// // Copyright 2017 gRPC authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include #include #include #include #include #include #include #include #include #include "absl/cleanup/cleanup.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/synchronization/notification.h" #include "absl/types/span.h" #include #include #include #include #include #include #include #include #include #include "src/core/client_channel/backup_poller.h" #include "src/core/lib/address_utils/parse_address.h" #include "src/core/lib/channel/channel_args.h" #include "src/core/lib/config/config_vars.h" #include "src/core/lib/gprpp/crash.h" #include "src/core/lib/gprpp/debug_location.h" #include "src/core/lib/gprpp/env.h" #include "src/core/lib/gprpp/ref_counted_ptr.h" #include "src/core/lib/gprpp/sync.h" #include "src/core/lib/iomgr/sockaddr.h" #include "src/core/lib/security/credentials/fake/fake_credentials.h" #include "src/core/load_balancing/grpclb/grpclb.h" #include "src/core/load_balancing/grpclb/grpclb_balancer_addresses.h" #include "src/core/resolver/endpoint_addresses.h" #include "src/core/resolver/fake/fake_resolver.h" #include "src/core/service_config/service_config_impl.h" #include "src/cpp/server/secure_server_credentials.h" #include "src/proto/grpc/lb/v1/load_balancer.grpc.pb.h" #include "src/proto/grpc/testing/echo.grpc.pb.h" #include "test/core/util/port.h" #include "test/core/util/resolve_localhost_ip46.h" #include "test/core/util/test_config.h" #include "test/cpp/end2end/counted_service.h" #include "test/cpp/end2end/test_service_impl.h" #include "test/cpp/util/credentials.h" #include "test/cpp/util/test_config.h" // TODO(dgq): Other scenarios in need of testing: // - Send a serverlist with faulty ip:port addresses (port > 2^16, etc). // - Test reception of invalid serverlist // - Test against a non-LB server. // - Random LB server closing the stream unexpectedly. // // Findings from end to end testing to be covered here: // - Handling of LB servers restart, including reconnection after backing-off // retries. // - Destruction of load balanced channel (and therefore of grpclb instance) // while: // 1) the internal LB call is still active. This should work by virtue // of the weak reference the LB call holds. The call should be terminated as // part of the grpclb shutdown process. // 2) the retry timer is active. Again, the weak reference it holds should // prevent a premature call to \a glb_destroy. using grpc::lb::v1::LoadBalancer; using grpc::lb::v1::LoadBalanceRequest; using grpc::lb::v1::LoadBalanceResponse; using grpc_core::SourceLocation; namespace grpc { namespace testing { namespace { constexpr char kDefaultServiceConfig[] = "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{} }\n" " ]\n" "}"; using BackendService = CountedService; using BalancerService = CountedService; const char kCallCredsMdKey[] = "call-creds"; const char kCallCredsMdValue[] = "should not be received by balancer"; const char kRequestMessage[] = "Live long and prosper."; const absl::string_view kApplicationTargetName = "application_target_name"; // A test user agent string sent by the client only to the grpclb loadbalancer. // The backend should not see this user-agent string. constexpr char kGrpclbSpecificUserAgentString[] = "grpc-grpclb-test-user-agent"; class BackendServiceImpl : public BackendService { public: BackendServiceImpl() {} Status Echo(ServerContext* context, const EchoRequest* request, EchoResponse* response) override { // The backend should not see a test user agent configured at the client // using GRPC_ARG_GRPCLB_CHANNEL_ARGS. auto it = context->client_metadata().find("user-agent"); if (it != context->client_metadata().end()) { EXPECT_FALSE(it->second.starts_with(kGrpclbSpecificUserAgentString)); } // Backend should receive the call credentials metadata. auto call_credentials_entry = context->client_metadata().find(kCallCredsMdKey); EXPECT_NE(call_credentials_entry, context->client_metadata().end()); if (call_credentials_entry != context->client_metadata().end()) { EXPECT_EQ(call_credentials_entry->second, kCallCredsMdValue); } IncreaseRequestCount(); const auto status = TestServiceImpl::Echo(context, request, response); IncreaseResponseCount(); AddClient(context->peer()); return status; } void Start() {} void Shutdown() {} std::set clients() { grpc_core::MutexLock lock(&clients_mu_); return clients_; } private: void AddClient(const std::string& client) { grpc_core::MutexLock lock(&clients_mu_); clients_.insert(client); } grpc_core::Mutex clients_mu_; std::set clients_ ABSL_GUARDED_BY(&clients_mu_); }; std::string Ip4ToPackedString(const char* ip_str) { struct in_addr ip4; CHECK_EQ(inet_pton(AF_INET, ip_str, &ip4), 1); return std::string(reinterpret_cast(&ip4), sizeof(ip4)); } std::string Ip6ToPackedString(const char* ip_str) { struct in6_addr ip6; CHECK_EQ(inet_pton(AF_INET6, ip_str, &ip6), 1); return std::string(reinterpret_cast(&ip6), sizeof(ip6)); } struct ClientStats { size_t num_calls_started = 0; size_t num_calls_finished = 0; size_t num_calls_finished_with_client_failed_to_send = 0; size_t num_calls_finished_known_received = 0; std::map drop_token_counts; ClientStats& operator+=(const ClientStats& other) { num_calls_started += other.num_calls_started; num_calls_finished += other.num_calls_finished; num_calls_finished_with_client_failed_to_send += other.num_calls_finished_with_client_failed_to_send; num_calls_finished_known_received += other.num_calls_finished_known_received; for (const auto& p : other.drop_token_counts) { drop_token_counts[p.first] += p.second; } return *this; } void Reset() { num_calls_started = 0; num_calls_finished = 0; num_calls_finished_with_client_failed_to_send = 0; num_calls_finished_known_received = 0; drop_token_counts.clear(); } }; class BalancerServiceImpl : public BalancerService { public: using Stream = ServerReaderWriter; void Start() { { grpc_core::MutexLock lock(&mu_); shutdown_ = false; response_queue_.clear(); } { grpc_core::MutexLock lock(&load_report_mu_); load_report_queue_.clear(); } } void Shutdown() { { grpc_core::MutexLock lock(&mu_); shutdown_ = true; } ShutdownStream(); gpr_log(GPR_INFO, "LB[%p]: shut down", this); } void set_client_load_reporting_interval_seconds(int seconds) { client_load_reporting_interval_seconds_ = seconds; } void SendResponse(LoadBalanceResponse response) { grpc_core::MutexLock lock(&mu_); response_queue_.emplace_back(std::move(response)); if (response_cond_ != nullptr) response_cond_->SignalAll(); } void ShutdownStream() { grpc_core::MutexLock lock(&mu_); response_queue_.emplace_back(absl::nullopt); if (response_cond_ != nullptr) response_cond_->SignalAll(); } absl::optional WaitForLoadReport(absl::Duration timeout) { grpc_core::MutexLock lock(&load_report_mu_); if (load_report_queue_.empty()) { grpc_core::CondVar condition; load_report_cond_ = &condition; condition.WaitWithTimeout(&load_report_mu_, timeout * grpc_test_slowdown_factor()); load_report_cond_ = nullptr; } if (load_report_queue_.empty()) return absl::nullopt; ClientStats load_report = std::move(load_report_queue_.front()); load_report_queue_.pop_front(); return load_report; } bool WaitForNewStream(size_t prev_seen_count, absl::Duration timeout = absl::Seconds(5)) { grpc_core::MutexLock lock(&stream_count_mu_); if (stream_count_ == prev_seen_count) { grpc_core::CondVar condition; stream_count_cond_ = &condition; condition.WaitWithTimeout(&stream_count_mu_, timeout * grpc_test_slowdown_factor()); stream_count_cond_ = nullptr; } return stream_count_ > prev_seen_count; } std::vector service_names() { grpc_core::MutexLock lock(&mu_); return service_names_; } std::set clients() { grpc_core::MutexLock lock(&clients_mu_); return clients_; } private: // Request handler. Status BalanceLoad(ServerContext* context, Stream* stream) override { gpr_log(GPR_INFO, "LB[%p]: BalanceLoad", this); { grpc_core::MutexLock lock(&mu_); if (shutdown_) { gpr_log(GPR_INFO, "LB[%p]: shutdown at stream start", this); return Status::OK; } } IncrementStreamCount(); AddClient(context->peer()); // The loadbalancer should see a test user agent because it was // specifically configured at the client using // GRPC_ARG_GRPCLB_CHANNEL_ARGS auto it = context->client_metadata().find("user-agent"); EXPECT_TRUE(it != context->client_metadata().end()); if (it != context->client_metadata().end()) { EXPECT_THAT(std::string(it->second.data(), it->second.length()), ::testing::StartsWith(kGrpclbSpecificUserAgentString)); } // Balancer shouldn't receive the call credentials metadata. EXPECT_EQ(context->client_metadata().find(kCallCredsMdKey), context->client_metadata().end()); // Read initial request. LoadBalanceRequest request; if (!stream->Read(&request)) { gpr_log(GPR_INFO, "LB[%p]: stream read returned false", this); return Status::OK; } EXPECT_TRUE(request.has_initial_request()); { grpc_core::MutexLock lock(&mu_); service_names_.push_back(request.initial_request().name()); } IncreaseRequestCount(); gpr_log(GPR_INFO, "LB[%p]: received initial message '%s'", this, request.DebugString().c_str()); // Send initial response. LoadBalanceResponse response; auto* initial_response = response.mutable_initial_response(); if (client_load_reporting_interval_seconds_ > 0) { initial_response->mutable_client_stats_report_interval()->set_seconds( client_load_reporting_interval_seconds_); } stream->Write(response); // Spawn a separate thread to read requests from the client. absl::Notification reader_shutdown; std::thread reader(std::bind(&BalancerServiceImpl::ReadThread, this, stream, &reader_shutdown)); auto thread_cleanup = absl::MakeCleanup([&]() { gpr_log(GPR_INFO, "shutting down reader thread"); reader_shutdown.Notify(); gpr_log(GPR_INFO, "joining reader thread"); reader.join(); gpr_log(GPR_INFO, "joining reader thread complete"); }); // Send responses as instructed by the test. while (true) { auto response = GetNextResponse(); if (!response.has_value()) { context->TryCancel(); break; } gpr_log(GPR_INFO, "LB[%p]: Sending response: %s", this, response->DebugString().c_str()); IncreaseResponseCount(); stream->Write(*response); } gpr_log(GPR_INFO, "LB[%p]: done", this); return Status::OK; } // Reader thread spawned by request handler. void ReadThread(Stream* stream, absl::Notification* shutdown) { LoadBalanceRequest request; while (!shutdown->HasBeenNotified() && stream->Read(&request)) { gpr_log(GPR_INFO, "LB[%p]: received client load report message '%s'", this, request.DebugString().c_str()); EXPECT_GT(client_load_reporting_interval_seconds_, 0); EXPECT_TRUE(request.has_client_stats()); ClientStats load_report; load_report.num_calls_started = request.client_stats().num_calls_started(); load_report.num_calls_finished = request.client_stats().num_calls_finished(); load_report.num_calls_finished_with_client_failed_to_send = request.client_stats() .num_calls_finished_with_client_failed_to_send(); load_report.num_calls_finished_known_received = request.client_stats().num_calls_finished_known_received(); for (const auto& drop_token_count : request.client_stats().calls_finished_with_drop()) { load_report.drop_token_counts[drop_token_count.load_balance_token()] = drop_token_count.num_calls(); } // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. grpc_core::MutexLock lock(&load_report_mu_); load_report_queue_.emplace_back(std::move(load_report)); if (load_report_cond_ != nullptr) load_report_cond_->Signal(); } } // Helper for request handler thread to get the next response to be // sent on the stream. Returns nullopt when the test has requested // stream shutdown. absl::optional GetNextResponse() { grpc_core::MutexLock lock(&mu_); if (response_queue_.empty()) { grpc_core::CondVar condition; response_cond_ = &condition; condition.Wait(&mu_); response_cond_ = nullptr; } auto response = std::move(response_queue_.front()); response_queue_.pop_front(); return response; } void AddClient(const std::string& client) { grpc_core::MutexLock lock(&clients_mu_); clients_.insert(client); } void IncrementStreamCount() { grpc_core::MutexLock lock(&stream_count_mu_); ++stream_count_; if (stream_count_cond_ != nullptr) stream_count_cond_->Signal(); } int client_load_reporting_interval_seconds_ = 0; grpc_core::Mutex mu_; bool shutdown_ ABSL_GUARDED_BY(&mu_) = false; std::vector service_names_ ABSL_GUARDED_BY(mu_); std::deque> response_queue_ ABSL_GUARDED_BY(mu_); grpc_core::CondVar* response_cond_ ABSL_GUARDED_BY(mu_) = nullptr; grpc_core::Mutex load_report_mu_; grpc_core::CondVar* load_report_cond_ ABSL_GUARDED_BY(load_report_mu_) = nullptr; std::deque load_report_queue_ ABSL_GUARDED_BY(load_report_mu_); grpc_core::Mutex clients_mu_; std::set clients_ ABSL_GUARDED_BY(&clients_mu_); grpc_core::Mutex stream_count_mu_; grpc_core::CondVar* stream_count_cond_ ABSL_GUARDED_BY(&stream_count_mu_) = nullptr; size_t stream_count_ ABSL_GUARDED_BY(&stream_count_mu_) = 0; }; class GrpclbEnd2endTest : public ::testing::Test { protected: template class ServerThread { public: template explicit ServerThread(const std::string& type, Args&&... args) : port_(grpc_pick_unused_port_or_die()), type_(type), service_(std::forward(args)...) {} ~ServerThread() { Shutdown(); } void Start() { gpr_log(GPR_INFO, "starting %s server on port %d", type_.c_str(), port_); CHECK(!running_); running_ = true; service_.Start(); grpc_core::Mutex mu; // We need to acquire the lock here in order to prevent the notify_one // by ServerThread::Serve from firing before the wait below is hit. grpc_core::MutexLock lock(&mu); grpc_core::CondVar cond; thread_ = std::make_unique( std::bind(&ServerThread::Serve, this, &mu, &cond)); cond.Wait(&mu); gpr_log(GPR_INFO, "%s server startup complete", type_.c_str()); } void Serve(grpc_core::Mutex* mu, grpc_core::CondVar* cond) { // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. grpc_core::MutexLock lock(mu); ServerBuilder builder; std::shared_ptr creds(new SecureServerCredentials( grpc_fake_transport_security_server_credentials_create())); builder.AddListeningPort(grpc_core::LocalIpAndPort(port_), creds); builder.RegisterService(&service_); server_ = builder.BuildAndStart(); cond->Signal(); } void Shutdown() { if (!running_) return; gpr_log(GPR_INFO, "%s about to shutdown", type_.c_str()); service_.Shutdown(); server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0)); thread_->join(); gpr_log(GPR_INFO, "%s shutdown completed", type_.c_str()); running_ = false; } int port() const { return port_; } T& service() { return service_; } private: const int port_; std::string type_; T service_; std::unique_ptr server_; std::unique_ptr thread_; bool running_ = false; }; static void SetUpTestSuite() { // Make the backup poller poll very frequently in order to pick up // updates from all the subchannels's FDs. grpc_core::ConfigVars::Overrides overrides; overrides.client_channel_backup_poll_interval_ms = 1; grpc_core::ConfigVars::SetOverrides(overrides); #if TARGET_OS_IPHONE // Workaround Apple CFStream bug grpc_core::SetEnv("grpc_cfstream", "0"); #endif grpc_init(); } static void TearDownTestSuite() { grpc_shutdown(); } void SetUp() override { response_generator_ = grpc_core::MakeRefCounted(); balancer_ = CreateAndStartBalancer(); ResetStub(); } void TearDown() override { ShutdownAllBackends(); balancer_->Shutdown(); } void CreateBackends(size_t num_backends) { for (size_t i = 0; i < num_backends; ++i) { backends_.emplace_back( std::make_unique>("backend")); backends_.back()->Start(); } } void StartAllBackends() { for (auto& backend : backends_) backend->Start(); } void StartBackend(size_t index) { backends_[index]->Start(); } void ShutdownAllBackends() { for (auto& backend : backends_) backend->Shutdown(); } void ShutdownBackend(size_t index) { backends_[index]->Shutdown(); } std::unique_ptr> CreateAndStartBalancer() { auto balancer = std::make_unique>("balancer"); balancer->Start(); return balancer; } void ResetStub(int fallback_timeout_ms = 0, const std::string& expected_targets = "", int subchannel_cache_delay_ms = 0) { // Send a separate user agent string for the grpclb load balancer alone. grpc_core::ChannelArgs grpclb_channel_args; // Set a special user agent string for the grpclb load balancer. It // will be verified at the load balancer. grpclb_channel_args = grpclb_channel_args.Set( GRPC_ARG_PRIMARY_USER_AGENT_STRING, kGrpclbSpecificUserAgentString); ChannelArguments args; if (fallback_timeout_ms > 0) { args.SetGrpclbFallbackTimeout(fallback_timeout_ms * grpc_test_slowdown_factor()); } args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR, response_generator_.get()); if (!expected_targets.empty()) { args.SetString(GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets); grpclb_channel_args = grpclb_channel_args.Set( GRPC_ARG_FAKE_SECURITY_EXPECTED_TARGETS, expected_targets); } if (subchannel_cache_delay_ms > 0) { args.SetInt(GRPC_ARG_GRPCLB_SUBCHANNEL_CACHE_INTERVAL_MS, subchannel_cache_delay_ms * grpc_test_slowdown_factor()); } static const grpc_arg_pointer_vtable channel_args_vtable = { // copy [](void* p) -> void* { return grpc_channel_args_copy(static_cast(p)); }, // destroy [](void* p) { grpc_channel_args_destroy(static_cast(p)); }, // compare [](void* p1, void* p2) { return grpc_channel_args_compare(static_cast(p1), static_cast(p2)); }, }; // Specify channel args for the channel to the load balancer. args.SetPointerWithVtable( GRPC_ARG_EXPERIMENTAL_GRPCLB_CHANNEL_ARGS, const_cast(grpclb_channel_args.ToC().get()), &channel_args_vtable); // TODO(dgq): templatize tests to run everything using both secure and // insecure channel credentials. grpc_channel_credentials* channel_creds = grpc_fake_transport_security_credentials_create(); grpc_call_credentials* call_creds = grpc_md_only_test_credentials_create( kCallCredsMdKey, kCallCredsMdValue); auto creds = std::make_shared( channel_creds, call_creds); call_creds->Unref(); channel_creds->Unref(); channel_ = grpc::CreateCustomChannel( absl::StrCat("fake:", kApplicationTargetName), creds, args); stub_ = grpc::testing::EchoTestService::NewStub(channel_); } void ResetBackendCounters() { for (auto& backend : backends_) backend->service().ResetCounters(); } absl::optional WaitForLoadReports( absl::Duration timeout = absl::Seconds(5)) { return balancer_->service().WaitForLoadReport(timeout); } bool SeenAllBackends(size_t start_index = 0, size_t stop_index = 0) { if (stop_index == 0) stop_index = backends_.size(); for (size_t i = start_index; i < stop_index; ++i) { if (backends_[i]->service().request_count() == 0) return false; } return true; } void SendRpcAndCount(int* num_total, int* num_ok, int* num_failure, int* num_drops) { const Status status = SendRpc(); if (status.ok()) { ++*num_ok; } else { if (status.error_message() == "drop directed by grpclb balancer") { ++*num_drops; } else { ++*num_failure; } } ++*num_total; } struct WaitForBackendOptions { int timeout_seconds = 10; int num_requests_multiple_of = 1; WaitForBackendOptions() {} WaitForBackendOptions& SetTimeoutSeconds(int seconds) { timeout_seconds = seconds; return *this; } WaitForBackendOptions& SetNumRequestsMultipleOf(int multiple) { num_requests_multiple_of = multiple; return *this; } }; std::tuple WaitForAllBackends( size_t start_index = 0, size_t stop_index = 0, WaitForBackendOptions options = WaitForBackendOptions(), SourceLocation location = SourceLocation()) { gpr_log(GPR_INFO, "Waiting for backends [%" PRIuPTR ", %" PRIuPTR ")", start_index, stop_index); const absl::Time deadline = absl::Now() + absl::Seconds(options.timeout_seconds * grpc_test_slowdown_factor()); int num_ok = 0; int num_failure = 0; int num_drops = 0; int num_total = 0; while (!SeenAllBackends(start_index, stop_index)) { absl::Time now = absl::Now(); EXPECT_LT(now, deadline) << location.file() << ":" << location.line(); if (now > deadline) break; SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops); } while (num_total % options.num_requests_multiple_of != 0) { absl::Time now = absl::Now(); EXPECT_LT(now, deadline) << location.file() << ":" << location.line(); if (now > deadline) break; SendRpcAndCount(&num_total, &num_ok, &num_failure, &num_drops); } ResetBackendCounters(); gpr_log(GPR_INFO, "Performed %d warm up requests (a multiple of %d) against the " "backends. %d succeeded, %d failed, %d dropped.", num_total, options.num_requests_multiple_of, num_ok, num_failure, num_drops); return std::make_tuple(num_ok, num_failure, num_drops); } void WaitForBackend(size_t backend_idx, WaitForBackendOptions options = WaitForBackendOptions(), SourceLocation location = SourceLocation()) { WaitForAllBackends(backend_idx, backend_idx + 1, options, location); } grpc_core::EndpointAddressesList CreateAddressListFromPorts( const absl::Span ports, absl::string_view balancer_name = "") { grpc_core::EndpointAddressesList addresses; for (int port : ports) { absl::StatusOr lb_uri = grpc_core::URI::Parse(grpc_core::LocalIpUri(port)); CHECK(lb_uri.ok()); grpc_resolved_address address; CHECK(grpc_parse_uri(*lb_uri, &address)); grpc_core::ChannelArgs args; if (!balancer_name.empty()) { args = args.Set(GRPC_ARG_DEFAULT_AUTHORITY, balancer_name); } addresses.emplace_back(address, args); } return addresses; } void SetNextResolutionFromEndpoints( grpc_core::EndpointAddressesList balancers, grpc_core::EndpointAddressesList backends = {}, const char* service_config_json = kDefaultServiceConfig) { grpc_core::ExecCtx exec_ctx; grpc_core::Resolver::Result result; result.addresses = std::move(backends); result.service_config = grpc_core::ServiceConfigImpl::Create( grpc_core::ChannelArgs(), service_config_json); CHECK(result.service_config.ok()); result.args = grpc_core::SetGrpcLbBalancerAddresses( grpc_core::ChannelArgs(), std::move(balancers)); response_generator_->SetResponseSynchronously(std::move(result)); } void SetNextResolution( const absl::Span balancer_ports, const absl::Span backend_ports = {}, const char* service_config_json = kDefaultServiceConfig) { SetNextResolutionFromEndpoints(CreateAddressListFromPorts(balancer_ports), CreateAddressListFromPorts(backend_ports), service_config_json); } void SetNextResolutionDefaultBalancer( const char* service_config_json = kDefaultServiceConfig) { SetNextResolution({balancer_->port()}, {}, service_config_json); } std::vector GetBackendPorts(size_t start_index = 0, size_t stop_index = 0) const { if (stop_index == 0) stop_index = backends_.size(); std::vector backend_ports; for (size_t i = start_index; i < stop_index; ++i) { backend_ports.push_back(backends_[i]->port()); } return backend_ports; } void SendBalancerResponse(LoadBalanceResponse response) { balancer_->service().SendResponse(std::move(response)); } LoadBalanceResponse BuildResponseForBackends( const std::vector& backend_ports, const std::map& drop_token_counts) { LoadBalanceResponse response; for (const auto& drop_token_count : drop_token_counts) { for (size_t i = 0; i < drop_token_count.second; ++i) { auto* server = response.mutable_server_list()->add_servers(); server->set_drop(true); server->set_load_balance_token(drop_token_count.first); } } for (const int& backend_port : backend_ports) { auto* server = response.mutable_server_list()->add_servers(); server->set_ip_address(grpc_core::RunningWithIPv6Only() ? Ip6ToPackedString("::1") : Ip4ToPackedString("127.0.0.1")); server->set_port(backend_port); static int token_count = 0; server->set_load_balance_token( absl::StrFormat("token%03d", ++token_count)); } return response; } Status SendRpc(EchoResponse* response = nullptr, int timeout_ms = 3000, bool wait_for_ready = false, const Status& expected_status = Status::OK) { const bool local_response = (response == nullptr); if (local_response) response = new EchoResponse; EchoRequest request; request.set_message(kRequestMessage); if (!expected_status.ok()) { auto* error = request.mutable_param()->mutable_expected_error(); error->set_code(expected_status.error_code()); error->set_error_message(expected_status.error_message()); } ClientContext context; context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms)); if (wait_for_ready) context.set_wait_for_ready(true); Status status = stub_->Echo(&context, request, response); if (local_response) delete response; return status; } void CheckRpcSendOk(const size_t times = 1, const int timeout_ms = 3000, bool wait_for_ready = false) { for (size_t i = 0; i < times; ++i) { EchoResponse response; const Status status = SendRpc(&response, timeout_ms, wait_for_ready); EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage); } } void CheckRpcSendFailure() { const Status status = SendRpc(); EXPECT_FALSE(status.ok()); } std::shared_ptr channel_; std::unique_ptr stub_; std::vector>> backends_; std::unique_ptr> balancer_; grpc_core::RefCountedPtr response_generator_; }; TEST_F(GrpclbEnd2endTest, Vanilla) { const size_t kNumBackends = 3; const size_t kNumRpcsPerAddress = 100; CreateBackends(kNumBackends); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); SetNextResolutionDefaultBalancer(); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // We need to wait for all backends to come online. WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * kNumBackends); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count()); } // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(GrpclbEnd2endTest, SubchannelCaching) { CreateBackends(3); ResetStub(/*fallback_timeout_ms=*/0, /*expected_targets=*/"", /*subchannel_cache_delay_ms=*/1500); SetNextResolutionDefaultBalancer(); // Initially send backends 0 and 1. SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(0, 2), {})); WaitForAllBackends(0, 2); // Now remove backends 0 and 1 and add backend 2. SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(2), {})); WaitForBackend(2); // Now re-add backend 1. SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(1), {})); WaitForBackend(1); // Backend 1 should never have lost its connection from the client. EXPECT_EQ(1UL, backends_[1]->service().clients().size()); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // And sent 3 responses. EXPECT_EQ(3U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, ReturnServerStatus) { CreateBackends(1); SetNextResolutionDefaultBalancer(); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); // We need to wait for all backends to come online. WaitForAllBackends(); // Send a request that the backend will fail, and make sure we get // back the right status. Status expected(StatusCode::INVALID_ARGUMENT, "He's dead, Jim!"); Status actual = SendRpc(/*response=*/nullptr, /*timeout_ms=*/3000, /*wait_for_ready=*/false, expected); EXPECT_EQ(actual.error_code(), expected.error_code()); EXPECT_EQ(actual.error_message(), expected.error_message()); } TEST_F(GrpclbEnd2endTest, SelectGrpclbWithMigrationServiceConfig) { CreateBackends(1); SetNextResolutionDefaultBalancer( "{\n" " \"loadBalancingConfig\":[\n" " { \"does_not_exist\":{} },\n" " { \"grpclb\":{} }\n" " ]\n" "}"); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); CheckRpcSendOk(1, 3000 /* timeout_ms */, true /* wait_for_ready */); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(GrpclbEnd2endTest, SelectGrpclbWithMigrationServiceConfigAndNoAddresses) { const int kFallbackTimeoutMs = 200; ResetStub(kFallbackTimeoutMs); SetNextResolution({}, {}, "{\n" " \"loadBalancingConfig\":[\n" " { \"does_not_exist\":{} },\n" " { \"grpclb\":{} }\n" " ]\n" "}"); // Try to connect. EXPECT_EQ(GRPC_CHANNEL_IDLE, channel_->GetState(true)); // Should go into state TRANSIENT_FAILURE when we enter fallback mode. const gpr_timespec deadline = grpc_timeout_seconds_to_deadline(1); grpc_connectivity_state state; while ((state = channel_->GetState(false)) != GRPC_CHANNEL_TRANSIENT_FAILURE) { ASSERT_TRUE(channel_->WaitForStateChange(state, deadline)); } // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(GrpclbEnd2endTest, UsePickFirstChildPolicy) { const size_t kNumBackends = 2; const size_t kNumRpcs = kNumBackends * 2; CreateBackends(kNumBackends); SetNextResolutionDefaultBalancer( "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{\n" " \"childPolicy\":[\n" " { \"pick_first\":{} }\n" " ]\n" " } }\n" " ]\n" "}"); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); CheckRpcSendOk(kNumRpcs, 3000 /* timeout_ms */, true /* wait_for_ready */); // Check that all requests went to the first backend. This verifies // that we used pick_first instead of round_robin as the child policy. EXPECT_EQ(backends_[0]->service().request_count(), kNumRpcs); for (size_t i = 1; i < backends_.size(); ++i) { EXPECT_EQ(backends_[i]->service().request_count(), 0UL); } // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(GrpclbEnd2endTest, SwapChildPolicy) { const size_t kNumBackends = 2; const size_t kNumRpcs = kNumBackends * 2; CreateBackends(kNumBackends); SetNextResolutionDefaultBalancer( "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{\n" " \"childPolicy\":[\n" " { \"pick_first\":{} }\n" " ]\n" " } }\n" " ]\n" "}"); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); CheckRpcSendOk(kNumRpcs, 3000 /* timeout_ms */, true /* wait_for_ready */); // Check that all requests went to the first backend. This verifies // that we used pick_first instead of round_robin as the child policy. EXPECT_EQ(backends_[0]->service().request_count(), kNumRpcs); for (size_t i = 1; i < backends_.size(); ++i) { EXPECT_EQ(backends_[i]->service().request_count(), 0UL); } // Send new resolution that removes child policy from service config. SetNextResolutionDefaultBalancer(); WaitForAllBackends(); CheckRpcSendOk(kNumRpcs, 3000 /* timeout_ms */, true /* wait_for_ready */); // Check that every backend saw the same number of requests. This verifies // that we used round_robin. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(backends_[i]->service().request_count(), 2UL); } // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(GrpclbEnd2endTest, SameBackendListedMultipleTimes) { CreateBackends(1); SetNextResolutionDefaultBalancer(); // Same backend listed twice. std::vector ports; ports.push_back(backends_[0]->port()); ports.push_back(backends_[0]->port()); const size_t kNumRpcsPerAddress = 10; SendBalancerResponse(BuildResponseForBackends(ports, {})); // We need to wait for the backend to come online. WaitForBackend(0); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * ports.size()); // Backend should have gotten 20 requests. EXPECT_EQ(kNumRpcsPerAddress * 2, backends_[0]->service().request_count()); // And they should have come from a single client port, because of // subchannel sharing. EXPECT_EQ(1UL, backends_[0]->service().clients().size()); } TEST_F(GrpclbEnd2endTest, InitiallyEmptyServerlist) { CreateBackends(1); SetNextResolutionDefaultBalancer(); // First response is an empty serverlist. RPCs should fail. SendBalancerResponse(LoadBalanceResponse()); CheckRpcSendFailure(); // Now send a non-empty serverlist. SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); CheckRpcSendOk(1, /*timeout_ms=*/3000, /*wait_for_ready=*/true); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent two responses. EXPECT_EQ(2U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, AllServersUnreachableFailFast) { SetNextResolutionDefaultBalancer(); const size_t kNumUnreachableServers = 5; std::vector ports; for (size_t i = 0; i < kNumUnreachableServers; ++i) { ports.push_back(grpc_pick_unused_port_or_die()); } SendBalancerResponse(BuildResponseForBackends(ports, {})); const Status status = SendRpc(); // The error shouldn't be DEADLINE_EXCEEDED. EXPECT_EQ(StatusCode::UNAVAILABLE, status.error_code()); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, Fallback) { const size_t kNumBackends = 4; const size_t kNumBackendsInResolution = kNumBackends / 2; CreateBackends(kNumBackends); // Inject resolver result that contains the fallback backends. SetNextResolution({balancer_->port()}, GetBackendPorts(0, kNumBackendsInResolution)); // Balancer has not sent a serverlist, so we should use fallback. // Wait until all the fallback backends are reachable. WaitForAllBackends(0, kNumBackendsInResolution, WaitForBackendOptions().SetTimeoutSeconds(20)); // Send serverlist. SendBalancerResponse(BuildResponseForBackends( GetBackendPorts(/*start_index=*/kNumBackendsInResolution), {})); // Now we should be using the backends from the balancer. WaitForAllBackends(kNumBackendsInResolution); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, FallbackUpdate) { const size_t kNumBackends = 6; const size_t kNumBackendsInResolution = kNumBackends / 3; const size_t kNumBackendsInResolutionUpdate = kNumBackends / 3; ResetStub(/*fallback_timeout_ms=*/500); CreateBackends(kNumBackends); // Inject resolver result with fallback addresses. SetNextResolution({balancer_->port()}, GetBackendPorts(0, kNumBackendsInResolution)); // Balancer has not sent a serverlist, so we should use fallback. // Wait until all the fallback backends are reachable. WaitForAllBackends(0, kNumBackendsInResolution); // Now send a resolver result with a different set of backend addresses. SetNextResolution({balancer_->port()}, GetBackendPorts(kNumBackendsInResolution, kNumBackendsInResolution + kNumBackendsInResolutionUpdate)); // Wait until the new fallback backends are reachable. WaitForAllBackends(kNumBackendsInResolution, kNumBackendsInResolution + kNumBackendsInResolutionUpdate); // Send non-empty serverlist. SendBalancerResponse( BuildResponseForBackends(GetBackendPorts(kNumBackendsInResolution + kNumBackendsInResolutionUpdate), {})); // Wait for backends from balancer to be seen. WaitForAllBackends(kNumBackendsInResolution + kNumBackendsInResolutionUpdate); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, FallbackAfterStartupLoseContactWithBalancerThenBackends) { // First two backends are fallback, last two are pointed to by balancer. const size_t kNumBackends = 4; const size_t kNumFallbackBackends = 2; const size_t kNumBalancerBackends = kNumBackends - kNumFallbackBackends; CreateBackends(kNumBackends); SetNextResolution({balancer_->port()}, GetBackendPorts(0, kNumFallbackBackends)); SendBalancerResponse( BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {})); // Try to connect. WaitForAllBackends(kNumFallbackBackends /* start_index */); // Stop balancer. RPCs should continue going to backends from balancer. balancer_->Shutdown(); CheckRpcSendOk(100 * kNumBalancerBackends); for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { EXPECT_EQ(100UL, backends_[i]->service().request_count()); } // Stop backends from balancer. This should put us in fallback mode. for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { ShutdownBackend(i); } WaitForAllBackends(0, kNumFallbackBackends); // Restart the backends from the balancer. We should *not* start // sending traffic back to them at this point. for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { StartBackend(i); } CheckRpcSendOk(100 * kNumBalancerBackends); for (size_t i = 0; i < kNumFallbackBackends; ++i) { EXPECT_EQ(100UL, backends_[i]->service().request_count()); } // Now start the balancer again. This should cause us to exit // fallback mode. balancer_->Start(); SendBalancerResponse( BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {})); WaitForAllBackends(kNumFallbackBackends); } TEST_F(GrpclbEnd2endTest, FallbackAfterStartupLoseContactWithBackendsThenBalancer) { // First two backends are fallback, last two are pointed to by balancer. const size_t kNumBackends = 4; const size_t kNumFallbackBackends = 2; const size_t kNumBalancerBackends = kNumBackends - kNumFallbackBackends; CreateBackends(kNumBackends); SetNextResolution({balancer_->port()}, GetBackendPorts(0, kNumFallbackBackends)); SendBalancerResponse( BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {})); // Try to connect. WaitForAllBackends(kNumFallbackBackends); // Stop backends from balancer. Since we are still in contact with // the balancer at this point, RPCs should be failing. for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { ShutdownBackend(i); } CheckRpcSendFailure(); // Stop balancer. This should put us in fallback mode. balancer_->Shutdown(); WaitForAllBackends(0, kNumFallbackBackends); // Restart the backends from the balancer. We should *not* start // sending traffic back to them at this point (although the behavior // in xds may be different). for (size_t i = kNumFallbackBackends; i < backends_.size(); ++i) { StartBackend(i); } CheckRpcSendOk(100 * kNumBalancerBackends); for (size_t i = 0; i < kNumFallbackBackends; ++i) { EXPECT_EQ(100UL, backends_[i]->service().request_count()); } // Now start the balancer again. This should cause us to exit // fallback mode. balancer_->Start(); SendBalancerResponse( BuildResponseForBackends(GetBackendPorts(kNumFallbackBackends), {})); WaitForAllBackends(kNumFallbackBackends); } TEST_F(GrpclbEnd2endTest, FallbackEarlyWhenBalancerChannelFails) { const int kFallbackTimeoutMs = 10000; ResetStub(kFallbackTimeoutMs); CreateBackends(1); // Return an unreachable balancer and one fallback backend. SetNextResolution({grpc_pick_unused_port_or_die()}, GetBackendPorts()); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 3000, /* wait_for_ready */ false); } TEST_F(GrpclbEnd2endTest, FallbackEarlyWhenBalancerCallFails) { const int kFallbackTimeoutMs = 10000; ResetStub(kFallbackTimeoutMs); CreateBackends(1); // Return one balancer and one fallback backend. SetNextResolution({balancer_->port()}, GetBackendPorts()); // Balancer drops call without sending a serverlist. balancer_->service().ShutdownStream(); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 3000, /* wait_for_ready */ false); } TEST_F(GrpclbEnd2endTest, FallbackControlledByBalancerBeforeFirstServerlist) { const int kFallbackTimeoutMs = 10000; ResetStub(kFallbackTimeoutMs); CreateBackends(1); // Return one balancer and one fallback backend. SetNextResolution({balancer_->port()}, GetBackendPorts()); // Balancer explicitly tells client to fallback. LoadBalanceResponse response; response.mutable_fallback_response(); SendBalancerResponse(std::move(response)); // Send RPC with deadline less than the fallback timeout and make sure it // succeeds. CheckRpcSendOk(/* times */ 1, /* timeout_ms */ 3000, /* wait_for_ready */ false); } TEST_F(GrpclbEnd2endTest, FallbackControlledByBalancerAfterFirstServerlist) { CreateBackends(2); // Return one balancer and one fallback backend (backend 0). SetNextResolution({balancer_->port()}, {backends_[0]->port()}); // Balancer sends a serverlist pointing to backend 1. SendBalancerResponse(BuildResponseForBackends({backends_[1]->port()}, {})); WaitForBackend(1); // Balancer tells client to fall back. LoadBalanceResponse fallback_response; fallback_response.mutable_fallback_response(); SendBalancerResponse(std::move(fallback_response)); WaitForBackend(0); // Balancer sends a new serverlist, so client exits fallback. SendBalancerResponse(BuildResponseForBackends({backends_[1]->port()}, {})); WaitForBackend(1); } TEST_F(GrpclbEnd2endTest, BackendsRestart) { CreateBackends(2); SetNextResolutionDefaultBalancer(); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); WaitForAllBackends(); // Stop backends. RPCs should fail. ShutdownAllBackends(); CheckRpcSendFailure(); // Restart backends. RPCs should start succeeding again. StartAllBackends(); CheckRpcSendOk(1 /* times */, 3000 /* timeout_ms */, true /* wait_for_ready */); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, ServiceNameFromLbPolicyConfig) { constexpr char kServiceConfigWithTarget[] = "{\n" " \"loadBalancingConfig\":[\n" " { \"grpclb\":{\n" " \"serviceName\":\"test_service\"\n" " }}\n" " ]\n" "}"; SetNextResolutionDefaultBalancer(kServiceConfigWithTarget); CreateBackends(1); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); WaitForAllBackends(); EXPECT_EQ(balancer_->service().service_names().back(), "test_service"); } TEST_F(GrpclbEnd2endTest, NewBalancerAddressNotUsedIfOriginalStreamDoesNotFail) { CreateBackends(3); // Default balancer sends backend 0. SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {})); // Second balancer sends backend 1. auto balancer2 = CreateAndStartBalancer(); balancer2->service().SendResponse( BuildResponseForBackends({backends_[1]->port()}, {})); // Initially, the channel uses the default balancer. SetNextResolutionDefaultBalancer(); WaitForBackend(0); // Send 10 requests. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service().request_count()); EXPECT_EQ(0U, backends_[1]->service().request_count()); EXPECT_EQ(0U, backends_[2]->service().request_count()); // Balancer 0 got a single request and sent a single response. EXPECT_EQ(1U, balancer_->service().request_count()); EXPECT_EQ(1U, balancer_->service().response_count()); EXPECT_EQ(0U, balancer2->service().request_count()); EXPECT_EQ(0U, balancer2->service().response_count()); // Now tell the channel to use balancer 2. However, the stream to the // default balancer is not terminated, so the client will continue to // use it. gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution({balancer2->port()}); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); // Now the default balancer sends backend 2. SendBalancerResponse(BuildResponseForBackends({backends_[2]->port()}, {})); WaitForBackend(2); } // Send an update with the same set of LBs as the previous one in order to // verify that the LB channel inside grpclb keeps the initial connection (which // by definition is also present in the update). TEST_F(GrpclbEnd2endTest, UpdatedBalancerAddressesWithSameAddressDoesNotBreakConnection) { CreateBackends(2); // Default balancer points to backend 0. SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {})); // Second balancer points to backend 1. auto balancer2 = CreateAndStartBalancer(); balancer2->service().SendResponse( BuildResponseForBackends({backends_[1]->port()}, {})); // Send both balancer addresses. SetNextResolution({balancer_->port(), balancer2->port()}); // Wait until the first backend is ready. WaitForBackend(0); // Send 10 requests. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service().request_count()); EXPECT_EQ(0U, backends_[1]->service().request_count()); // Balancer 0 got a single request and sent a single response. EXPECT_EQ(1U, balancer_->service().request_count()); EXPECT_EQ(1U, balancer_->service().response_count()); EXPECT_EQ(0U, balancer2->service().request_count()); EXPECT_EQ(0U, balancer2->service().response_count()); // Send another address list with the same list of balancers. gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution({balancer_->port(), balancer2->port()}); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); // Shut down the balancer stream to force the client to create a new one. // The new stream should go to the default balancer, since the // underlying connection should not have been broken. gpr_log(GPR_INFO, "========= SHUTTING DOWN BALANCER CALL =========="); balancer_->service().ShutdownStream(); gpr_log(GPR_INFO, "========= DONE SHUTTING DOWN BALANCER CALL =========="); // Wait until client has created a new balancer stream. EXPECT_TRUE(balancer_->service().WaitForNewStream(1)); // Make sure there was only one client connection seen by the balancer. EXPECT_EQ(1UL, balancer_->service().clients().size()); } TEST_F(GrpclbEnd2endTest, BalancerDiesThenSwitchToNewBalancer) { CreateBackends(2); // Default balancer sends backend 0. SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {})); // Balancer 2 sends backend 1. auto balancer2 = CreateAndStartBalancer(); balancer2->service().SendResponse( BuildResponseForBackends({backends_[1]->port()}, {})); // Channel initially uses default balancer and therefore backend 0. SetNextResolutionDefaultBalancer(); WaitForBackend(0); // Default balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); EXPECT_EQ(1U, balancer_->service().response_count()); EXPECT_EQ(0U, balancer2->service().request_count()); EXPECT_EQ(0U, balancer2->service().response_count()); // Send 10 RPCs. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service().request_count()); EXPECT_EQ(0U, backends_[1]->service().request_count()); // Kill default balancer. gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER *************"); balancer_->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BALANCER *************"); // Channel should continue using the last backend it saw from the // balancer before the balancer died. gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // All 10 requests should again have gone to the first backend. EXPECT_EQ(20U, backends_[0]->service().request_count()); EXPECT_EQ(0U, backends_[1]->service().request_count()); // Tell channel to start using balancer 2. gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution({balancer2->port()}); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); // Channel should start using backend 1. WaitForBackend(1); // This is serviced by the updated RR policy gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH =========="); // All 10 requests should have gone to the second backend. EXPECT_EQ(0U, backends_[0]->service().request_count()); EXPECT_EQ(10U, backends_[1]->service().request_count()); // Both balancers should have gotten one request and sent one response. EXPECT_EQ(1U, balancer_->service().request_count()); EXPECT_EQ(1U, balancer_->service().response_count()); EXPECT_EQ(1U, balancer2->service().request_count()); EXPECT_EQ(1U, balancer2->service().response_count()); } TEST_F(GrpclbEnd2endTest, ReresolveDeadBackendWhileInFallback) { ResetStub(/*fallback_timeout_ms=*/500); CreateBackends(2); // The first resolution contains the addresses of a balancer that never // responds, and a fallback backend. SetNextResolution({balancer_->port()}, {backends_[0]->port()}); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the fallback backend. EXPECT_EQ(10U, backends_[0]->service().request_count()); // Kill backend 0. gpr_log(GPR_INFO, "********** ABOUT TO KILL BACKEND 0 *************"); backends_[0]->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BACKEND 0 *************"); // This should trigger re-resolution. EXPECT_TRUE(response_generator_->WaitForReresolutionRequest( absl::Seconds(5 * grpc_test_slowdown_factor()))); // The re-resolution result will contain the addresses of the same balancer // and a new fallback backend. SetNextResolution({balancer_->port()}, {backends_[1]->port()}); // Wait until re-resolution has been seen, as signaled by the second backend // receiving a request. WaitForBackend(1); gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); // All 10 requests should have gone to the second backend. EXPECT_EQ(10U, backends_[1]->service().request_count()); EXPECT_EQ(1U, balancer_->service().request_count()); EXPECT_EQ(0U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, ReresolveWhenBalancerCallFails) { CreateBackends(2); // Default balancer sends backend 0. SendBalancerResponse(BuildResponseForBackends({backends_[0]->port()}, {})); // Balancer 2 sends backend 1. auto balancer2 = CreateAndStartBalancer(); balancer2->service().SendResponse( BuildResponseForBackends({backends_[1]->port()}, {})); // Channel initially uses default balancer and therefore backend 0. SetNextResolutionDefaultBalancer(); WaitForBackend(0); // Send 10 RPCs. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); CheckRpcSendOk(10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backends_[0]->service().request_count()); // Balancer 0 got a single request and sent a single request. EXPECT_EQ(1U, balancer_->service().request_count()); EXPECT_EQ(1U, balancer_->service().response_count()); EXPECT_EQ(0U, balancer2->service().request_count()); EXPECT_EQ(0U, balancer2->service().response_count()); // Kill balancer 0. gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER 0 *************"); balancer_->Shutdown(); gpr_log(GPR_INFO, "********** KILLED BALANCER 0 *************"); // This should trigger a re-resolution. EXPECT_TRUE(response_generator_->WaitForReresolutionRequest( absl::Seconds(5 * grpc_test_slowdown_factor()))); gpr_log(GPR_INFO, "********** SAW RE-RESOLUTION REQUEST *************"); // Re-resolution result switches to balancer 2. SetNextResolution({balancer2->port()}); // Client should start using backend 1. WaitForBackend(1); // Both balancers should each have handled one request and sent one response. EXPECT_EQ(1U, balancer_->service().request_count()); EXPECT_EQ(1U, balancer_->service().response_count()); EXPECT_EQ(1U, balancer2->service().request_count()); EXPECT_EQ(1U, balancer2->service().response_count()); } TEST_F(GrpclbEnd2endTest, Drop) { const size_t kNumRpcsPerAddress = 100; const size_t kNumBackends = 2; const int kNumDropRateLimiting = 1; const int kNumDropLoadBalancing = 2; const int kNumDropTotal = kNumDropRateLimiting + kNumDropLoadBalancing; const int kNumAddressesTotal = kNumBackends + kNumDropTotal; SetNextResolutionDefaultBalancer(); CreateBackends(kNumBackends); SendBalancerResponse(BuildResponseForBackends( GetBackendPorts(), {{"rate_limiting", kNumDropRateLimiting}, {"load_balancing", kNumDropLoadBalancing}})); // Wait until all backends are ready. WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs for each server and drop address. size_t num_drops = 0; for (size_t i = 0; i < kNumRpcsPerAddress * kNumAddressesTotal; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "drop directed by grpclb balancer") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage); } } EXPECT_EQ(kNumRpcsPerAddress * kNumDropTotal, num_drops); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count()); } // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); } TEST_F(GrpclbEnd2endTest, DropAllFirst) { SetNextResolutionDefaultBalancer(); // All registered addresses are marked as "drop". const int kNumDropRateLimiting = 1; const int kNumDropLoadBalancing = 1; SendBalancerResponse(BuildResponseForBackends( {}, {{"rate_limiting", kNumDropRateLimiting}, {"load_balancing", kNumDropLoadBalancing}})); const Status status = SendRpc(nullptr, 3000, true); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer"); } TEST_F(GrpclbEnd2endTest, DropAll) { CreateBackends(1); SetNextResolutionDefaultBalancer(); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); CheckRpcSendOk(); SendBalancerResponse(BuildResponseForBackends( {}, {{"rate_limiting", 1}, {"load_balancing", 1}})); // Eventually, the update with only dropped servers is processed, and calls // fail. Status status; do { status = SendRpc(nullptr, 3000, true); } while (status.ok()); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.error_message(), "drop directed by grpclb balancer"); } TEST_F(GrpclbEnd2endTest, ClientLoadReporting) { const size_t kNumBackends = 3; CreateBackends(kNumBackends); balancer_->service().set_client_load_reporting_interval_seconds(3); SetNextResolutionDefaultBalancer(); const size_t kNumRpcsPerAddress = 100; SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); // Wait until all backends are ready. int num_ok = 0; int num_failure = 0; int num_drops = 0; std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(); // Send kNumRpcsPerAddress RPCs per server. CheckRpcSendOk(kNumRpcsPerAddress * kNumBackends); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count()); } // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); ClientStats client_stats; do { auto stats = WaitForLoadReports(); ASSERT_TRUE(stats.has_value()); client_stats += *stats; } while (client_stats.num_calls_finished != kNumRpcsPerAddress * kNumBackends + num_ok); EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + num_ok, client_stats.num_calls_started); EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + num_ok, client_stats.num_calls_finished); EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + (num_ok + num_drops), client_stats.num_calls_finished_known_received); EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre()); } TEST_F(GrpclbEnd2endTest, LoadReportingWithBalancerRestart) { const size_t kNumBackends = 4; const size_t kNumBackendsFirstPass = 2; const size_t kNumBackendsSecondPass = kNumBackends - kNumBackendsFirstPass; CreateBackends(kNumBackends); balancer_->service().set_client_load_reporting_interval_seconds(3); SetNextResolutionDefaultBalancer(); // Balancer returns backends starting at index 1. SendBalancerResponse( BuildResponseForBackends(GetBackendPorts(0, kNumBackendsFirstPass), {})); // Wait until all backends returned by the balancer are ready. int num_ok = 0; int num_failure = 0; int num_drops = 0; std::tie(num_ok, num_failure, num_drops) = WaitForAllBackends(0, kNumBackendsFirstPass); auto client_stats = WaitForLoadReports(); ASSERT_TRUE(client_stats.has_value()); EXPECT_EQ(static_cast(num_ok), client_stats->num_calls_started); EXPECT_EQ(static_cast(num_ok), client_stats->num_calls_finished); EXPECT_EQ(0U, client_stats->num_calls_finished_with_client_failed_to_send); EXPECT_EQ(static_cast(num_ok), client_stats->num_calls_finished_known_received); EXPECT_THAT(client_stats->drop_token_counts, ::testing::ElementsAre()); // Shut down the balancer. balancer_->Shutdown(); // Send 10 more requests per backend. This will continue using the // last serverlist we received from the balancer before it was shut down. ResetBackendCounters(); CheckRpcSendOk(kNumBackendsFirstPass); // Each backend should have gotten 1 request. for (size_t i = 0; i < kNumBackendsFirstPass; ++i) { EXPECT_EQ(1UL, backends_[i]->service().request_count()); } // Now restart the balancer, this time pointing to all backends. balancer_->Start(); SendBalancerResponse( BuildResponseForBackends(GetBackendPorts(kNumBackendsFirstPass), {})); // Wait for queries to start going to one of the new backends. // This tells us that we're now using the new serverlist. do { CheckRpcSendOk(); } while (backends_[2]->service().request_count() == 0 && backends_[3]->service().request_count() == 0); // Send one RPC per backend. CheckRpcSendOk(kNumBackendsSecondPass); // Check client stats. client_stats = WaitForLoadReports(); ASSERT_TRUE(client_stats.has_value()); EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats->num_calls_started); EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats->num_calls_finished); EXPECT_EQ(0U, client_stats->num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumBackendsSecondPass + 1, client_stats->num_calls_finished_known_received); EXPECT_THAT(client_stats->drop_token_counts, ::testing::ElementsAre()); } TEST_F(GrpclbEnd2endTest, LoadReportingWithDrops) { const size_t kNumBackends = 3; const size_t kNumRpcsPerAddress = 3; const int kNumDropRateLimiting = 2; const int kNumDropLoadBalancing = 1; const int kNumDropTotal = kNumDropRateLimiting + kNumDropLoadBalancing; const int kNumAddressesTotal = kNumBackends + kNumDropTotal; CreateBackends(kNumBackends); balancer_->service().set_client_load_reporting_interval_seconds(3); SetNextResolutionDefaultBalancer(); SendBalancerResponse(BuildResponseForBackends( GetBackendPorts(), {{"rate_limiting", kNumDropRateLimiting}, {"load_balancing", kNumDropLoadBalancing}})); // Wait until all backends are ready. int num_warmup_ok = 0; int num_warmup_failure = 0; int num_warmup_drops = 0; std::tie(num_warmup_ok, num_warmup_failure, num_warmup_drops) = WaitForAllBackends( 0, kNumBackends, WaitForBackendOptions().SetNumRequestsMultipleOf(kNumAddressesTotal)); const int num_total_warmup_requests = num_warmup_ok + num_warmup_failure + num_warmup_drops; size_t num_drops = 0; for (size_t i = 0; i < kNumRpcsPerAddress * kNumAddressesTotal; ++i) { EchoResponse response; const Status status = SendRpc(&response); if (!status.ok() && status.error_message() == "drop directed by grpclb balancer") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kRequestMessage); } } EXPECT_EQ(kNumRpcsPerAddress * kNumDropTotal, num_drops); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backends_[i]->service().request_count()); } // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); // Get load reports. auto client_stats = WaitForLoadReports(); ASSERT_TRUE(client_stats.has_value()); EXPECT_EQ(kNumRpcsPerAddress * kNumAddressesTotal + num_total_warmup_requests, client_stats->num_calls_started); EXPECT_EQ(kNumRpcsPerAddress * kNumAddressesTotal + num_total_warmup_requests, client_stats->num_calls_finished); EXPECT_EQ(0U, client_stats->num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumRpcsPerAddress * kNumBackends + num_warmup_ok, client_stats->num_calls_finished_known_received); // The number of warmup request is a multiple of the number of addresses. // Therefore, all addresses in the scheduled balancer response are hit the // same number of times. const int num_times_drop_addresses_hit = num_warmup_drops / kNumDropTotal; EXPECT_THAT( client_stats->drop_token_counts, ::testing::ElementsAre( ::testing::Pair("load_balancing", (kNumRpcsPerAddress + num_times_drop_addresses_hit)), ::testing::Pair( "rate_limiting", (kNumRpcsPerAddress + num_times_drop_addresses_hit) * 2))); } TEST_F(GrpclbEnd2endTest, SecureNaming) { CreateBackends(1); ResetStub(/*fallback_timeout_ms=*/0, absl::StrCat(kApplicationTargetName, ";lb")); SetNextResolutionFromEndpoints( CreateAddressListFromPorts({balancer_->port()}, "lb")); SendBalancerResponse(BuildResponseForBackends(GetBackendPorts(), {})); // We need to wait for all backends to come online. WaitForAllBackends(); // The balancer got a single request. EXPECT_EQ(1U, balancer_->service().request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_->service().response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } // This death test is kept separate from the rest to ensure that it's run before // any others. See https://github.com/grpc/grpc/pull/32269 for details. using SingleBalancerDeathTest = GrpclbEnd2endTest; TEST_F(SingleBalancerDeathTest, SecureNaming) { GTEST_FLAG_SET(death_test_style, "threadsafe"); // Make sure that we blow up (via abort() from the security connector) when // the name from the balancer doesn't match expectations. ASSERT_DEATH_IF_SUPPORTED( { ResetStub(/*fallback_timeout_ms=*/0, absl::StrCat(kApplicationTargetName, ";lb")); SetNextResolutionFromEndpoints( CreateAddressListFromPorts({balancer_->port()}, "woops")); channel_->WaitForConnected(grpc_timeout_seconds_to_deadline(1)); }, ""); } } // namespace } // namespace testing } // namespace grpc int main(int argc, char** argv) { grpc::testing::TestEnvironment env(&argc, argv); ::testing::InitGoogleTest(&argc, argv); const auto result = RUN_ALL_TESTS(); return result; }