/* * * Copyright 2015-2016, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "src/core/lib/census/mlog.h" #include #include #include #include #include #include #include #include #include #include #include "test/core/util/test_config.h" // Change this to non-zero if you want more output. #define VERBOSE 0 // Log size to use for all tests. #define LOG_SIZE_IN_MB 1 #define LOG_SIZE_IN_BYTES (LOG_SIZE_IN_MB << 20) // Fills in 'record' of size 'size'. Each byte in record is filled in with the // same value. The value is extracted from 'record' pointer. static void write_record(char* record, size_t size) { char data = (char)((uintptr_t)record % 255); memset(record, data, size); } // Reads fixed size records. Returns the number of records read in // 'num_records'. static void read_records(size_t record_size, const char* buffer, size_t buffer_size, int* num_records) { GPR_ASSERT(buffer_size >= record_size); GPR_ASSERT(buffer_size % record_size == 0); *num_records = (int)(buffer_size / record_size); for (int i = 0; i < *num_records; ++i) { const char* record = buffer + (record_size * (size_t)i); char data = (char)((uintptr_t)record % 255); for (size_t j = 0; j < record_size; ++j) { GPR_ASSERT(data == record[j]); } } } // Tries to write the specified number of records. Stops when the log gets // full. Returns the number of records written. Spins for random // number of times, up to 'max_spin_count', between writes. static int write_records_to_log(int writer_id, size_t record_size, int num_records, int max_spin_count) { int counter = 0; for (int i = 0; i < num_records; ++i) { int spin_count = max_spin_count ? rand() % max_spin_count : 0; if (VERBOSE && (counter++ == num_records / 10)) { printf(" Writer %d: %d out of %d written\n", writer_id, i, num_records); counter = 0; } char* record = (char*)(census_log_start_write(record_size)); if (record == NULL) { return i; } write_record(record, record_size); census_log_end_write(record, record_size); for (int j = 0; j < spin_count; ++j) { GPR_ASSERT(j >= 0); } } return num_records; } // Performs a single read iteration. Returns the number of records read. static int perform_read_iteration(size_t record_size) { const void* read_buffer = NULL; size_t bytes_available; int records_read = 0; census_log_init_reader(); while ((read_buffer = census_log_read_next(&bytes_available))) { int num_records = 0; read_records(record_size, (const char*)read_buffer, bytes_available, &num_records); records_read += num_records; } return records_read; } // Asserts that the log is empty. static void assert_log_empty(void) { census_log_init_reader(); size_t bytes_available; GPR_ASSERT(census_log_read_next(&bytes_available) == NULL); } // Fills the log and verifies data. If 'no fragmentation' is true, records // are sized such that CENSUS_LOG_2_MAX_RECORD_SIZE is a multiple of record // size. If not a circular log, verifies that the number of records written // match the number of records read. static void fill_log(size_t log_size, int no_fragmentation, int circular_log) { size_t size; if (no_fragmentation) { int log2size = rand() % (CENSUS_LOG_2_MAX_RECORD_SIZE + 1); size = ((size_t)1 << log2size); } else { while (1) { size = 1 + ((size_t)rand() % CENSUS_LOG_MAX_RECORD_SIZE); if (CENSUS_LOG_MAX_RECORD_SIZE % size) { break; } } } int records_written = write_records_to_log(0 /* writer id */, size, (int)((log_size / size) * 2), 0 /* spin count */); int records_read = perform_read_iteration(size); if (!circular_log) { GPR_ASSERT(records_written == records_read); } assert_log_empty(); } // Structure to pass args to writer_thread typedef struct writer_thread_args { // Index of this thread in the writers vector. int index; // Record size. size_t record_size; // Number of records to write. int num_records; // Used to signal when writer is complete gpr_cv* done; gpr_mu* mu; int* count; } writer_thread_args; // Writes the given number of records of random size (up to kMaxRecordSize) and // random data to the specified log. static void writer_thread(void* arg) { writer_thread_args* args = (writer_thread_args*)arg; // Maximum number of times to spin between writes. static const int MAX_SPIN_COUNT = 50; int records_written = 0; if (VERBOSE) { printf(" Writer %d starting\n", args->index); } while (records_written < args->num_records) { records_written += write_records_to_log(args->index, args->record_size, args->num_records - records_written, MAX_SPIN_COUNT); if (records_written < args->num_records) { // Ran out of log space. Sleep for a bit and let the reader catch up. // This should never happen for circular logs. if (VERBOSE) { printf( " Writer %d stalled due to out-of-space: %d out of %d " "written\n", args->index, records_written, args->num_records); } gpr_sleep_until(GRPC_TIMEOUT_MILLIS_TO_DEADLINE(10)); } } // Done. Decrement count and signal. gpr_mu_lock(args->mu); (*args->count)--; gpr_cv_signal(args->done); if (VERBOSE) { printf(" Writer %d done\n", args->index); } gpr_mu_unlock(args->mu); } // struct to pass args to reader_thread typedef struct reader_thread_args { // Record size. size_t record_size; // Interval between read iterations. int read_iteration_interval_in_msec; // Total number of records. int total_records; // Signalled when reader should stop. gpr_cv stop; int stop_flag; // Used to signal when reader has finished gpr_cv* done; gpr_mu* mu; int running; } reader_thread_args; // Reads and verifies the specified number of records. Reader can also be // stopped via gpr_cv_signal(&args->stop). Sleeps for 'read_interval_in_msec' // between read iterations. static void reader_thread(void* arg) { reader_thread_args* args = (reader_thread_args*)arg; if (VERBOSE) { printf(" Reader starting\n"); } gpr_timespec interval = gpr_time_from_micros( args->read_iteration_interval_in_msec * 1000, GPR_TIMESPAN); gpr_mu_lock(args->mu); int records_read = 0; int num_iterations = 0; int counter = 0; while (!args->stop_flag && records_read < args->total_records) { gpr_cv_wait(&args->stop, args->mu, interval); if (!args->stop_flag) { records_read += perform_read_iteration(args->record_size); GPR_ASSERT(records_read <= args->total_records); if (VERBOSE && (counter++ == 100000)) { printf(" Reader: %d out of %d read\n", records_read, args->total_records); counter = 0; } ++num_iterations; } } // Done args->running = 0; gpr_cv_signal(args->done); if (VERBOSE) { printf(" Reader: records: %d, iterations: %d\n", records_read, num_iterations); } gpr_mu_unlock(args->mu); } // Creates NUM_WRITERS writers where each writer writes NUM_RECORDS_PER_WRITER // records. Also, starts a reader that iterates over and reads blocks every // READ_ITERATION_INTERVAL_IN_MSEC. // Number of writers. #define NUM_WRITERS 5 static void multiple_writers_single_reader(int circular_log) { // Sleep interval between read iterations. static const int READ_ITERATION_INTERVAL_IN_MSEC = 10; // Maximum record size. static const size_t MAX_RECORD_SIZE = 20; // Number of records written by each writer. This is sized such that we // will write through the entire log ~10 times. const int NUM_RECORDS_PER_WRITER = (int)((10 * census_log_remaining_space()) / (MAX_RECORD_SIZE / 2)) / NUM_WRITERS; size_t record_size = ((size_t)rand() % MAX_RECORD_SIZE) + 1; // Create and start writers. writer_thread_args writers[NUM_WRITERS]; int writers_count = NUM_WRITERS; gpr_cv writers_done; gpr_mu writers_mu; // protects writers_done and writers_count gpr_cv_init(&writers_done); gpr_mu_init(&writers_mu); gpr_thd_id id; for (int i = 0; i < NUM_WRITERS; ++i) { writers[i].index = i; writers[i].record_size = record_size; writers[i].num_records = NUM_RECORDS_PER_WRITER; writers[i].done = &writers_done; writers[i].count = &writers_count; writers[i].mu = &writers_mu; gpr_thd_new(&id, &writer_thread, &writers[i], NULL); } // Start reader. gpr_cv reader_done; gpr_mu reader_mu; // protects reader_done and reader.running reader_thread_args reader; reader.record_size = record_size; reader.read_iteration_interval_in_msec = READ_ITERATION_INTERVAL_IN_MSEC; reader.total_records = NUM_WRITERS * NUM_RECORDS_PER_WRITER; reader.stop_flag = 0; gpr_cv_init(&reader.stop); gpr_cv_init(&reader_done); reader.done = &reader_done; gpr_mu_init(&reader_mu); reader.mu = &reader_mu; reader.running = 1; gpr_thd_new(&id, &reader_thread, &reader, NULL); // Wait for writers to finish. gpr_mu_lock(&writers_mu); while (writers_count != 0) { gpr_cv_wait(&writers_done, &writers_mu, gpr_inf_future(GPR_CLOCK_REALTIME)); } gpr_mu_unlock(&writers_mu); gpr_mu_destroy(&writers_mu); gpr_cv_destroy(&writers_done); gpr_mu_lock(&reader_mu); if (circular_log) { // Stop reader. reader.stop_flag = 1; gpr_cv_signal(&reader.stop); } // wait for reader to finish while (reader.running) { gpr_cv_wait(&reader_done, &reader_mu, gpr_inf_future(GPR_CLOCK_REALTIME)); } if (circular_log) { // Assert that there were no out-of-space errors. GPR_ASSERT(0 == census_log_out_of_space_count()); } gpr_mu_unlock(&reader_mu); gpr_mu_destroy(&reader_mu); gpr_cv_destroy(&reader_done); if (VERBOSE) { printf(" Reader: finished\n"); } } static void setup_test(int circular_log) { census_log_initialize(LOG_SIZE_IN_MB, circular_log); // GPR_ASSERT(census_log_remaining_space() == LOG_SIZE_IN_BYTES); } // Attempts to create a record of invalid size (size > // CENSUS_LOG_MAX_RECORD_SIZE). void test_invalid_record_size(void) { static const size_t INVALID_SIZE = CENSUS_LOG_MAX_RECORD_SIZE + 1; static const size_t VALID_SIZE = 1; printf("Starting test: invalid record size\n"); setup_test(0); void* record = census_log_start_write(INVALID_SIZE); GPR_ASSERT(record == NULL); // Now try writing a valid record. record = census_log_start_write(VALID_SIZE); GPR_ASSERT(record != NULL); census_log_end_write(record, VALID_SIZE); // Verifies that available space went down by one block. In theory, this // check can fail if the thread is context switched to a new CPU during the // start_write execution (multiple blocks get allocated), but this has not // been observed in practice. // GPR_ASSERT(LOG_SIZE_IN_BYTES - CENSUS_LOG_MAX_RECORD_SIZE == // census_log_remaining_space()); census_log_shutdown(); } // Tests end_write() with a different size than what was specified in // start_write(). void test_end_write_with_different_size(void) { static const size_t START_WRITE_SIZE = 10; static const size_t END_WRITE_SIZE = 7; printf("Starting test: end write with different size\n"); setup_test(0); void* record_written = census_log_start_write(START_WRITE_SIZE); GPR_ASSERT(record_written != NULL); census_log_end_write(record_written, END_WRITE_SIZE); census_log_init_reader(); size_t bytes_available; const void* record_read = census_log_read_next(&bytes_available); GPR_ASSERT(record_written == record_read); GPR_ASSERT(END_WRITE_SIZE == bytes_available); assert_log_empty(); census_log_shutdown(); } // Verifies that pending records are not available via read_next(). void test_read_pending_record(void) { static const size_t PR_RECORD_SIZE = 1024; printf("Starting test: read pending record\n"); setup_test(0); // Start a write. void* record_written = census_log_start_write(PR_RECORD_SIZE); GPR_ASSERT(record_written != NULL); // As write is pending, read should fail. census_log_init_reader(); size_t bytes_available; const void* record_read = census_log_read_next(&bytes_available); GPR_ASSERT(record_read == NULL); // A read followed by end_write() should succeed. census_log_end_write(record_written, PR_RECORD_SIZE); census_log_init_reader(); record_read = census_log_read_next(&bytes_available); GPR_ASSERT(record_written == record_read); GPR_ASSERT(PR_RECORD_SIZE == bytes_available); assert_log_empty(); census_log_shutdown(); } // Tries reading beyond pending write. void test_read_beyond_pending_record(void) { printf("Starting test: read beyond pending record\n"); setup_test(0); // Start a write. const size_t incomplete_record_size = 10; void* incomplete_record = census_log_start_write(incomplete_record_size); GPR_ASSERT(incomplete_record != NULL); const size_t complete_record_size = 20; void* complete_record = census_log_start_write(complete_record_size); GPR_ASSERT(complete_record != NULL); GPR_ASSERT(complete_record != incomplete_record); census_log_end_write(complete_record, complete_record_size); // Now iterate over blocks to read completed records. census_log_init_reader(); size_t bytes_available; const void* record_read = census_log_read_next(&bytes_available); GPR_ASSERT(complete_record == record_read); GPR_ASSERT(complete_record_size == bytes_available); // Complete first record. census_log_end_write(incomplete_record, incomplete_record_size); // Have read past the incomplete record, so read_next() should return NULL. // NB: this test also assumes our thread did not get switched to a different // CPU between the two start_write calls record_read = census_log_read_next(&bytes_available); GPR_ASSERT(record_read == NULL); // Reset reader to get the newly completed record. census_log_init_reader(); record_read = census_log_read_next(&bytes_available); GPR_ASSERT(incomplete_record == record_read); GPR_ASSERT(incomplete_record_size == bytes_available); assert_log_empty(); census_log_shutdown(); } // Tests scenario where block being read is detached from a core and put on the // dirty list. void test_detached_while_reading(void) { printf("Starting test: detached while reading\n"); setup_test(0); // Start a write. static const size_t DWR_RECORD_SIZE = 10; void* record_written = census_log_start_write(DWR_RECORD_SIZE); GPR_ASSERT(record_written != NULL); census_log_end_write(record_written, DWR_RECORD_SIZE); // Read this record. census_log_init_reader(); size_t bytes_available; const void* record_read = census_log_read_next(&bytes_available); GPR_ASSERT(record_read != NULL); GPR_ASSERT(DWR_RECORD_SIZE == bytes_available); // Now fill the log. This will move the block being read from core-local // array to the dirty list. while ((record_written = census_log_start_write(DWR_RECORD_SIZE))) { census_log_end_write(record_written, DWR_RECORD_SIZE); } // In this iteration, read_next() should only traverse blocks in the // core-local array. Therefore, we expect at most gpr_cpu_num_cores() more // blocks. As log is full, if read_next() is traversing the dirty list, we // will get more than gpr_cpu_num_cores() blocks. int block_read = 0; while ((record_read = census_log_read_next(&bytes_available))) { ++block_read; GPR_ASSERT(block_read <= (int)gpr_cpu_num_cores()); } census_log_shutdown(); } // Fills non-circular log with records sized such that size is a multiple of // CENSUS_LOG_MAX_RECORD_SIZE (no per-block fragmentation). void test_fill_log_no_fragmentation(void) { printf("Starting test: fill log no fragmentation\n"); const int circular = 0; setup_test(circular); fill_log(LOG_SIZE_IN_BYTES, 1 /* no fragmentation */, circular); census_log_shutdown(); } // Fills circular log with records sized such that size is a multiple of // CENSUS_LOG_MAX_RECORD_SIZE (no per-block fragmentation). void test_fill_circular_log_no_fragmentation(void) { printf("Starting test: fill circular log no fragmentation\n"); const int circular = 1; setup_test(circular); fill_log(LOG_SIZE_IN_BYTES, 1 /* no fragmentation */, circular); census_log_shutdown(); } // Fills non-circular log with records that may straddle end of a block. void test_fill_log_with_straddling_records(void) { printf("Starting test: fill log with straddling records\n"); const int circular = 0; setup_test(circular); fill_log(LOG_SIZE_IN_BYTES, 0 /* block straddling records */, circular); census_log_shutdown(); } // Fills circular log with records that may straddle end of a block. void test_fill_circular_log_with_straddling_records(void) { printf("Starting test: fill circular log with straddling records\n"); const int circular = 1; setup_test(circular); fill_log(LOG_SIZE_IN_BYTES, 0 /* block straddling records */, circular); census_log_shutdown(); } // Tests scenario where multiple writers and a single reader are using a log // that is configured to discard old records. void test_multiple_writers_circular_log(void) { printf("Starting test: multiple writers circular log\n"); const int circular = 1; setup_test(circular); multiple_writers_single_reader(circular); census_log_shutdown(); } // Tests scenario where multiple writers and a single reader are using a log // that is configured to discard old records. void test_multiple_writers(void) { printf("Starting test: multiple writers\n"); const int circular = 0; setup_test(circular); multiple_writers_single_reader(circular); census_log_shutdown(); } // Repeat the straddling records and multiple writers tests with a small log. void test_small_log(void) { printf("Starting test: small log\n"); const int circular = 0; census_log_initialize(0, circular); size_t log_size = census_log_remaining_space(); GPR_ASSERT(log_size > 0); fill_log(log_size, 0, circular); census_log_shutdown(); census_log_initialize(0, circular); multiple_writers_single_reader(circular); census_log_shutdown(); } void test_performance(void) { for (size_t write_size = 1; write_size < CENSUS_LOG_MAX_RECORD_SIZE; write_size *= 2) { setup_test(0); gpr_timespec start_time = gpr_now(GPR_CLOCK_REALTIME); int nrecords = 0; while (1) { void* record = census_log_start_write(write_size); if (record == NULL) { break; } census_log_end_write(record, write_size); nrecords++; } gpr_timespec write_time = gpr_time_sub(gpr_now(GPR_CLOCK_REALTIME), start_time); double write_time_micro = (double)write_time.tv_sec * 1000000 + (double)write_time.tv_nsec / 1000; census_log_shutdown(); printf( "Wrote %d %d byte records in %.3g microseconds: %g records/us " "(%g ns/record), %g gigabytes/s\n", nrecords, (int)write_size, write_time_micro, nrecords / write_time_micro, 1000 * write_time_micro / nrecords, (double)((int)write_size * nrecords) / write_time_micro / 1000); } } int main(int argc, char** argv) { grpc_test_init(argc, argv); gpr_time_init(); srand((unsigned)gpr_now(GPR_CLOCK_REALTIME).tv_nsec); test_invalid_record_size(); test_end_write_with_different_size(); test_read_pending_record(); test_read_beyond_pending_record(); test_detached_while_reading(); test_fill_log_no_fragmentation(); test_fill_circular_log_no_fragmentation(); test_fill_log_with_straddling_records(); test_fill_circular_log_with_straddling_records(); test_small_log(); test_multiple_writers(); test_multiple_writers_circular_log(); test_performance(); return 0; }