#!/usr/bin/env python2.7 # Copyright 2015 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import uuid import httplib2 from apiclient import discovery from apiclient.errors import HttpError from oauth2client.client import GoogleCredentials # 30 days in milliseconds _EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000 NUM_RETRIES = 3 def create_big_query(): """Authenticates with cloud platform and gets a BiqQuery service object """ creds = GoogleCredentials.get_application_default() return discovery.build('bigquery', 'v2', credentials=creds, cache_discovery=False) def create_dataset(biq_query, project_id, dataset_id): is_success = True body = { 'datasetReference': { 'projectId': project_id, 'datasetId': dataset_id } } try: dataset_req = biq_query.datasets().insert(projectId=project_id, body=body) dataset_req.execute(num_retries=NUM_RETRIES) except HttpError as http_error: if http_error.resp.status == 409: print 'Warning: The dataset %s already exists' % dataset_id else: # Note: For more debugging info, print "http_error.content" print 'Error in creating dataset: %s. Err: %s' % (dataset_id, http_error) is_success = False return is_success def create_table(big_query, project_id, dataset_id, table_id, table_schema, description): fields = [{'name': field_name, 'type': field_type, 'description': field_description } for (field_name, field_type, field_description) in table_schema] return create_table2(big_query, project_id, dataset_id, table_id, fields, description) def create_partitioned_table(big_query, project_id, dataset_id, table_id, table_schema, description, partition_type='DAY', expiration_ms=_EXPIRATION_MS): """Creates a partitioned table. By default, a date-paritioned table is created with each partition lasting 30 days after it was last modified. """ fields = [{'name': field_name, 'type': field_type, 'description': field_description } for (field_name, field_type, field_description) in table_schema] return create_table2(big_query, project_id, dataset_id, table_id, fields, description, partition_type, expiration_ms) def create_table2(big_query, project_id, dataset_id, table_id, fields_schema, description, partition_type=None, expiration_ms=None): is_success = True body = { 'description': description, 'schema': { 'fields': fields_schema }, 'tableReference': { 'datasetId': dataset_id, 'projectId': project_id, 'tableId': table_id } } if partition_type and expiration_ms: body["timePartitioning"] = { "type": partition_type, "expirationMs": expiration_ms } try: table_req = big_query.tables().insert(projectId=project_id, datasetId=dataset_id, body=body) res = table_req.execute(num_retries=NUM_RETRIES) print 'Successfully created %s "%s"' % (res['kind'], res['id']) except HttpError as http_error: if http_error.resp.status == 409: print 'Warning: Table %s already exists' % table_id else: print 'Error in creating table: %s. Err: %s' % (table_id, http_error) is_success = False return is_success def insert_rows(big_query, project_id, dataset_id, table_id, rows_list): is_success = True body = {'rows': rows_list} try: insert_req = big_query.tabledata().insertAll(projectId=project_id, datasetId=dataset_id, tableId=table_id, body=body) res = insert_req.execute(num_retries=NUM_RETRIES) if res.get('insertErrors', None): print 'Error inserting rows! Response: %s' % res is_success = False except HttpError as http_error: print 'Error inserting rows to the table %s' % table_id is_success = False return is_success def sync_query_job(big_query, project_id, query, timeout=5000): query_data = {'query': query, 'timeoutMs': timeout} query_job = None try: query_job = big_query.jobs().query( projectId=project_id, body=query_data).execute(num_retries=NUM_RETRIES) except HttpError as http_error: print 'Query execute job failed with error: %s' % http_error print http_error.content return query_job # List of (column name, column type, description) tuples def make_row(unique_row_id, row_values_dict): """row_values_dict is a dictionary of column name and column value. """ return {'insertId': unique_row_id, 'json': row_values_dict}