#!/usr/bin/env python # Copyright 2015, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Read GRPC basic profiles, analyze the data. Usage: bins/basicprof/qps_smoke_test > log cat log | tools/profile_analyzer/profile_analyzer.py """ import collections import itertools import math import re import sys # Create a regex to parse output of the C core basic profiler, # as defined in src/core/profiling/basic_timers.c. _RE_LINE = re.compile(r'GRPC_LAT_PROF ' + r'([0-9]+\.[0-9]+) 0x([0-9a-f]+) ([{}.!]) ([0-9]+) ' + r'([^ ]+) ([^ ]+) ([0-9]+)') Entry = collections.namedtuple( 'Entry', ['time', 'thread', 'type', 'tag', 'id', 'file', 'line']) class ImportantMark(object): def __init__(self, entry, stack): self._entry = entry self._pre_stack = stack self._post_stack = list() self._n = len(stack) # we'll also compute times to that many closing }s @property def entry(self): return self._entry def append_post_entry(self, entry): if self._n > 0: self._post_stack.append(entry) self._n -= 1 def get_deltas(self): pre_and_post_stacks = itertools.chain(self._pre_stack, self._post_stack) return collections.OrderedDict((stack_entry, abs(self._entry.time - stack_entry.time)) for stack_entry in pre_and_post_stacks) def print_grouped_imark_statistics(group_key, imarks_group): values = collections.OrderedDict() for imark in imarks_group: deltas = imark.get_deltas() for relative_entry, time_delta_us in deltas.iteritems(): key = '{tag} {type} ({file}:{line})'.format(**relative_entry._asdict()) l = values.setdefault(key, list()) l.append(time_delta_us) print group_key print '{:>40s}: {:>15s} {:>15s} {:>15s} {:>15s}'.format( 'Relative mark', '50th p.', '90th p.', '95th p.', '99th p.') for key, time_values in values.iteritems(): time_values = sorted(time_values) print '{:>40s}: {:>15.3f} {:>15.3f} {:>15.3f} {:>15.3f}'.format( key, percentile(time_values, 50), percentile(time_values, 90), percentile(time_values, 95), percentile(time_values, 99)) print def entries(): for line in sys.stdin: m = _RE_LINE.match(line) if not m: continue yield Entry(time=float(m.group(1)), thread=m.group(2), type=m.group(3), tag=int(m.group(4)), id=m.group(5), file=m.group(6), line=m.group(7)) threads = collections.defaultdict(lambda: collections.defaultdict(list)) times = collections.defaultdict(list) important_marks = collections.defaultdict(list) for entry in entries(): thread = threads[entry.thread] if entry.type == '{': thread[entry.tag].append(entry) if entry.type == '!': # Save a snapshot of the current stack inside a new ImportantMark instance. # Get all entries with type '{' from "thread". stack = [e for entries_for_tag in thread.values() for e in entries_for_tag if e.type == '{'] imark_group_key = '{tag}@{file}:{line}'.format(**entry._asdict()) important_marks[imark_group_key].append(ImportantMark(entry, stack)) elif entry.type == '}': last = thread[entry.tag].pop() times[entry.tag].append(entry.time - last.time) # Update accounting for important marks. for imarks_group in important_marks.itervalues(): for imark in imarks_group: imark.append_post_entry(entry) def percentile(vals, percent): """ Calculates the interpolated percentile given a sorted sequence and a percent (in the usual 0-100 range).""" assert vals, "Empty input sequence." percent /= 100.0 k = (len(vals)-1) * percent f = math.floor(k) c = math.ceil(k) if f == c: return vals[int(k)] # else, interpolate d0 = vals[int(f)] * (c-k) d1 = vals[int(c)] * (k-f) return d0 + d1 print 'tag 50%/90%/95%/99% us' for tag in sorted(times.keys()): vals = sorted(times[tag]) print '%d %.2f/%.2f/%.2f/%.2f' % (tag, percentile(vals, 50), percentile(vals, 90), percentile(vals, 95), percentile(vals, 99)) print print 'Important marks:' print '================' for group_key, imarks_group in important_marks.iteritems(): print_grouped_imark_statistics(group_key, imarks_group)