-perf.data' % fnize(line)])) cleanup.append(jobset.JobSpec(['rm', '%s-out.perf' % fnize(line)])) # periodically flush out the list of jobs: temporary space required for this # processing is large if len(benchmarks) >= 20: # run up to half the cpu count: each benchmark can use up to two cores # (one for the microbenchmark, one for the data flush) jobset.run(benchmarks, maxjobs=1) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) benchmarks = [] profile_analysis = [] cleanup = [] # run the remaining benchmarks that weren't flushed if len(benchmarks): jobset.run(benchmarks, maxjobs=1) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) def run_summary(bm_name, cfg, base_json_name): _bazel_build_benchmark(bm_name, cfg) cmd = [ 'bazel-bin/test/cpp/microbenchmarks/%s' % bm_name, '--benchmark_out=%s.%s.json' % (base_json_name, cfg), '--benchmark_out_format=json' ] if args.summary_time is not None: cmd += ['--benchmark_min_time=%d' % args.summary_time] return subprocess.check_output(cmd).decode('UTF-8') def collect_summary(bm_name, args): # no counters, run microbenchmark and add summary # both to HTML report and to console. nocounters_heading = 'Summary: %s [no counters]' % bm_name nocounters_summary = run_summary(bm_name, 'opt', bm_name) heading(nocounters_heading) text(nocounters_summary) print(nocounters_heading) print(nocounters_summary) # with counters, run microbenchmark and add summary # both to HTML report and to console. counters_heading = 'Summary: %s [with counters]' % bm_name counters_summary = run_summary(bm_name, 'counters', bm_name) heading(counters_heading) text(counters_summary) print(counters_heading) print(counters_summary) if args.bq_result_table: with open('%s.csv' % bm_name, 'w') as f: f.write( subprocess.check_output([ 'tools/profiling/microbenchmarks/bm2bq.py', '%s.counters.json' % bm_name, '%s.opt.json' % bm_name ]).decode('UTF-8')) subprocess.check_call( ['bq', 'load', '%s' % args.bq_result_table, '%s.csv' % bm_name]) collectors = { 'latency': collect_latency, 'perf': collect_perf, 'summary': collect_summary, } argp = argparse.ArgumentParser(description='Collect data from microbenchmarks') argp.add_argument('-c', '--collect', choices=sorted(collectors.keys()), nargs='*', default=sorted(collectors.keys()), help='Which collectors should be run against each benchmark') argp.add_argument('-b', '--benchmarks', choices=bm_constants._AVAILABLE_BENCHMARK_TESTS, default=bm_constants._AVAILABLE_BENCHMARK_TESTS, nargs='+', type=str, help='Which microbenchmarks should be run') argp.add_argument( '--bq_result_table', default='', type=str, help='Upload results from summary collection to a specified bigquery table.' ) argp.add_argument( '--summary_time', default=None, type=int, help='Minimum time to run benchmarks for the summary collection') args = argp.parse_args() try: for collect in args.collect: for bm_name in args.benchmarks: collectors[collect](bm_name, args) finally: if not os.path.exists('reports'): os.makedirs('reports') index_html += "\n\n" with open('reports/index.html', 'w') as f: f.write(index_html)